GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Second Semiannual 2016 Groundwater Monitoring and

Report Title: Sampling Report, Defense Fuel Support Point Norwalk, 15306

Norwalk Boulevard, Norwalk, Californnia 90650

Report Type: Monitoring Report - Other

Report Date: 1/24/2017

Facility Global SLT43185183

ID:

Facility Name: Norwalk, Fuel Terminal DFSP - DOD - NORWALK DFSP

Second Semiannual 2015 Groundwater Monitoring and

Sampling Report - DFSP Norwalk.pdf

<u>Organization</u>

Name:

The Source Group, Inc.

<u>Username:</u> SIGNAL HILL

<u>IP Address:</u> 66.214.148.134

Submittal
Date/Time:

1/24/2017 3:36:33 PM

Confirmation

4866346895

Number:

Copyright © 2017 State of California

DEFENSE LOGISTICS AGENCY

INSTALLATION SUPPORT FOR ENERGY 8725 JOHN J. KINGMAN ROAD FT. BELVOIR VIRGINIA 22060-6221

January 24, 2017

Mr. Paul Cho California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Dear Mr. Cho:

Attached is the Second Semiannual 2016 Groundwater Monitoring and Sampling Report for Defense Fuel Support Point Norwalk (SCP NO. 0286A, SITE ID NO. 16638) located at 15306 Norwalk Boulevard, Norwalk, California. This report presents monitoring and sampling data collected during October 2016.

If you have any questions or need additional information concerning this document, please contact Ms. Carol Devier-Heeney at (703) 767-9813 or carol.devier-heeney@dla.mil.

Sincerely,

Digitally signed by POTTER.WILLIAM.Y.1394566272 Date: 2017.01.24 14:51:17

-05'00'

William Y. Potter Chief, Restoration Branch

Enclosure As stated

cc:

Carol Devier-Heeney, DLA Daniel Swensson, P.G., Senior Geologist, The Source Group, Inc.

SECOND SEMIANNUAL 2016 GROUNDWATER MONITORING AND SAMPLING REPORT

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard Norwalk, California 90650

SPO600-14-D-5410

Delivery Order 018

Prepared For:

Defense Logistics Agency – Energy 8725 John J. Kingman Drive Fort Belvoir, Virginia 22060-6222

Prepared By:

1962 Freeman Avenue Signal Hill, California 90755

January 24, 2017

Prepared By:

Daniel Swensson Senior Geologist

Professional Geologist No. 7082

Daniel Swensson

No. 7082

OF CALL

Reviewed By

Project Manager

Neil F. Irish

Professional Geologist No. 5484

TABLE OF CONTENTS

			PAGE	
		GURES		
		BLES		
		PENDICES		
LIST	OF AC	RONYMS	iv	
1.0	INTR	ODUCTION	1-1	
		D AND LADODATORY ACTIVITIES	0.4	
2.0	2.1	D AND LABORATORY ACTIVITIES Semiannual Groundwater Monitoring		
	2.1			
	2.2	Field and Laboratory Methods		
		2.2.1 Field Methods		
		2.2.2 Laboratory Analytical Methods	2-2	
3.0	GROUNDWATER GAUGING RESULTS			
	3.1	Groundwater Gradient Conditions	3-1	
		3.1.1 Uppermost Groundwater Zone		
		3.1.2 Exposition Aquifer		
	3.2	Distribution of Floating Product		
		3.2.1 Comparison of Current Product Distribution with Historical		
		Maximum Measured Product Thickness	3-4	
4.0	GRO 4.1	UNDWATER ANALYTICAL RESULTS		
	4.1	Results for Semiannual Event		
		4.1.1 Total Petroleum Hydrocarbons		
		4.1.2 Benzene		
		4.1.3 1,2-Dichloroethane		
		4.1.4 Methyl Tertiary-Butyl Ether		
		4.1.5 Tertiary-Butyl Alcohol		
	4.0	4.1.6 Other Fuel Oxygenates		
	4.2	Quality Assurance/Quality Control		
	4.3	Water Disposal		
	4.4	Health and Safety	4-7	
5.0	REMEDIATION SYSTEM OPERATIONS AND EFFECTIVENESS			
J.U	5.1	System Operations		
		5.1.1 DLA		
		5.1.2 SFPP		
	5.2	System Effectiveness		
	0	****		
6.0	SUM 6.1	MARYGroundwater Elevation and Gradient Conditions		
	6.2			
	6.2 6.3	Distribution of Floating Product		
	0.3			
		6.3.1 Total Petroleum Hydrocarbons		
		6.3.2 Benzene		
		6.3.3 1,2-Dichloroethane		
		6.3.4 Methyl Tertiary-Butyl Ether		
		6.3.5 Tertiary-Butyl Alcohol	6-4	

		TABLE OF CONTENTS	
	6.3.6	Other Fuel Oxygenates	6-4
7.0	LIMITATIONS	S	7-1
8.0	REFERENCE	S	8-1

LIST OF FIGURES

	LIGI OF FIGURES				
Figure 1	Site Location Map				
Figure 2	Groundwater Equipotential and Gradient Map, Uppermost Groundwater Zone, October 3, 2016				
Figure 3	Groundwater Equipotential and Gradient Map, Exposition Aquifer, October 3, 2016				
Figure 4	Distribution of Floating Product on Groundwater, October 2016				
Figure 5	Hydrograph				
Figure 6	Total Petroleum Hydrocarbons in Groundwater, October 2016				
Figure 7	Benzene in Groundwater, October 2016				
Figure 8	1,2-Dichloroethane in Groundwater, October 2016				
Figure 9	Methyl Tertiary-Butyl Ether in Groundwater, October 2016				
Figure 10	Tertiary-Butyl Alcohol in Groundwater, October 2016				
LIST OF TABLES					
Table 1	Monitoring Well Summary				
Table 2	Groundwater Elevations and Measured Product Thicknesses				
Table 3	Historical and Current Floating Product Summary				
Table 4	Analytical Results for TPH, BTEX Compounds, 1,2-DCA, and Fuel Oxygenates in Groundwater, October 2016				
Table 5	Summary of Additional Volatile Organic Compounds Detected in Groundwater, October 2016				
Table 6	Analytical Results for Analytes Detected in Field Duplicate Samples				
Table 7	Analytical Results for TPH, BTEX Compounds, and Selected VOCs in Trip Blanks and Equipment Blanks				
LIST OF APPENDICES					
Appendix A	Field Documentation (CD ROM Only)				
Appendix B	Laboratory Reports (CD ROM Only)				
Appendix C	Historical Groundwater Elevations, November 1996 through October 2016				
Appendix D	Historical Analytical Results for TPH, BTEX Compounds, 1,2-DCA, and Fuel Oxygenates in Groundwater, November 1996 through October 2016				
Appendix E	Time-Series Charts				

LIST OF ACRONYMS

μg/L micrograms per liter
Alpha Alpha Analytical, Inc.
Blaine Tech Blaine Tech Services, Inc.

BTEX compounds benzene, toluene, ethylbenzene, and total xylenes

CH2M HILL Engineers, Inc.

DIPE diisopropyl ether

DFSP Norwalk Defense Fuel Support Point Norwalk

DLA Defense Logistics Agency Installation Support for Energy

1,2-DCA 1,2-dichloroethane

EPA Environmental Protection Agency

ETBE ethyl tertiary-butyl ether

ft/ft feet per foot

gpm gallons per minute
GWE groundwater extraction
JP-4 jet propellant No. 4
JP-5 jet propellant No. 5
JP-8 jet propellant No. 8

KMEP Kinder Morgan Energy Partners, L.P.

LDPE low-density polyethylene mL/min milliliters per minute
MSL Mean Sea Level

MTBE methyl tertiary-butyl ether

NPDES National Pollutant Discharge Elimination System

RAB Restoration Advisory Board

RWQCB Regional Water Quality Control Board

SFPP Santa Fe Pacific Pipeline, L.P.

SGI The Source Group, Inc.

SVE soil vapor extraction

TAME tertiary-amyl methyl ether

TBA tertiary-butyl alcohol

TFE total fluids extraction

TPH total petroleum hydrocarbons

TPHd total petroleum hydrocarbons quantified as diesel
TPHg total petroleum hydrocarbons quantified as gasoline

VOA volatile organic analysis
VOCs volatile organic compunds

1.0 INTRODUCTION

The Source Group, Inc. (SGI), prepared this groundwater monitoring report on behalf of the Defense Logistics Agency Installation Support for Energy (DLA) and Santa Fe Pacific Pipeline, L.P. (SFPP), an operating partnership of Kinder Morgan Energy Partners, L.P. (KMEP), to summarize the results of the second semiannual 2016 groundwater monitoring and sampling event conducted at the Defense Fuel Support Point (DFSP) Norwalk (Site), located at 15306 Norwalk Boulevard in Norwalk, California (Figure 1).

The results documented in this report are based on groundwater monitoring conducted in accordance with the revised sampling and analysis plans prepared by DLA (Parsons, September 2013) and SFPP (CH2M, May 2013). The Regional Water Quality Control Board (RWQCB) approved the sampling plans on October 23, 2013, and June 27, 2013, respectively.

DLA and SFPP jointly perform semiannual groundwater monitoring and sampling at the Site to address respective impacts to groundwater by each entity. DLA contracted SGI and SFPP contracted CH2M to perform project oversight of groundwater monitoring activities. SFPP contracted Blaine Tech Services, Inc. (Blaine Tech) to gauge and sample the designated SFPP wells and SGI personnel conducted the gauging and sampling for DLA. SGI was retained by DLA to compile and interpret the data collected during this semiannual event and prepare this summary report.

Since 1986, environmental assessments have been performed at DFSP Norwalk (both on site and off site) by several consultants on behalf of SFPP and DLA. During these investigations, wells were installed for monitoring and as components of remediation activities. Table 1 presents a summary of groundwater monitoring and remediation wells associated with the Site. These investigations evaluated and defined the extent of liquid-phase, adsorbed-phase, and dissolved-phase hydrocarbons in soil and groundwater beneath the Site and off site to the south, east, and west.

Based upon the results of these investigations, the principal chemical constituents of concern at the Site are total petroleum hydrocarbons (TPH), including TPH quantified as gasoline (TPHg), diesel fuel (TPHd), Jet Propellant No.4 (JP-4), Jet Propellant No.5 (JP-5), and Jet Propellant No.8 (JP-8); benzene, toluene, ethylbenzene, and xylenes (BTEX compounds); 1,2-dichloroethane (1,2-DCA); methyl tertiary-butyl ether (MTBE); and tertiary-butyl alcohol (TBA). Additional background information regarding historical investigations and monitoring events at the Site is presented in previously submitted semiannual groundwater monitoring reports. Monitoring wells and remediation wells are monitored on a semiannual basis to evaluate groundwater elevation and groundwater quality conditions.

This report furnishes information pertaining to the second semiannual 2016 groundwater monitoring event. This report includes groundwater gauging and sampling data from selected wells throughout the DFSP Norwalk facility and from wells located off site to the south, east, and west, and provides an updated description of the status of the dissolved-phase and non-aqueous liquid-phase (floating product) hydrocarbon plumes.

2.0 FIELD AND LABORATORY ACTIVITIES

An overview of the semiannual monitoring event is provided in Section 2.1. Field and laboratory methods are described in Section 2.2.

2.1 Semiannual Groundwater Monitoring

DLA wells were gauged by SGI personnel and the majority of the SFPP wells were gauged by Blaine Tech on October 3, 2016. Remediation extraction wells GMW-O-11 and GMW-O-15 were gauged by KMEP personnel on October 6 and October 4, 2016, respectively. Extraction well GMW-O-18 was gauged by KMEP personnel on December 13, 2016. GMW-O-18 could not be gauged sooner due to the presence of a stuck pump. The wells were purged and sampled from October 3 to October 11, 2016. During this semiannual sampling event, liquid levels were measured in 147 wells and groundwater samples were collected for analysis from 107 wells. Including duplicate and split samples, a total of 125 groundwater samples were analyzed. The wells sampled during this event are shown in bold in Table 1. Sampling was conducted using low-flow methodology, as described in Section 2.2. Exposition Aquifer wells EXP-1, EXP-2, and EXP-3 were gauged and sampled by both SGI (for DLA) and Blaine Tech (for SFPP). Gauging data and calculated groundwater elevations and product thicknesses are summarized in Table 2. Field documentation is provided in Appendix A.

2.2 Field and Laboratory Methods

Field activities were conducted in accordance with the revised sampling plans as described in Section 1. Groundwater samples collected for DLA were submitted to American Analytics in Chatsworth, California, and groundwater samples collected for SFPP were submitted to Alpha Analytical, Inc. (Alpha), in Sparks, Nevada. Both laboratories are certified by the Environmental Laboratory Accreditation Program of the California Department of Public Health. Samples were submitted to the analytical laboratories under chain-of-custody protocol for the analyses described in Section 2.2.2.

2.2.1 Field Methods

Approximately one week prior to commencement of gauging, purging, or sampling activities, SFPP's and DLA's remediation systems were shut down to allow groundwater levels to recover to near static conditions. Subsequently, SGI, Blaine Tech, and SFPP personnel measured depth to water and depth to product in the prescribed wells using interface probe well-monitoring instruments. The interface probes differentiate between water and hydrocarbons using conductivity measurements. The interface probes were cleaned with a laboratory-grade cleanser, and then rinsed successively in two containers with distilled water prior to each measurement.

Before sampling, the majority of the wells were purged using low-flow purge techniques. Flowrates ranged from approximately 0.053 to 0.139 gallons per minute (gpm; approximately 200 to 526 milliliters per minute [mL/min]), averaging 0.108 gpm (411 mL/min). No-purge samples were

collected from two wells with insufficient groundwater for purging (MW-SF-4 and MW-SF-15). During purging, groundwater field parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential) were monitored. Water levels also were monitored during low-flow purging to verify and ensure minimal drawdown. Between approximately 0.79 and 2.50 gallons (3,000 to 9,464 milliliters) were pumped from each well prior to sampling. Samples for SFPP were collected using a 2-inch-diameter submersible Grundfos pump with new or dedicated tubing, whereas samples for DLA were collected using a 2-inch-diameter Monsoon submersible pump with new low-density polyethylene (LDPE) tubing used for each well. Field documentation is provided in Appendix A.

Groundwater field parameters were allowed to stabilize before collecting the sample. Water samples to be analyzed for TPHg, TPHd (SFPP samples only), and volatile organic compounds (VOCs) were collected in 40-milliliter volatile organic analysis (VOA) vials containing hydrochloric acid preservative, filled to zero headspace, and sealed with Teflon septa and airtight caps. DLA water samples for analysis of TPHd were collected in 250-milliliter amber bottles and sealed with Teflon-lined airtight caps. The samples were labeled and placed on ice in thermally insulated coolers for transport to the laboratory following proper chain-of-custody procedures.

2.2.2 Laboratory Analytical Methods

Samples collected for DLA were sent to American Analytics and samples collected for SFPP were sent to Alpha Analytical for laboratory analysis. The laboratory analytical program included analysis for VOCs using Environmental Protection Agency (EPA) Method 8260B and TPH using purge-and-trap and/or extraction sample preparation techniques followed by EPA Method 8015 (modified). Results for TPH analyses using the purge-and-trap preparation technique were quantified and reported against a commercial gasoline standard (C4 to C13) and are abbreviated "TPHg" throughout this report. Results for TPH analyses using extraction sample preparation for groundwater samples were quantified and reported against a commercial diesel standard (C14 to C22; results abbreviated "TPHd"). Laboratory analytical reports are provided in Appendix B.

3.0 GROUNDWATER GAUGING RESULTS

Measurements of water level and floating product thickness collected during this semiannual monitoring event are described in the following section. DLA's and SFPP's remediation systems were shut down approximately one week prior to the second semiannual 2016 groundwater gauging and sampling activities. Depths to groundwater and product (if present), measured product thicknesses, and calculated groundwater elevations are summarized in Table 2. Groundwater elevation contours for the uppermost groundwater zone along with the interpreted lateral extent of floating product plumes are shown on Figure 2; groundwater elevation contours for the deeper Exposition Aquifer are shown on Figure 3. The distribution of floating product and measured product thicknesses are shown on Figure 4. Historical water level measurements, measured product thicknesses, and groundwater elevations are summarized in Appendix C.

The following wells were not considered in contouring groundwater elevation in the uppermost groundwater zone:

- Wells containing measureable floating product,
- The five wells screened in the Exposition Aquifer (EXP-1 through EXP-5),
- Five wells screened near the bottom of the uppermost aquifer [MW-18(MID), MW-19(MID), MW-20(MID), MW-21(MID), and MW-22(MID)], and
- Four wells with groundwater elevations that appear anomalous based upon comparison with surrounding groundwater elevations (GMW-O-10, GMW-O-21, HL-2, and MW-9).

The exclusion of groundwater elevation data from these wells during the construction of the interpreted groundwater contour maps provides a more representative depiction of the general groundwater conditions at the Site.

3.1 Groundwater Gradient Conditions

3.1.1 Uppermost Groundwater Zone

Depth to groundwater (excluding wells containing measureable floating product and Exposition Aquifer wells) in the uppermost groundwater zone ranged from 28.10 to 41.05 feet below the tops of the well casings. Groundwater elevations in these wells ranged from 34.74 to 43.04 feet above mean sea level (MSL). Since the April 2016 monitoring event, groundwater elevations dropped an average of 0.93 foot in uppermost groundwater zone wells that did not contain floating product. Changes in elevation ranged from a decrease of 7.63 feet in MW-19(MID) to an increase of 0.68 foot in GMW-15.

The groundwater potentiometric surface is depicted on Figure 2. Based upon the gauging data collected on October 3, 2016, the groundwater surface is generally characterized by a groundwater depression in the south-central area with gradients converging toward this depression. The depression is related to ongoing biosparge operations in this portion of the Site. A groundwater depression was also interpreted in the northeastern area based upon the relatively lower elevation in groundwater extraction well GW-15. Groundwater mounding was indicated in the southeastern

area in the vicinity of GMW-37, in the northeastern area in the vicinity of GMW-59 and GMW-61, and in the northwestern area based upon relatively higher elevations in monitoring wells MW-6, MW-14, and off-site well WCW-7. Gradients ranged from approximately 0.002 to 0.029 feet per foot (ft/ft).

Historically, the overall gradient direction (when groundwater extraction wells and biosparging are not in operation) in the uppermost aquifer has been toward the north-northwest. During this monitoring event, the groundwater surface was generally characterized by low gradients in the central tank farm area with gradients converging toward the Site from the northwest, west, southwest, south, southeast, east, and northeast.

Groundwater levels in MW-18(MID), MW-19(MID), MW-20(MID), MW-21(MID), and MW-22(MID), screened in the lower section of the uppermost aquifer, varied from groundwater levels measured in nearby wells installed in the upper portion of the uppermost aquifer. In general, groundwater levels measured in these "MID" wells were lower than groundwater levels measured in nearby wells [with the exception of similar groundwater levels measured in well pairs MW-21(MID) and HL-3]. Groundwater elevations in these five "MID" wells ranged from 34.74 to 39.78 feet above MSL.

3.1.2 Exposition Aquifer

Depth to groundwater in the Exposition Aquifer wells ranged from 55.40 to 62.18 feet below the tops of the well casings. Groundwater elevations in the Exposition Aquifer wells ranged from approximately 17.01 to 17.55 feet above MSL. Since the April 2016 monitoring event, groundwater elevations dropped an average of 1.98 feet in the Exposition Aquifer wells. Decreases in elevation ranged from approximately 1.75 feet in EXP-2 to 2.41 feet in EXP-4.

The groundwater potentiometric surface for the Exposition Aquifer is shown on Figure 3. The groundwater gradient in the Exposition Aquifer is generally toward the southeast beneath the Site at approximately 0.0003 ft/ft and toward the northwest off site to the northwest. During recent monitoring events, the groundwater gradient in the Exposition Aquifer was generally toward the southeast.

3.2 Distribution of Floating Product

Floating product was measured or observed in 16 of the 147 wells that were gauged during this monitoring event:

- North-central area: GMW-18, PZ-3, TF-16, TF-18, and TF-23;
- Eastern area: GMW-62 and GMW-68;
- South-central area: GMW-10, GMW-29, GMW-O-11, GMW-O-12, GWR-3, and MW-O-2; and
- Southeastern area: GMW-36, GMW-O-15, and GMW-O-18.

Measured product thicknesses ranged from 0.01 foot in GMW-62 and GMW-O-11 to 4.94 feet in GMW-O-18. Measured product thicknesses, well gauging data, and groundwater elevations are summarized in Table 2. The detection of floating product in these wells during this sampling event

along with data obtained from remediation system operations and historical detections of floating product were used in interpreting the current extent of floating product at the Site. These interpretations are shown on Figure 4 and indicate floating product in the northern tank farm area (the north-central area), the eastern area, the south-central area, and the southeastern 24-inch-diameter block valve area. Measured product thicknesses for the current semiannual monitoring event (October 2016) and two previous monitoring events (October 2015 and April 2016) are shown on Figure 4.

The databoxes on Figure 4 are color-coded to indicate whether the product thicknesses measured during the October 2016 semiannual event are increasing, decreasing, or stable as compared with the product thicknesses measured in October 2015. A blue data label indicates a decrease in measured product thickness greater than or equal to 10 percent from the previous year, a red label indicates an increase greater than or equal to 10 percent, and a white label indicates no change greater than 10 percent or the change could not be determined due to insufficient data. The changes in measured product thicknesses may be due to seasonal fluctuations of the water table elevation or remediation system operations.

Since the previous monitoring event in April 2016, measured product thicknesses increased in eight wells (GMW-36, GMW-68, GMW-O-15, GMW-O-18, GWR-3, PZ-3, TF-16, and TF-23), decreased in ten wells (GMW-10, GMW-22, GMW-23, GMW-29, GMW-O-11, GMW-O-12, GMW-O-21, GW-15, MW-O-2, and TF-18), and remained the same in GMW-62. Changes in measured product thickness ranged from a decrease of 4.19 feet in GMW-O-12 to an increase of 4.94 feet in GMW-O-18. Overall, product thicknesses decreased by an average of 0.005 foot since April 2016. Floating product was not present GMW-22 (reported to contain 3.09 feet in April 2016), GMW-23 (reported to contain 0.02 foot in April 2016), GMW-O-21 (reported to contain 0.33 foot in April 2016), and GW-15 (reported to contain 0.07 foot in April 2016). Floating product was measured in five wells that did not contain measureable product in April 2016 (3.00 feet, measured thickness, in GMW-68; 0.08 foot, measured thickness, in GMW-O-15; 4.94 feet, measured thickness, in GMW-O-18; 0.05 foot, measured thickness, in GWR-3; and 0.77 foot, measured thickness, in PZ-3). Areas impacted with floating product are shown on Figure 4.

Floating product was present in the north-central area in GMW-18, PZ-3, TF-16, TF-18, and TF-23. During the current monitoring event, the historical maximum product thickness was recorded in TF-23 (0.39 foot, measured thickness). The measured product thicknesses recorded in this area during the current monitoring event ranged from 0.77 foot in PZ-3 to 3.39 feet in TF-16. The north-central floating product plumes are interpreted as isolated or separate plumes.

In the eastern area, floating product plume was measured in GMW-62 (0.01 foot, measured thickness), and GMW-68 (3.00 feet, measured thickness). This is the first time floating product was detected in GMW-68. Approximately 3.5 gallons of floating product were bailed from GMW-68 on October 5, 2016. Two days after evacuation, 0.41 foot of floating product was measured in GMW-68. Floating product will continue to be monitored in GMW-68 and product-absorbent socks will be used to remove residual product.

Truck rack area monitoring well GMW-4 (reported to contain 0.02 foot, measured thickness, in October 2014) was decommissioned prior to remedial excavation and could not be gauged during the current monitoring event; this well will be replaced.

Floating product was detected in the south-central area in GMW-10, GMW-29, GMW-O-11, GMW-O-12, GWR-3, and MW-O-2. The measured product thicknesses for these wells ranged from 0.01 foot in GMW-O-11 to 2.30 feet in GMW-O-12.

Floating product was detected in the southeastern 24-inch-diameter block valve area in GMW-36 (0.40 foot, measured thickness), GMW-O-15 (0.08 foot, measured thickness), and GMW-O-18 (4.94 feet, measured thickness).

The distribution of floating product based upon data collected in October 2016 was compared with the distribution in April 2016. In the north-central area, floating product was present in two wells that did not contain floating product in April 2016 (GMW-18 and PZ-3). In the east-central area, floating product was measured for the first time in GMW-68 and floating product was not measured or observed in GW-15 (where 0.07 foot of floating product was measured in April 2016). In the south-central area, floating product was present in one well that did not contain floating product in April 2016 (GWR-3) and was not measured or observed in three wells (GMW-22 [3.09 feet measured in April 2016], GMW-23 [0.02 foot measured in April 2016], and GMW-O-21 [0.33 foot measured in April 2016]). The product plume is in the same general area as in April 2016, but is now interpreted as separate plumes. In the southeastern area, GMW-36 and GMW-O-15 showed minor increases in measured product thickness since April 2016.

The current historically low water table elevations have allowed residual product to drain from pore spaces within the smear zone and collect in certain wells, or increase in thickness in wells with measureable product already present. The water table elevation is related to annual rainfall and the cumulative rainfall over time. As shown in the hydrograph on Figure 5, since the 2005/2006 El Niño, groundwater elevations in the uppermost aquifer declined an average of greater than 11 feet to the current low water levels across the Site. Elevations in Exposition Aquifer wells have declined and average of approximately 12.5 feet since the 2005/2006 El Niño. Continued total fluids extraction (TFE), vacuum extraction, manual bailing, and absorbent socks will remove the product that has accumulated due to these low water levels. Measured product thickness in GMW-O-18 increased to the historical high.

3.2.1 Comparison of Current Product Distribution with Historical Maximum Measured Product Thickness

Significant reduction in the occurrence and measured thickness of floating product has been observed since remedial efforts were initiated at DFSP Norwalk. Table 3 summarizes all of the wells that have historically contained floating product along with the maximum measured product thicknesses, current (most recent) product thickness data (the majority of the current values were measured during the second semiannual 2016 groundwater monitoring event in October 2016), and the percent reduction from historical maximum thicknesses. Review of historical and current product data shows substantial reductions in measured free product thickness throughout the Site.

In the north-central area, historical maximum product thicknesses range up to 6.87 feet (measured in PZ-3 on May 1, 1998). Based upon the most recent gauging data from this area, this plume is currently defined by five wells containing floating product ranging from 0.39 foot (measured thickness) in TF-23 to a maximum of 3.39 feet (measured thickness) in TF-16. Thirty of the 37 wells in this area that have historically contained floating product show greater than 99 percent reduction from their historical maximum thicknesses.

Two wells in the east-central area were reported to contain product in October 2016 (0.01 foot, measured thickness, in GMW-62 and 3.00 feet, measured thickness, in GMW-68. This is the first time floating product was measured in GMW-68. Historical maximum thicknesses in the east-central area range up to 6.07 feet (measured in GW-15 on April 13, 2013). With the exception of GMW-68, measured floating product thicknesses in the east-central area show greater than 99 percent reduction from their historical maximum thicknesses.

In the truck rack area, three wells have historically contained floating product with the maximum historical product thickness recorded in GMW-4 (5.74 feet measured on October 31, 2005). Measured floating product thicknesses in the truck rack area show greater than 99 percent reduction from their historical maximum.

In the south-central area, historical maximum product thicknesses range up to 16.82 feet (measured in MW-SF-2 on July 1, 1997). Based upon the most recent gauging data from this area, this plume is currently defined by six wells containing floating product ranging in measured thickness from 0.01 foot in GMW-O-11 to a maximum of 2.30 feet in GMW-O-12. Thirty-five of the 38 wells in this area that have historically contained floating product show greater than 98 percent reduction from their historical maximum thicknesses. A significant reduction in magnitude and extent of floating product was observed during the October 2016 monitoring event. It is believed that this reduction is directly related to ongoing biosparge operations in this area of the Site.

In the southeastern area, three wells have historically contained floating product with the maximum historical product thickness recorded in off-site well GMW-O-15 (6.00 feet measured on May 28, 1996). During the current monitoring event, 0.08 foot of floating product was measured in GMW-O-15, 0.40 foot floating product was measured in GMW-36, and 4.94 feet of floating product was measured in GMW-O-18. The maximum measured product thickness of 4.94 feet reported in GMW-O-18 was the historical high for this well. It is believed that the increased product thickness is indicative of declining water levels across the site. In addition, gMW-O-18 was off line for several weeks during the fourth quarter in order to facilitate removal of a stuck pump. Total fluids extraction will resume in GMW-O-18 and the other southeastern area extraction wells will remain on line to optimize product recovery in this area.

Monitoring data show considerable reduction in floating product throughout the Site. Product recovery efforts at the Site will continue and will be focused on the wells with the greatest product thicknesses and wells with the lowest percent reduction from historical highs. In addition to total fluids extraction, absorbent socks and manual bailing will be utilized in selected wells.

4.0 GROUNDWATER ANALYTICAL RESULTS

Groundwater quality results for the second semiannual 2016 monitoring event are discussed below in Section 4.1. Analytical results are summarized in Table 4 (TPH, BTEX compounds, 1,2-DCA, and fuel oxygenates) and Table 5 (additional detected VOCs) and shown on Figure 6 (TPH), Figure 7 (benzene), Figure 8 (1,2-DCA), Figure 9 (MTBE), and Figure 10 (TBA). Historical analytical results are summarized in Appendix D.

4.1 Results for Semiannual Event

The October 2016 analytical results for TPH; benzene, 1,2-DCA, MTBE, and TBA were used to develop isoconcentration contours and interpret the extent of these analytes in groundwater beneath the Site. Isoconcentration contours for TPH, benzene, 1,2-DCA, MTBE, and TBA are presented on Figures 6 through 10, respectively. Analytical results from the current semiannual monitoring event (October 2016) and two previous monitoring events (October 2015 and April 2016) also are included on these figures. The databoxes are color-coded to indicate whether the concentrations from the October 2016 semiannual event are increasing, decreasing, or stable as compared with the data reported in October 2015. A blue data label indicates a decrease in concentration greater than or equal to 10 percent from the previous year, a red label indicates an increase greater than or equal to 10 percent, and a white label indicates no change greater than 10 percent or the change could not be determined due to insufficient data. The changes in concentrations may be due to seasonal fluctuations of the water table elevation or remediation system operations.

Laboratory analytical results for TPH, BTEX, 1,2-DCA, MTBE, TBA, DIPE, ETBE, and TAME are summarized in Table 4; additional detected VOCs are summarized in Table 5. Historical analytical results are provided in Appendix D. Time-series charts for selected monitoring and remediation wells are presented in Appendix E. Copies of the laboratory reports for the October 2016 semiannual monitoring event are provided in Appendix B. The following subsections summarize the results for selected analytes or analyte groups.

4.1.1 Total Petroleum Hydrocarbons

The analytical results for TPHg and TPHd reported for each well sampled during the semiannual monitoring event are summed and contoured as TPH on Figure 6. The separate concentrations of TPHg and TPHd are summarized in Table 4. TPHg was reported in 27 of the 107 sampled wells and TPHd was reported in 46 of the 107 sampled wells. The maximum concentration of TPHg was reported in south-central area off-site well GMW-O-20 (35,000 μ g/L), a well reported to contain 1.98 feet of floating product in October 2015. The maximum concentration of TPHd was reported in the south-central area off-site well GMW-O-23 (170,000 μ g/L), a well reported to contain 2.36 feet of floating product in October 2015.

TPH were not detected at or above laboratory reporting limits in the samples collected from Exposition Aquifer wells.

TPHg were reported at historical lows in GMW-69, GMW-O-23, MW-9, MW-SF-1, MW-SF-4, MW-SF-6, and MW-SF-15.

TPHd were reported for the first time in GW-7 (120 μ g/L). TPHd were reported at historical lows in GMW-O-20, GW-4, MW-9, MW-29, and MW-SF-1 and were reported at historical highs in GMW-21, GMW-47 (primary sample), GMW-57, GMW-61, GMW-O-23, GW-7, GW-15, MW-18(MID), and TF-21.

Comparison of Current Conditions with Data Collected in April 2016

Since the first semiannual 2016 sampling event, concentrations of TPHg increased in five wells and decreased in 11 wells, decreased to non-detect in GMW-28, GMW-60, GMW-67, and GMW-O-10 and increased from non-detect in MW-19(MID) and MW-21-(MID).

Since the first semiannual 2016 sampling event, concentrations of TPHd increased in 12 wells, decreased in 17 wells, and remained the same in MW-22(MID). Since April 2016, TPHd decreased to non-detect in GMW-8, GMW-26, GMW-28, GMW-O-9, GMW-O-10, GMW-O-16, HL-2, HL-3, and MW-19(MID).

The current distribution of TPH in groundwater, shown on Figure 6, was compared with the TPH plumes interpreted based upon data collected in April 2016. The distribution of dissolved TPH is similar but extends further to the northwest (TPH detected in GW-3). Groundwater impacted by TPH does not extend as far to the west [TPH not detected in GMW-8 or MW-20(MID), reported to contain 110 and 91 μ g/L TPH, respectively, in April 2016], to the southwest (TPH not detected in GMW-28, reported to contain 640 μ g/L TPH in April 2016), or to the east (TPH not detected in GMW-67 or MW-17, reported to contain 1,090 and 130 μ g/L TPH, respectively, in April 2016). TPH-impacted groundwater extends off site to the south (TPH reported in GMW-O-14, GMW-O-20, GMW-O-21, and GMW-O-23), to the southeast (TPH reported in PZ-5), and to the east (TPH reported in GMW-69).

Comparison of Current Conditions with Data Collected in October 2015

Since October 2015, TPH concentrations decreased by 10 percent or more in 19 wells and increased by 10 percent or more in seven wells. Decreases in TPH since October 2015 were noted in six wells [GMW-1, GMW-28, GMW-O-10, HL-3, MW-9, and MW-21(MID)] in the south-central and truck rack areas, along the eastern border (TPH decreased in GMW-48, GMW-59, GMW-67, GMW-69, and MW-17), along the western border [TPH decreased in MW-20(MID) and MW-22(MID)], and in the tank farm area (TPH decreased in GMW-8, GW-4, GW-8, MW-12, MW-26, and MW-29). TPH increased in southern off-site well GMW-O-14, in south-central and truck rack area wells MW-18(MID) and PZ-2, and in tank farm area wells GMW-15, GMW-47, GMW-57, and MW-27 since October 2015.

4.1.2 Benzene

The distribution of dissolved benzene is shown on Figure 7. During this sampling event, benzene was reported in 22 of the 107 sampled wells. Analytical results for benzene in groundwater samples collected during this semiannual event ranged from non-detect ($<0.50 \mu g/L$) in many of the wells to

12,000 μg/L in southern off-site well GMW-O-14 (12,000 μg/L in both the primary and duplicate samples). Benzene was non-detect for the first time in monitoring wells MW-SF-1, MW-SF-4, and MW-SF-13. Benzene was not detected in off-site wells west of the Site. Benzene was reported at the historical low in GMW-67, GMW-O-10, GMW-O-20, GMW-O-23, MW-SF-1, MW-SF-4, MW-SF-6, MW-SF-13, MW-SF-15, and TF-21. The distribution of dissolved benzene is similar to the distribution seen during recent sampling events as discussed below.

Benzene was not detected at or above laboratory reporting limits in the samples collected from Exposition Aquifer wells during the second semiannual 2016 sampling event.

Comparison of Current Conditions with Data Collected in April 2016

Since the first semiannual 2016 sampling event, benzene concentrations increased in seven wells and decreased in 18 wells. Benzene increased from non-detect (<0.50 µg/L) in GMW-1 and MW-22(MID) and decreased to non-detect (<0.50 µg/L) in GMW-6, GMW-15, GMW-28, GMW-60, GMW-61, GMW-O-10, GW-2, GW-3, GW-13, MW-9, MW-13, MW-16, MW-27, and TF-8.

Comparison of Current Conditions with Data Collected in October 2015

Since October 2015, benzene concentrations decreased by 10 percent or more in eight wells and increased by 10 percent or more in eight wells. Decreases in benzene were noted in GMW-28 in the south-central area, along the eastern border (EXP-1, GMW-59, GMW-60, GMW-67, GMW-69, and GW-16), and in GW-1 in the northwestern the tank farm area. Since October 2015, benzene increased in south-central area wells GMW-1, MW-18(MID), and PZ-2, in eastern tank farm area wells GMW-48 and GW-15, and in northwestern tank farm area wells MW-14, MW-22(MID), and MW-26.

4.1.3 1,2-Dichloroethane

The distribution of dissolved 1,2-DCA is shown on Figure 8. During this sampling event, 1,2-DCA was reported in 16 of the 107 sampled wells. Analytical results for 1,2-DCA in groundwater samples collected during this semiannual event ranged from non-detect ($<0.50~\mu g/L$) in many of the wells to 13 μ g/L reported in MW-20(MID) along the western border of the Site. 1,2-DCA was reported in western off-site well WCW-3 (0.74 μ g/L). 1,2-DCA was not detected in any other off-site wells during this sampling event. 1,2-DCA was reported for the first time in GMW-30 (1.2 μ g/L) and at the historical high in GW-1. The current distribution of 1,2-DCA in groundwater is shown on Figure 8. Analytical results reflect a 1,2-DCA groundwater plume in the western area of the Site that extends off site to the northwest.

1,2-DCA was not detected at or above laboratory reporting limits in samples collected from the Exposition Aquifer wells during the second semiannual 2016 sampling event.

As summarized in Appendix D and shown on Figure 8, 1,2-DCA concentrations in groundwater in the vicinity of the West Side Barrier and in the western off-site area have remained consistently low since 2005. Pumping of the West Side Barrier wells was discontinued in August 2008; groundwater quality conditions in the area have been stable since then and will continue to be monitored.

Comparison of Current Conditions with Data Collected in April 2016

Since the April 2016 sampling event, 1,2-DCA concentrations increased in eight wells [GMW-26, GW-2, GW-13, MW-6, MW-7, MW-20(MID), MW22(MID), and WCW-3] and decreased in five wells [GMW-8, MW-16, MW-19(MID), MW-21(MID), and WCW-7]. 1,2-DCA decreased to non-detect (<0.50 μ g/L) in MW-16 and WCW-7 and increased from non-detect (<0.50 μ g/L) in western off-site well WCW-3. Comparing the 1,2-DCA plume based upon the October 2016 analytical results with the April 2016 1,2-DCA plume, the 1,2-DCA plume is in in the same general area but extends further to the northwest (1,2-DCA detected in WCW-3) and further to the southeast (1,2-DCA detected in GMW-9, GMW-25, and GMW-30).

Comparison of Current Conditions with Data Collected in October 2015

Since October 2015, 1,2-DCA concentrations decreased by 10 percent or more in four wells and increased by 10 percent or more in eight wells. Decreases in benzene were noted on site in western wells GMW-8, MW-6, MW-14 and off site to the west in WCW-7. 1,2-DCA increased in on-site western wells GMW-26, GW-1, GW-2, GW-13, MW-7, MW-19(MID), and MW-20(MID) and off site to the west in WCW-3.

4.1.4 Methyl Tertiary-Butyl Ether

The distribution of dissolved MTBE is shown on Figure 9. During this sampling event, MTBE was reported in 32 of the 107 sampled wells. Analytical results for MTBE in groundwater samples collected during this semiannual event ranged from non-detect in many of the wells to $53 \,\mu\text{g/L}$ reported in south-central area well MW-SF-6. MTBE was not detected at or above laboratory reporting limits for the first time in MW-SF-4 and MW-SF-13. MTBE was reported at the historical high in PZ-2 and was reported at historical lows in GMW-28, MW-9, MW-SF-1, MW-SF-4, MW-SF-6, MW-SF-13, MW-SF-15, and in the duplicate sample from PZ-5.

MTBE was reported in eastern Exposition Aquifer well EXP-1 (1.7 and 1.8 μg/L). None of the other Exposition Aquifer wells were reported to contain MTBE at or above laboratory reporting limits.

The distribution of MTBE in groundwater, based upon the current analytical results, is shown on Figure 9. The distribution of dissolved MTBE is similar to the distribution seen during recent sampling events as discussed below.

Distribution of MTBE in Groundwater and Comparison with Data Collected in April 2016

Since the April 2016 sampling event, MTBE concentrations increased in seven wells, decreased in 15 wells, and remained the same in MW-6. MTBE decreased to non-detect in GMW-O-14 and WCW-7 and increased from non-detect in GMW-30, GMW-57, GMW-O-20, and MW-8.

Based upon the analytical results for the October 2016 sampling event, MTBE was present in the south-central and western areas of the Site, near the truck rack area, in the north-central tank farm area, in the southeastern corner of the Site.

A small MTBE plume was interpreted in the east-central area based upon MTBE detected in EXP-1. MTBE has been detected intermittently in EXP-1 since 2002 with the maximum concentration (2.2 µg/L) reported in October 2015.

The dissolved MTBE present in the south-central and western areas of the Site extends to the northwest from the south-central floating product plume. Dissolved MTBE is also present east of the south-central plume near the truck rack area based upon MTBE reported in MW-9.

The distribution of MTBE in groundwater in April 2016 was compared with the distribution indicated by the October 2016 dataset. MTBE was detected in the southern and western areas of the Site in April 2016, but the plume does not extend as far to the northwest (MTBE not detected in WCW-7).

Dissolved MTBE is present in the southeastern corner of the Site based upon MTBE detected in onsite wells GMW-39 and MW-8 and off-site well PZ-5. The plume is in the same general area as in April 2016, but the plume extends further to the west (MTBE detected in MW-8).

Dissolved MTBE detected in the tank farm area indicate small MTBE plumes at GMW-7, GMW-47, and GMW-57. Comparing the distribution of MTBE in April 2016 with the plumes interpreted based upon October 2016 data, MTBE was present in GMW-57 during both events but was not detected in GMW-59 in October 2016.

Comparison of Current Conditions with Data Collected in October 2015

Since October 2015, MTBE concentrations decreased by 10 percent or more in eight wells and increased by 10 percent or more in seven wells. Decreases in MTBE were noted in in south-central area well GMW-28, western area wells GMW-8, MW-6, MW-22(MID), MW-27, and WCW-7, truck rack area well MW-9, and southeastern area well PZ-5. Since October 2015, MTBE increased in south-central wells GMW-26, MW-18(MID), MW-19(MID), and PZ-2, western well MW-20(MID), and southeastern wells GMW-39 and MW-8.

4.1.5 Tertiary-Butyl Alcohol

The distribution of dissolved TBA is shown on Figure 10. During this sampling event, TBA was reported in 16 of the 107 sampled wells. Analytical results for TBA in groundwater samples collected during this semiannual event ranged from non-detect ($<10~\mu g/L$) in many of the wells to 130,000 $\mu g/L$ reported in the duplicate sample collected from southeastern off-site well PZ-5. TBA was detected for the first time in GMW-30. TBA was reported at historical lows in MW-9, MW-SF-13, and MW-SF-15 and was reported at the historical high in GMW-28. The distribution of TBA in groundwater, based upon the current analytical results, is shown on Figure 10. The distribution of dissolved TBA is similar to the distribution reported during recent sampling events as discussed below.

TBA was not detected at or above laboratory reporting limits in the samples collected from Exposition Aquifer wells during the current sampling event.

Based upon the analytical results for the October 2016 sampling event, several areas of the Site are impacted by TBA. As shown on Figure 10, dissolved TBA plumes were interpreted in the south-central area of the Site and in the southeastern corner. Smaller, isolated plumes were interpreted at truck rack area well MW-9 and in the tank farm area at GMW-7, GMW-47, and MW-20(MID).

Comparison of Current Conditions with Data Collected in April 2016

Since the April 2016 sampling event, TBA concentrations increased in four wells and decreased in five wells. The south-central TBA plume is in the same general area as in April 2016, but extends further to the southwest in the vicinity of GMW-28 and GMW-30 and slightly further to the northeast in the vicinity of PZ-2. The TBA plume in the southeastern area of the Site is in the same general area.

Comparison of Current Conditions with Data Collected in October 2015

Since October 2015, TBA concentrations decreased by 10 percent or more in four wells and increased by 10 percent or more in six wells. Decreases in TBA were noted in in four wells in the south-central area well PZ-2, in truck rack area well MW-9, northeastern well GMW-60, and western tank farm well MW-22(MID). TBA increased by more than 10 percent since October 2015 in south-central area wells GMW-28, MW-18(MID), MW-19(MID), and MW-20(MID), northeastern well GMW-47, and off-site southeastern well PZ-5.

4.1.6 Other Fuel Oxygenates

Pursuant to the RWQCB's request in March 2009, analysis for other fuel oxygenates including diisopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), and tertiary-amyl methyl ether (TAME) in accordance with USEPA Method 8260B was included in the October 2016 sampling event. TAME was not detected at or above laboratory reporting limits in any of the samples collected during the October 2016 sampling event. ETBE was reported in one well (2.7 and 2.5 μ g/L in southeastern offsite well PZ-5). DIPE was reported in 11 of the 107 sampled wells. Analytical results for DIPE in groundwater samples collected during this semiannual event ranged from non-detect in the majority of the wells to 230 μ g/L in the duplicate sample collected from south-central off-site well GMW-O-14. Since April 2016, DIPE increased in four wells and decreased in three wells. DIPE decreased to non-detect (<1.0 μ g/L) in WCW-7. DIPE was reported for the first time in GMW-30 (6.0 μ g/L). DIPE was reported at the historical low in MW-18(MID) and MW-SF-15 and at the historical high in GMW-26.

4.2 Quality Assurance/Quality Control

American Analytics and Alpha Analytical did not report any significant quality assurance/quality control issues with the analytical work performed as part of the October 2016 semiannual event. A total of 15 duplicate groundwater samples, three split samples, 10 trip blanks, and 12 equipment blanks were submitted for analysis. Analytical results for duplicate and split groundwater samples and trip/equipment blanks are summarized in Tables 6 and 7, respectively. Results for duplicate and split samples were comparable with the results reported for the primary samples. The trip blank and equipment blank samples were non-detect for all analytes.

4.3 Water Disposal

Purged groundwater from DLA sampling activities was treated at DLA's on-site remediation system located in the northern portion of the Site and discharged under National Pollutant Discharge Elimination System (NPDES) Permit No. CAG834001. Purged groundwater extracted by Blaine

Tech on behalf of SFPP was treated at SFPP's on-site remediation system located in the south-central area of the Site and discharged under NPDES Permit No. CA0063509.

4.4 Health and Safety

Field activities were conducted in accordance with the Site-specific health and safety plans. The health and safety plans include protocol for safe work practices during the field portion of the project. Personnel working at the Site were required to read, sign, and adhere to the health and safety plans. The health and safety plans were in effect throughout the monitoring event.

5.0 REMEDIATION SYSTEM OPERATIONS AND EFFECTIVENESS

5.1 System Operations

SFPP and DLA currently submit quarterly remediation progress reports to the RWQCB and Restoration Advisory Board (RAB) to provide details of the remediation system operations. DLA created a website (Norwalkrab.com) to house project information, which includes agendas, minutes, and presentations from RAB meetings dating back to 1994. In addition, historical project information and reports can be located in the information repository at the Norwalk Regional Library.

Both SFPP and DLA remediation systems were off line at least one week prior to conducting semiannual monitoring in October 2016 to allow fluid levels to recover to near static conditions prior to gauging wells at the Site. SFPP's West Side Barrier groundwater extraction (GWE) system, which includes wells BW-1 through BW-9, has been shut down since August 2008. The north-central biosparging remediation system is currently offline due to ongoing cleanup activities.

5.1.1 DLA

Remediation technologies utilized at the Site include soil vapor extraction (SVE), groundwater extraction (GWE), biosparging, and light, non-aqueous phase liquid (LNAPL) removal via manual bailing, vacuum truck, passive skimming, active pumping using a portable skimming pump, and absorbent socks at specific wells. DLA conducts GWE from two pumping wells (GW-2 and GW-13) in the northwestern corner of the Site and from two wells (GW-15 and GW-16) in the northeastern area bordering Holifield Park. The GWE system is operated to contain and reduce the extent of the floating product and dissolved plumes. The aboveground treatment of contaminated vadose zone soils excavated at the Site has also been conducted since April 2015 with ongoing SVE from horizontal wells that span the entire former aboveground tank farm area and from the northeastern boundary area. An automated product-recovery system was recently brought on line following the completion of permitting and well installation (startup occurred on August 8, 2016). The system consists of four pneumatically activated product-removal pumps deployed in key wells located in the north-central portion of the Site, including wells TF-18, RTF-18-NW, RTF-18-N, and RTF-18-E. The recovered product is routed to an aboveground storage tank located within the existing treatment compound via double-contained conveyance piping for subsequent off-site removal by a licensed transport, recycling, and disposal company. The biosparge system is currently off line due to ongoing soil cleanup activities.

SGI, on behalf of DLA, is near completion of shallow soil remediation at DFSP Norwalk (excavation and on-site treatment of contaminated vadose zone soils to depths up to 25 feet bgs), with approximately 107,000 cubic yards excavated and 70,000 cubic yards of soil treated. The goal of this remediation is to remove source-area soils that continue to contribute to the degradation of groundwater and to ready the real property of the Site for eventual conveyance. This remediation is conducted in accordance with the RWQCB-approved *Soil Remedial Action Plan* (SGI, 2014), *Revised Field Sampling and Analysis Plan and Sampling Strategy* (SGI, 2015b), *Workplan for VOC Analysis Results Validation* (SGI, 2015c), and *Proposed Addendum to the Soil Cleanup Goals* (SGI,

2015e). Soils in areas identified for remediation are excavated and treated on site. After the RWQCB reviews confirmation sample results, the RWQCB approves the treated soil for reuse as backfill for the remedial excavations.

5.1.2 SFPP

The remediation systems operated by SFPP consist of SVE, TFE, GWE, and treatment of extracted soil vapor and groundwater to address two specific areas at and near the site: the south-central area and the southeastern area. Biosparging is also employed in the south-central area to enhance natural attenuation of hydrocarbon constituents. SFPP also previously operated a GWE system for remediation of the western off-site area (or West Side Barrier area). SFPP is currently extracting total fluids from three wells in the south-central area (GMW-9, GMW-10, and MW-SF-3) and from four wells in the southeastern 24-inch block valve area (GMW-36, GMW-O-15, GMW-O-18, and GMW-SF-9). SFPP's TFE and GWE systems are designed to contain and reduce the extent of free product, provide hydraulic capture of dissolved constituents of concern, and lower the free product surface (where present) and groundwater table, thus exposing more hydrocarbon-impacted soil for SVE. Additionally, SFPP conducts manual bailing of free product in selected wells, as needed.

SFPP recently completed installation of a horizontal biosparge system in the south-central area of the Site. The biosparge well is constructed of 4-inch-diameter, Schedule 80 polyvinyl chloride (PVC) casing and screen completed to a vertical depth of approximately 45 feet bgs. The lateral distance of the screened interval is 600 feet, which is centered below the central portion of the south-central area hydrocarbon plume. Further details regarding the construction of the biosparge well is documented in the report titled, *Horizontal Biosparge Well and Soil Vapor Monitoring Probe Completion Report, SFPP Norwalk Pump Station, 15306 Norwalk Boulevard, Norwalk, California* (CH2M, 2015b).

The compressor used to deliver ambient air to the biosparge well has a maximum design rate of approximately 500 standard cubic feet per minute (scfm). SFPP's SVE system has an interlock that ensures the biosparge system cannot operate unless the SVE system is operating. Operation of the SVE system reduces the potential for offgassing of VOCs during biosparge operations. Pilot testing of the biosparge system commenced in early January 2016 and continued through October 2016. Soil vapor data collected as part of the pilot testing have been submitted to the RWQCB and Restoration Advisory Board (RAB) under separate cover. Preparation of a comprehensive evaluation report that incorporates soil vapor and groundwater data is currently in process.

5.2 System Effectiveness

Based on the results presented in this report, it is believed that DLA's remediation systems in the north-central area and SFPP's remediation systems in the south-central and southeastern areas are effectively containing dissolved-phase constituents across the Site. The lateral extent of dissolved-phase plumes appears to be stable and consistent with previous monitoring events. Dissolved-phase constituents in the eastern and western off-site areas have been non-detect or at concentrations near the laboratory reporting limit, indicating the plumes have been generally

contained on site. The extent of the plume in the eastern area is interpreted to extend off site beneath the western portion of Holifield Park.

In the south-central area, the off-site extent of dissolved-phase constituents is limited to areas north of Cheshire Street, which is consistent with previous monitoring events. SFPP will continue to extract groundwater in the south-central area and monitor for MTBE and other constituents. The magnitude and extent of Free product in the south-central area have declined substantially since October 2015 (pre-biosparge conditions). It is believed that the decrease in product thickness and areal extent is a result of biosparge operations that have been implemented in the south-central area between January and October 2016. The biosparge system is currently off line to facilitate installation of a new regenerative thermal oxidizer (RTO) unit. Biosparging is anticipated to resume in the south-central area during the first quarter 2017 after installation of the RTO is complete.

In the southeastern area, the lateral extent of the dissolved-phase plume has been relatively stable since hydrocarbon constituents were pulled downgradient from wells GMW-36 and GMW-O-15 after extraction activities were initiated at well GMW-O-18 in April 2010 in response to a request from the RWQCB. Downgradient well GMW-O-24 has not had detectable hydrocarbon constituents since June 2015, demonstrating that the plume is stable. SFPP will continue to extract groundwater in the southeastern area and monitor for MTBE and other constituents.

Accumulation of floating product in some wells can be attributed to declining water levels across the site as discussed in Section 3.2. During the second semiannual 2016 groundwater monitoring event, water levels in the uppermost groundwater zone were observed to be at historical lows. Total fluids extraction and/or manual product recovery operations (i.e., hand-bailing) will continue to maximize product removal across the Site.

The low detections of MTBE and 1,2-DCA in the western area do not warrant restarting the West Side Barrier treatment system, however, hydrocarbon constituents will continue to be monitored in this area.

SGI on behalf of DLA, is currently conducting soil remediation at DFSP Norwalk (excavation and onsite treatment of contaminated vadose zone soils to depths up to 25 feet). It is anticipated that up to 160,000 cubic yards of petroleum-hydrocarbon-contaminated soil will be remediated. The goal of this remediation is to remove source area soils that continue to contribute to the degradation of groundwater and to ready the real property of the Site for eventual conveyance.

6.0 SUMMARY

This section presents a summary of findings, data evaluation, and recommendations, if warranted, associated with the second semiannual 2016 groundwater monitoring and sampling event conducted at the DFSP Norwalk.

6.1 Groundwater Elevation and Gradient Conditions

Based upon the gauging results, groundwater elevations in the uppermost groundwater zone (excluding wells containing measureable floating product) ranged from 34.74 to 43.04 feet above MSL. Since the April 2016 monitoring event, groundwater elevations dropped an average of 0.90 foot in uppermost groundwater zone wells that did not contain floating product. Based upon the gauging data collected on October 3, 2016, the groundwater surface is generally characterized by a groundwater depression in the south-central area with gradients converging toward this depression. The depression is likely an effect of biosparge system operations in this area of the Site.

Groundwater elevations in the Exposition Aquifer wells ranged from 17.01 to 17.55 feet MSL. Since the April 2016 monitoring event, elevations in Exposition Aquifer wells dropped an average of 1.98 feet. The groundwater gradient in the Exposition Aquifer is generally toward the southeast beneath the Site at approximately 0.0003 ft/ft and toward the northwest off site to the northwest.

6.2 Distribution of Floating Product

During this semiannual monitoring event, measurable floating product was observed in 16 of the 147 wells that were gauged:

- North-central area: GMW-18, PZ-3, TF-16, TF-18, and TF-23;
- Eastern area: GMW-62 and GMW-68;
- South-central area: GMW-10, GMW-29, GMW-O-11, GMW-O-12, GWR-3, and MW-O-2; and
- Southeastern area: GMW-36, GMW-O-15, and GMW-O-18.

Floating product was detected at thicknesses ranging from an 0.01 foot to 3.39 feet. Since the April 2016 monitoring event, measured product thicknesses increased in seven wells, decreased in ten wells, and remained the same in GMW-62. Overall, product thicknesses decreased by an average of 0.005 foot since April 2016. Changes in measured product thickness ranged from an increase of 4.94 feet in GMW-O-18 to a decrease of 4.19 feet in GMW-O-12.

Monitoring data show considerable reduction in floating product throughout the Site. The decline in product thickness in GMW-O-12 and other wells in the south-central area can be attributed to biosparging operations. Accumulation of floating product in some wells can be attributed to declining water levels across the Site as discussed in Section 3.2. During the second semiannual 2016 groundwater monitoring event, water levels in the uppermost groundwater zone were observed to be at historical lows. The increase in product thickness in GMW-O-18 is due in part to declining

water levels across the Site as mentioned above. In addition, GMW-O-18 was off line for several weeks during the fourth quarter 2016 in order to facilitate removal of a stuck pump. In 2017, total fluids extraction in GMW-O-18 and other wells across the Site will resume to optimize product recovery. Manual bailing of product will also continue in wells that are not equipped for total fluids extraction.

Current product thicknesses, based upon the most recent gauging data, were compared with historical maximum product thicknesses. Substantial reduction in measured product thicknesses was indicated throughout the Site. Of the 87 wells that have historically contained floating product, only 34 wells were reported to contain floating product based upon the most recent gauging data for each well. Measured product thicknesses have declined by 98 percent or more from historical maximum thicknesses in 75 of the 87 wells that have historically contained floating product.

6.3 Dissolved-Phase Constituents

6.3.1 Total Petroleum Hydrocarbons

TPHg was detected in 27 of the 107 sampled wells and TPHd was detected in 46 of the 107 sampled wells. Concentrations of TPHg ranged up to $35,000\,\mu\text{g/L}$ in south-central area off-site well GMW-O-20 (a well reported to contain 1.98 feet of floating product in October 2015). Concentrations of TPHd ranged up to $170,000\,\mu\text{g/L}$ in south-central off-site well GMW-O-23 (a well reported to contain 2.36 feet of floating product in October 2015). TPH were not detected in any of the Exposition Aquifer wells during this sampling event.

Since April 2016, TPHg concentrations increased in five wells and decreased in 11 wells. TPHg decreased to non-detect in GMW-28, GMW-60, GMW-67, and GMW-O-10 and increased from non-detect in MW-19(MID) and MW-21(MID). TPHg were reported at historical lows in GMW-69, GMW-O-23, MW-9, MW-SF-1, MW-SF-4, MW-SF-6, and MW-SF-15. TPHg were not reported in samples collected from the Exposition Aquifer wells during this sampling event.

Since the April 2016 sampling event, TPHd concentrations increased in 12 well, decreased in 17 wells, and remained the same in MW-22(MID). TPHd decreased to non-detect in GMW-8, GMW-26, GMW-28, GMW-O-9, GMW-O-10, GMW-O-16, HL-2, HL-3, and MW-19(MID). TPHd were reported at historical lows in GMW-O-20, GW-4, MW-9, MW-29, and MW-SF-1 and were reported at historical highs in GMW-21, GMW-47 (primary sample), GMW-57, GMW-61, GMW-O-23, GW-7, GW-15, MW-18(MID), and TF-21.

Compared with the TPH plumes interpreted based upon data collected in April 2016, the distribution of dissolved TPH is similar but extends further to the northwest (TPH detected in GW-3). Groundwater impacted by TPH does not extend as far to the west [TPH not detected in GMW-8 or MW-20(MID)], to the southeast (TPH not detected in GMW-28), or to the east (TPH not detected in GMW-67 or MW-17). TPH-impacted groundwater extends off site to the south (TPH reported in GMW-O-14, GMW-O-20, GMW-O-21, and GMW-O-23), to the southeast (TPH reported in PZ-5), and to the east (TPH reported in GMW-69).

6.3.2 Benzene

Benzene was reported in 22 of the 107 sampled wells. Benzene concentrations ranged from non-detect ($<0.50 \mu g/L$) in many of the wells to 12,000 $\mu g/L$ reported in southern off-site well GMW-O-14. Benzene was not detected in off-site wells west of the Site.

Since April 2016, benzene concentrations increased in seven wells and decreased in 18 wells. Benzene decreased to non-detect (<0.50 µg/L) in GMW-6, GMW-15, GMW-28, GMW-60, GMW-61, GMW-O-10, GW-2, GW-3, GW-13, MW-9, MW-13, MW-16, MW-27, and TF-8 and increased from non-detect in GMW-1 and MW-22(MID). Benzene was reported at the historical low in GMW-67, GMW-O-10, GMW-O-20, GMW-O-23, MW-SF-1, MW-SF-4, MW-SF-6, MW-SF-13, MW-SF-15, and TF-21. The distribution of dissolved benzene is similar to the distribution seen during recent sampling events.

6.3.3 1,2-Dichloroethane

1,2-DCA was reported in 16 of the 107 sampled wells. 1,2-DCA concentrations ranged from non-detect ($<0.50 \,\mu g/L$) in many of the wells to 13 $\mu g/L$ reported in MW-20(MID) along the western border of the Site. 1,2-DCA was reported for the first time in GMW-30. 1,2-DCA was not detected in any of the Exposition Aquifer wells during this sampling event.

Since April 2016 sampling event, 1,2-DCA concentrations increased in eight wells and decreased in five wells. 1,2-DCA decreased to non-detect in MW-16 and WCW-7 and increased from non-detect in western off-site well WCW-3. 1,2-DCA was reported at the historical low in GMW-26 and GW-2 and was reported at the historical high in in GW-1.

Analytical results reflect a 1,2-DCA groundwater plume in the western area of the Site that extends off site to the northwest. The 1,2-DCA plume is in the same general area as in April 2016 but extends further to the northwest and to the southeast.

6.3.4 Methyl Tertiary-Butyl Ether

MTBE was reported in 32 of the 107 sampled wells. Concentrations of MTBE ranged from non-detect in many of the wells to 53 μ g/L reported in the south-central off-site well MW-SF-6. MTBE was not detected at or above laboratory reporting limits for the first time in MW-SF-4 and MW-SF-13. MTBE was reported in eastern Exposition Aquifer well EXP-1 (1.7 and 1.8 μ g/L). MTBE was not detected in any of the other wells installed in the Exposition Aquifer during this investigation.

Since the April 2016 sampling event, MTBE concentrations increased in seven wells and decreased in 15 wells. MTBE decreased to non-detect in GMW-O-14 and WCW-7 and increased from non-detect in GMW-30, GMW-57, GMW-O-20, and MW-8. MTBE was reported at the historical low in GMW-28, MW-9, MW-SF-1, MW-SF-4, MW-SF-6, MW-SF-13, MW-SF-15, and in the duplicate sample collected from PZ-5.

The distribution of dissolved MTBE is similar to the distribution seen during recent sampling events. Based upon the analytical results for the October 2016 sampling event, MTBE was present in the south-central and western areas of the Site, near the truck rack area, in the north-central tank farm

area, in the southwestern corner of the Site, and a small plume was interpreted in the east-central area based upon MTBE detected in EXP-1. MTBE has been detected intermittently in EXP-1 since 2002, with the maximum concentration (2.2 µg/L) reported in October 2015.

6.3.5 Tertiary-Butyl Alcohol

TBA was reported in 16 of the 107 sampled wells. Concentrations of TBA ranged from non-detect ($<10 \,\mu\text{g/L}$) in many of the wells to 130,000 $\mu\text{g/L}$ reported in the duplicate sample collected from southeastern off-site well PZ-5. TBA was detected for the first time in GMW-30. TBA was not detected in any of the Exposition Aquifer wells during this sampling event.

Since the April 2016 sampling event, TBA concentrations increased in four wells and decreased in five wells. TBA was reported at the historical low in MW-9, MW-SF-13, and MW-SF-15 and was reported at the historical high in GMW-28.

The distribution of dissolved TBA is similar to the distribution seen during recent sampling events. Based upon the analytical results for the October 2016 sampling event, several areas of the Site are impacted by TBA. TBA was present in the southwestern area of the Site, in the southeastern corner of the Site, in the truck rack area in the vicinity of MW-9, and in the tank farm area in the vicinity of GMW-7, GMW-47, and MW-20(MID).

6.3.6 Other Fuel Oxygenates

Groundwater samples collected during the October 2016 sampling event were analyzed for additional fuel oxygenates including ETBE, DIPE, and TAME. TAME was not detected at or above laboratory reporting limits in any of the samples. ETBE was reported in one well (2.7 and 2.5 μ g/L in southeastern off-site well PZ-5). DIPE was reported in 11 of the 107 sampled wells. Analytical results for DIPE in groundwater samples collected during this semiannual event ranged from non-detect in the majority of the wells to 230 μ g/L in the duplicate sample from south-central off-site well GMW-O-14. Since April 2016, DIPE increased in four wells and decreased in three wells. DIPE decreased to non-detect in GMW-26. DIPE was reported for the first time in MW-6 (1.1 μ g/L). DIPE decreased to non-detect (<1.0 μ g/L) in WCW-7. DIPE was reported for the first time in GMW-30. DIPE was reported at the historical low in MW-SF-15 and at the historical high in GMW-26. Fuel oxygenates will continue to be monitored, and results will be further assessed to determine whether additional actions are necessary.

7.0 LIMITATIONS

This document was prepared for the exclusive use of the DLA and the RWQCB for the express purpose of complying with a client- or regulatory directive for environmental investigation or restoration. The presented findings and recommendations in this report are intended to be taken in their entirety to assist DLA and RWQCB personnel in applying their own professional judgment in making decisions related to the property. SGI and DLA must approve any re-use of this work product in whole or in part for a different purpose or by others in writing. If any such unauthorized use occurs, it shall be at the user's sole risk without liability to SGI or DLA. To the extent that this report is based on information provided to SGI by third parties, including DLA, their direct contractors, previous workers, and other stakeholders, SGI cannot guarantee the completeness or accuracy of this information, even where efforts were made to verify third-party information.

SGI has exercised professional judgment to collect and present findings and opinions of a scientific and technical nature. The opinions expressed are based on the conditions of the Site existing at the time of the field investigation, current regulatory requirements, and any specified assumptions. SGI cannot provide conclusions on environmental conditions outside the completed scope of work. SGI cannot guarantee that future conditions will not change and affect the validity of the presented conclusions and recommended work. No warranty or guarantee, whether expressed or implied, is made with respect to the data or the reported findings, observations, conclusions, and recommendations.

8.0 REFERENCES

- California Regional Water Quality Control Board, Los Angeles Region (RWQCB). 2013. Letter dated June 27, 2013, to Mr. Steve Defibaugh, Kinder Morgan Energy Partners; Approval of Revised Groundwater Sampling and Analysis Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California (SCP No. 0286B, Site No. 204DM00).
- RWQCB. 2013. Letter dated October 23, 2013, to Mr. John O'Donovan, DLA Installation Support Energy; Approval of Revised Groundwater Sampling and Analysis Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California (SCP No. 0286A, Site ID No. 16638).
- CH2M. 2013a. Revised Groundwater Sampling and Analysis Plan, SFPP Norwalk Pump Station, 15306 Norwalk Boulevard, Norwalk, California. May 30.
- CH2M. 2013b. First Semiannual 2013 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. July 30.
- CH2M. 2014. First Semiannual 2014 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, California. July 31.
- CH2M. 2015a. First Semiannual 2015 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, California. July 31.
- CH2M. 2015b. Horizontal Biosparge Well and Soil Vapor Monitoring Probe Completion Report, SFPP Norwalk Pump Station, 15306 Norwalk Boulevard, Norwalk, California.
- CH2M. 2016. First Semiannual 2016 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, California. July 31.
- Parsons Corporation (Parsons). 2013. Revised Groundwater Sampling and Analysis Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. September 17.
- Parsons Corporation (Parsons). 2014. Second Semiannual 2013 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. January 30.
- SGI. 2014. Soil Remedial Action Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. November 30.
- SGI. 2015a. Second Semiannual 2014 Groundwater Monitoring and Sampling Report, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California 90650. February 10.
- SGI. 2015b. Revised Field Sampling and Analysis Plan and Strategy Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. June 15.
- SGI. 2015c. Workplan for Soil VOC Analyses Results Validation, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. June 23.
- SGI. 2015d. Revised Second Semiannual 2014 Groundwater Monitoring and Sampling Report, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California 90650. June 25.
- SGI. 2015e. Proposed Addendum to the Soil Cleanup Goals, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California. July 9.

SGI. 2016. Second Semiannual 2015 Groundwater Monitoring and Sampling Report, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California 90650. January 25.

Document Name: Fig-1 Norwalk Site Location Map

	1	T					T
Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
BW-1	05/16/96	GMX	55.0	5	31.9 - 51.4	0.010	73.17
BW-2	05/20/96	GMX	53.5	5	27 - 46.5	0.010	73.57
BW-3	05/17/96	GMX	55.5	5	30.6 - 50	0.010	74.16
BW-4	05/20/96	GMX	53.1	5	28.2 - 47	0.010	74.61
BW-5*	05/23/96	GMX	52.5	5	27 - 45.5	0.010	73.59
BW-6	05/22/96	GMX	52.4	5	27.6 - 46.9	0.010	73.48
BW-7	05/22/96	GMX	52.0	5	27.1 - 46.3	0.010	74.65
BW-8	05/21/96	GMX	51.5	5	27 - 46.4	0.010	75.08
BW-9	05/21/96	GMX	52.5	5	26.9 - 46.4	0.010	76.19
EXP-1	03/06/92	wcc	128.5	4	82 - 122	0.010	78.44
EXP-2	10/15/92	wcc	149.0	4	90 - 120	0.020	79.43
EXP-3	10/20/92	wcc	150.0	4	85 - 115	0.010	77.58
EXP-4	07/07/98	GMX	118.0	4	96.1 - 115.2	0.020	79.81
EXP-5	07/08/98	GMX	120.0	4	94.4 - 113.4	0.020	72.41
GMW-1	05/16/91	GTI	50.0	4	20 - 50	0.010	74.77
GMW-2*	05/16/91	GTI	50.0	4	20 - 50	0.010	73.57
GMW-3	05/17/91	GTI	50.0	4	20 - 50	0.010	75.10
GMW-4*	05/21/91	GTI	50.0	4	20 - 50	0.010	75.45
GMW-5	05/21/91	GTI	50.0	4	20 - 50	0.010	77.61
GMW-6	07/09/91	GTI	50.0	4	25 - 50	0.010	77.31
GMW-7	07/09/91	GTI	50.0	4	25 - 50	0.010	75.84
GMW-8	07/10/91	GTI	50.0	4	25 - 50	0.010	73.20
GMW-9	07/08/91	GTI	50.0	4	20 - 50	0.010	77.16
GMW-10	07/08/91	GTI	50.0	4	25 - 50	0.010	74.67
GMW-11	07/09/91	GTI	50.0	4	20 - 50	0.010	72.90
GMW-12	07/09/91	GTI	50.0	4	25 - 50	0.010	75.21
GMW-13	07/08/91	GTI	50.0	4	25 - 50	0.010	74.17
GMW-14*	07/10/91	GTI	50.0	4	25 - 50	0.010	74.72
GMW-15	07/30/91	GTI	50.0	4	25 - 50	0.010	76.21
GMW-16	08/01/91	GTI	50.0	4	25 - 50	0.010	77.00
GMW-17*	08/01/91	GTI	50.0	4	25 - 50	0.010	74.66
GMW-18	07/31/91	GTI	50.0	4	25 - 50	0.010	75.36
GMW-19	07/31/91	GTI	50.0	4	25 - 50	0.010	76.83
GMW-20	08/01/91	GTI	50.0	4	25 - 50	0.010	75.10
GMW-21	08/02/91	GTI	50.0	4	25 - 50	0.010	76.23
GMW-22	08/02/91	GTI	61.0	4	25 - 60	0.010	77.24
GMW-23	08/02/91	GTI	60.0	4	25 - 60	0.010	74.85
GMW-24	08/05/91	GTI	60.0	4	25 - 60	0.010	77.48
GMW-25	01/10/92	GTI	50.0	6	20 - 50	0.010	78.14
GMW-26	01/07/92	GTI	51.5	4	20 - 50	0.010	74.52
GMW-27	01/10/92	GTI	50.0	4	20 - 50	0.010	74.41

	1	ī			T		T
Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
GMW-28	01/07/92	GTI	50.0	4	20 - 50	0.010	74.68
GMW-29	01/09/92	GTI	50.0	4	20 - 50	0.010	77.57
GMW-30	01/09/92	GTI	51.5	6	20 - 50	0.010	74.91
GMW-31	06/02/93	GTI	65.0	4	25 - 65	0.010	76.50
GMW-32*	06/01/93	GTI	50.0	4	20 - 50	0.020	74.62
GMW-33	06/01/93	GTI	50.0	4	20 - 50	0.020	74.88
GMW-34	06/03/93	GTI	50.0	4	20 - 50	0.020	75.25
GMW-35*	06/04/93	GTI	50.0	4	20 - 50	0.020	76.12
GMW-36	04/11/94	GTI	50.0	4	20 - 50	0.010	76.66
GMW-37	04/11/94	GTI	50.0	4	20 - 50	0.010	77.32
GMW-38	04/12/94	GTI	50.0	4	20 - 50	0.010	75.47
GMW-39	0'4/12/94	GTI	50.0	4	20 - 50	0.010	75.05
GMW-40	06/29/94	GTI	50.5	4	20 - 50	0.010	
GMW-41	06/30/94	GTI	50.5	4	20 - 50	0.010	
GMW-42	06/30/94	GTI	50.5	4	20 - 50	0.010	75.50
GMW-43	07/01/94	GTI	50.5	4	20 - 50	0.010	74.44
GMW-44	07/01/94	GTI	50.5	4	20 - 50	0.010	74.45
GMW-45	07/01/94	GTI	50.5	4	20 - 50	0.010	75.67
GMW-46	07/05/94	GTI	50.5	4	20 - 50	0.010	76.10
GMW-47	07/05/94	GTI	50.5	4	20 - 50	0.010	75.98
GMW-48	07/05/94	GTI	50.5	4	20 - 50	0.010	75.03
GMW-49	07/06/94	GTI	50.5	4	20 - 50	0.010	74.75
GMW-50	12/19/94	GTI	46.5	4	15 - 45	0.010	75.51
GMW-51	12/19/94	GTI	41.5	4	15 - 40	0.010	75.93
GMW-52*	12/19/94	GTI	41.5	4	15 - 40	0.010	75.03
GMW-53	12/19/94	GTI	46.5	4	15 - 45	0.010	74.90
GMW-54	12/20/94	GTI	46.5	4	15 - 45	0.010	75.16
GMW-55	12/20/94	GTI	41.5	4	15 - 40	0.010	74.60
GMW-56	08/12/98	FDGTI	55.0	2	20 - 55	0.020	76.50
GMW-56	08/12/98	FDGTI	55.0	4	20 - 55	0.020	76.52
GMW-57	08/13/98	FDGTI	55.0	2	19 - 54	0.020	76.66
GMW-57	08/13/98	FDGTI	55.0	4	19 - 54	0.020	76.66
GMW-58	08/14/98	FDGTI	55.0	2	20 - 55	0.020	75.46
GMW-58	08/14/98	FDGTI	55.0	4	20 - 55	0.020	75.48
GMW-59	08/14/98	FDGTI	55.0	2	20 - 55	0.020	75.28
GMW-59	08/14/98	FDGTI	55.0	4	20 - 55	0.020	75.28
GMW-60	04/14/04	Parsons	50.0	4	25 - 40	0.010	76.24
GMW-61	04/14/04	Parsons	50.0	4	30 - 40	0.010	75.60
GMW-62	07/02/07	Parsons	40.5	4	20 - 40	0.010	76.34
GMW-63	09/29/08	Parsons	41.0	4	20 - 40	0.020	77.32
GMW-64	09/29/08	Parsons	41.0	4	19.5 - 39.5	0.020	75.84

Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
GMW-65	07/06/09	Parsons	41.5	4	21 - 41	0.020	76.78
GMW-66R	04/07/16	SGI	46.5	4	20 - 45	0.020	79.23
GMW-67	07/13/15	SGI	47.0	4	25 - 45	0.020	76.00
GMW-68	07/15/15	SGI	45.0	4	25 - 45	0.020	75.52
GMW-69	07/14/15	SGI	45.0	4	25 - 45	0.020	75.31
GMW-O-1	03/04/92	GTI	51.5	4	19 - 49.5	0.010	71.45
GMW-O-2	03/02/92	GTI	51.5	4	20 - 50	0.010	72.54
GMW-O-3	03/02/92	GTI	51.5	4	20 - 50	0.010	72.19
GMW-O-4	03/03/92	GTI	51.5	4	20 - 50	0.010	71.95
GMW-O-4 (MID)	03/03/92	GTI	66.5	4	54.5 - 64.5	0.010	72.24
GMW-O-5	03/04/92	GTI	51.5	4	20 - 50	0.010	72.36
GMW-O-6	05/18/92	GTI	51.5	4	20 - 50	0.010	71.41
GMW-O-7	05/19/92	GTI	51.5	4	20 - 50	0.010	70.98
GMW-O-8	05/18/92	GTI	51.0	4	19.5 - 49.5	0.010	70.91
GMW-O-9	07/29/92	GTI	51.5	4	20 - 50	0.010	73.50
GMW-O-10	07/29/92	GTI	51.5	4	20 - 50	0.010	73.98
GMW-O-11	05/20/92	GTI	51.5	4	20 - 50	0.010	74.17
GMW-O-12	05/21/92	GTI	51.5	4	20 - 50	0.010	73.49
GMW-O-14	05/20/92	GTI	51.5	4	20 - 50	0.010	74.08
GMW-O-15	04/19/94	GTI	50.0	4	20 - 50	0.020	74.23
GMW-O-16	04/19/94	GTI	50.0	4	20 - 50	0.020	74.10
GMW-O-17	07/26/94	GMX	41.0	4	20.4 - 39.5	0.010	73.78
GMW-O-18	07/25/94	GMX	41.0	4	20.8 - 40.4	0.010	74.36
GMW-O-19	07/29/94	GMX	41.5	4	20.2 - 39.9	0.010	74.46
GMW-O-20	06/15/95	GMX	45.9	4			73.32
GMW-O-21	06/19/97	GMX	45.9	4	25.5 - 45.5	0.010	71.43
GMW-O-22		GMX	41.0	4			74.36
GMW-O-23	06/25/07	GMX	44.0	4	20 - 40	0.020	73.63
GMW-O-24	09/24/12	CH2MHill	45.0	4	20 - 40	0.010	74.39
GMW-SF-7	07/27/94	GMX	41.0	4	20.1 - 39.9	0.010	75.26
GMW-SF-8	07/28/94	GMX	41.0	4	19.5 - 39.5	0.010	76.75
GMW-SF-9	04/01/03	GMX	47.0	4	36.6 - 46.2	0.020	73.05
GMW-SF-10	04/02/03	GMX	47.0	4	36.7 – 46.4	0.020	75.77
GW-1	06/12/95	GTI	63.0	1	25 - 60	0.020	75.46
GW-1	06/12/95	GTI	63.0	4	25 - 60	0.020	75.97
GW-2	06/12/95	GTI	63.0	1	25 - 60	0.020	76.39
GW-2	06/12/95	GTI	63.0	4	25 - 60	0.020	75.78
GW-3	06/13/95	GTI	63.0	1	25 - 60	0.020	76.56
GW-3	06/13/95	GTI	63.0	4	25 - 60	0.020	75.79
GW-4	06/13/95	GTI	63.0	1	24 - 59	0.020	74.77
GW-4	06/13/95	GTI	63.0	4	24 - 59	0.020	73.86

<u> </u>	ī	ī			T		I
Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
GW-5*	06/15/95	GTI	63.0	1	25.5 - 60.5	0.020	77.09
GW-5*	06/15/95	GTI	63.0	4	25.5 - 60.5	0.020	76.99
GW-6	06/15/95	GTI	63.0	1	25 - 60	0.020	77.41
GW-6	06/15/95	GTI	63.0	4	25 - 60	0.020	76.38
GW-7	06/16/95	GTI	63.0	1	25 - 60	0.020	76.76
GW-7	06/16/95	GTI	63.0	4	25 - 60	0.020	75.02
GW-8	06/14/95	GTI	63.0	1	24 - 59	0.020	76.88
GW-8	06/14/95	GTI	63.0	4	24 - 59	0.020	76.15
GW-13	04/26/07	Parsons	65.0	1	25 - 65	0.020	77.00
GW-13	04/26/07	Parsons	67.0	6	25 - 65	0.020	76.85
GW-14*	04/26/07	Parsons	65.0	1	25 - 65	0.020	76.55
GW-14*	04/26/07	Parsons	67.0	6	25 - 65	0.020	76.54
GW-15	04/26/07	Parsons	62.5	1	20.5 - 60.5	0.020	75.36
GW-15	04/26/07	Parsons	60.5	6	20.5 - 60.6	0.020	74.94
GW-16p	07/07/09	Parsons	61.3	1	21 - 61	0.020	76.55
GW-16	07/07/09	Parsons	63.0	6	20.5 - 60.5	0.020	76.33
GWR-1*	07/11/91	GTI	50.0	4	25 - 50	0.010	77.40
GWR-2	07/12/91	GTI	50.0	4	25 - 50	0.010	73.66
GWR-3	01/10/92	GTI	50.0	6	20 - 50	0.010	77.60
HL-1	10/14/86	HLA	39.0	4	18 - 38	0.010	75.83
HL-2	10/13/86	HLA	39.0	4	16.5 - 36.5	0.010	76.94
HL-3	10/15/86	HLA	44.0	4	19 - 39	0.010	76.86
HL-4*	10/16/86	HLA	39.0	4	18 - 38.5	0.010	75.75
HL-5	10/16/86	HLA	39.5	4	18.5 - 39	0.010	76.13
MW-6	08/09/90	WCC	50.0	4	18 - 48	0.010	77.20
MW-7	08/27/90	WCC	50.0	4	19 - 48	0.010	78.13
MW-8	08/24/90	WCC	51.0	4	18 - 48	0.010	76.06
MW-9	08/08/90	WCC	50.0	4	18 - 48	0.010	77.11
MW-10	08/24/90	WCC	51.0	4	18 - 4 8	0.010	79.12
MW-11	08/09/90	WCC	50.0	4	18 - 48	0.010	78.17
MW-12	08/27/90	wcc	50.0	4	18 - 48	0.010	75.76
MW-13	08/27/90	WCC	50.0	4	18 - 48	0.010	78.25
MW-14	08/23/90	WCC	50.0	4	18 - 48	0.010	78.60
MW-15*	08/07/90	WCC	50.0	4	18 - 48	0.010	76.99
MW-16	08/08/90	wcc	50.0	4	18 - 48	0.010	76.99 76.87
MW-17	08/06/90	WCC	50.0	4	18 - 48	0.010	77.86
MW-18 (MID)	06/10/91	WCC	62.2	4	50 - 60	0.010	
` ,		WCC					75.67 78.14
MW-19 (MID)	06/11/91		62.2 65.7	4	49.5 - 59.5	0.010	78.14
MW-20 (MID)	06/12/91	WCC WCC	65.7	4	43 - 53	0.010	77.19
MW-21 (MID)	06/12/91		62.4		47 - 57	0.010	77.55
MW-22 (MID)	06/13/91	wcc	57.9	4	42 - 52	0.010	79.57

Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
MW-23 (MID)	06/14/91	WCC	57.1	4	42 - 52	0.010	79.59
MW-24	06/14/91	WCC	47.0	4	14 - 44	0.010	78.51
MW-25	06/17/91	WCC	47.2	4	22.5 - 42.5	0.010	79.15
MW-26	06/17/91	wcc	47.3	4	23.5 - 43.5	0.010	77.40
MW-27	06/17/91	wcc	52.3	4	18 - 48	0.010	78.46
MW-28	6/19/91	WCC	51.5	4	16.5 - 46.5	0.010	78.53
MW-29	06/19/91	wcc	52.4	4	17.5 - 47.5	0.010	79.13
MW-O-1	01/22/91	GMX	40.0	2	25 - 40	0.020	75.48
MW-O-2	01/23/91	GMX	40.0	2	25 - 40	0.020	71.90
MW-O-3	10/25/91	GMX	41.0	6	20.5 - 41	0.010	74.53
MW-O-4	10/25/91	GMX	41.0	4	20.5 - 41	0.010	75.00
MW-SF-1	06/18/90	GMX	40.0	4	25 - 40	0.020	78.93
MW-SF-2	06/18/90	GMX	40.0	4	25 - 40	0.020	78.53
MW-SF-3	06/18/90	GMX	40.0	4	25 - 40	0.020	78.12
MW-SF-4	06/19/90	GMX	40.0	4	25 - 40	0.020	79.38
MW-SF-5	09/19/90	GMX	40.0	4	23 - 38	0.020	79.74
MW-SF-6	09/19/90	GMX	40.0	4	24 - 39	0.020	76.80
MW-SF-9	06/15/95	GMX	40.0	4	25 - 40		74.10
MW-SF-10	09/23/03	GMX	30.5	4	10.3 - 29.9	0.020	76.53
MW-SF-11	06/19/07	GMX	44.0	4	20 - 40	0.020	78.56
MW-SF-12	06/18/07	GMX	44.0	4	20 - 40	0.020	78.07
MW-SF-13	06/19/07	GMX	44.0	4	20 - 40	0.020	73.40
MW-SF-14	06/21/07	GMX	44.0	4	20 - 40	0.020	78.16
MW-SF-15	06/21/07	GMX	44.0	4	20 - 40	0.020	78.27
MW-SF-16	06/20/07	GMX	44.0	4	20 - 40	0.020	78.21
PO-7	05/01/89	GW	56.0	4	29 - 49	0.020	80.26
PW-1	01/06/92	GTI	51.5	4	20 - 50	0.010	75.52
PW-2	01/06/92	GTI	50.0	4	20 - 50	0.010	74.71
PW-3	01/06/92	GTI	50.0	4	20 - 50	0.010	73.71
PZ-1	07/12/91	GTI	50.0	2	25 - 50	0.010	73.74
PZ-2	07/12/91	GTI	50.0	2	25 - 50	0.010	73.96
PZ-3	06/03/93	GTI	65.0	2	25 - 65	0.020	76.17
PZ-4	06/02/93	GTI	60.0	2	25 - 60	0.020	76.13
PZ-5	09/26/00	GMX	40.3	4	20.6 - 39.4	0.010	73.97
PZ-6	09/26/00	GMX	37.5	4	22.8 - 37.8	0.010	73.91
PZ-7A	04/07/03	GMX	32.0	2	21.5 - 31.2	0.010	73.87
PZ-7B	04/07/03	GMX	47.5	2	42 - 46.7	0.010	73.79
PZ-8A	04/08/03	GMX	31.5	2	21.2 - 31	0.010	75.81
PZ-8B	04/08/03	GMX	47.0	2	41.4 - 46.2	0.010	75.69
PZ-9A	04/09/03	GMX	32.0	2	21.6 - 30.9	0.010	76.14
PZ-9B	04/09/03	GMX	47.0	2	41.5 - 46.2	0.010	76.26

Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
PZ-10	04/10/03	GMX	38.5	2	23.2 - 37.9	0.020	74.34
TF-8	09/22/95	GTI	63.0	1.5	25 - 60	0.020	75.60
TF-8	09/22/95	GTI	63.0	4	25 - 60	0.020	74.86
TF-9*	09/22/95	GTI	63.0	1.5	25 - 60	0.020	75.27
TF-9*	09/22/95	GTI	63.0	4	25 - 60	0.020	74.47
TF-10	09/25/95	GTI	63.0	1.5	25 - 60	0.020	74.19
TF-10	09/25/95	GTI	63.0	4	25 - 60	0.020	73.61
TF-11*	09/25/95	GTI	63.0	1.5	25 - 60	0.020	74.95
TF-11*	09/25/95	GTI	63.0	4	25 - 60	0.020	74.40
TF-13	09/26/95	GTI	63.0	1.5	25 - 60	0.020	75.90
TF-13	09/26/95	GTI	63.0	4	25 - 60	0.020	75.47
TF-14	09/27/95	GTI	63.0	1.5	25 - 60	0.020	74.78
TF-14	09/27/95	GTI	63.0	4	25 - 60	0.020	74.35
TF-15	09/28/95	GTI	63.0	1.5	25 - 60	0.020	75.40
TF-15	09/28/95	GTI	63.0	4	25 - 60	0.020	74.78
TF-16	09/28/95	GTI	63.0	1.5	25 - 60	0.020	76.48
TF-16	09/28/95	GTI	63.0	4	25 - 60	0.020	75.89
TF-17*	09/29/95	GTI	63.0	1.5	25 - 60	0.020	75.26
TF-17*	09/29/95	GTI	63.0	4	25 - 60	0.020	74.88
TF-18	07/06/94	GTI	50.5	4	20 - 50	0.020	73.94
TF-19	10/03/95	GTI	63.0	1.5	25 - 60	0.020	75.61
TF-19	10/03/95	GTI	63.0	4	25 - 60	0.020	75.07
TF-20*	10/03/95	GTI	63.0	1.5	25 - 60	0.020	75.59
TF-20*	10/03/95	GTI	63.0	4	25 - 60	0.020	75.08
TF-21	09/29/95	GTI	63.0	1.5	25 - 60	0.020	75.60
TF-21	09/29/95	GTI	63.0	4	25 - 60	0.020	74.96
TF-22*	10/02/95	GTI	63.0	1.5	25 - 60	0.020	74.95
TF-22*	10/02/95	GTI	63.0	4	25 - 60	0.020	74.76
TF-23	07/05/94	GTI	50.5	4	20 - 50	0.020	75.31
TF-24	09/26/95	GTI	63.0	1.5	25 - 60	0.020	76.35
TF-24	09/26/95	GTI	63.0	4	25 - 60	0.020	76.43
TF-25	04/04/01	GTI	47.0	1.5	41 - 46	0.020	
TF-25	04/04/01	GTI	47.0	4	26 - 36	0.020	74.85
TF-26	04/03/01	GTI	47.0	1.5	41 - 46	0.020	
TF-26	04/03/01	GTI	47.0	4	26 - 36	0.020	75.85
WCW-1	02/18/92	WCC	52.0	4	20 - 50	0.010	72.86
WCW-2	02/21/92	wcc	52.0	4	20 - 50	0.010	75.34
WCW-3	02/19/92	WCC	56.5	4	19 - 49	0.010	76.16
WCW-4	02/20/92	WCC	56.5	4	20 - 50	0.010	78.05
WCW-5	04/30/92	wcc	52.0	4	19 - 49	0.010	73.49
WCW-6	04/20/92	wcc	53.5	4	20 - 50	0.010	75.52

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

Well ID	Installation Date	Installed By	Total Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Casing Elevation (feet MSL)
WCW-7	04/29/92	wcc	53.0	4	20 - 50	0.010	76.44
WCW-8	04/21/92	wcc	53.5	4	20 - 50	0.010	77.34
WCW-9	04/28/92	WCC	53.5	4	20 - 50	0.010	77.74
WCW-10	09/11/92	WCC	56.5	4	25 - 55	0.010	74.06
WCW-11	09/09/92	WCC	61.5	4	30 - 60	0.010	75.29
WCW-12	09/08/92	wcc	61.5	4	30 - 60	0.010	76.27
WCW-13	09/10/92	wcc	61.5	4	30 - 60	0.010	77.70
WCW-14	08/12/98	FDGTI	59.0	4	24 - 59	0.010	78.81

Notes: Monitoring wells sampled during this sampling event are shown in **bold**.

Biosparge and vapor extraction wells used for remediation purposes only are not included.

GMW-21 is also referred to as TF-24.

TF-24 is also referred to as "old TF-24" or "former TF-24."

feet bgs = feet below ground surface

feet MSL = feet above mean sea level

GMX = Geomatrix Consultants

* Well decommissioned by DLA Energy prior to remedial excavation

WCC = Woodward-Clyde Consultants

GTI = Groundwater Technology/Groundwater Technology Government Services, Inc.

FDGTI = Fluor Daniel GTI

---- = information not available

GW = Golden West

		Top of Casing	Depth to	Depth to	Measured Product	Groundwater
		Elevation	Product	Water	Thickness	Elevation
Well	Date	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-1	10/3/2016	78.44		61.17		17.27
EXP-1	10/3/2016	78.44		61.31		17.13
EXP-2	10/3/2016	79.43		62.18		17.25
EXP-2	10/3/2016	79.43		61.88		17.55
EXP-3	10/3/2016	77.58		60.92		16.66
EXP-3	10/3/2016	77.58		60.52		17.06
EXP-4	10/3/2016	79.81		62.71		17.10
EXP-5	10/3/2016	72.41		55.40		17.01
GMW-1	10/3/2016	74.77		35.80		38.97
GMW-3			Well de	estroyed		•
GMW-4		Well	removed prior to	remedial excava	ation	
GMW-5	10/3/2016	77.61		Inaccessible - ı	unable to locate	
GMW-6	10/3/2016	77.31		35.63		41.68
GMW-7	10/3/2016	75.84		34.36		41.48
GMW-8	10/3/2016	73.20		33.47		39.73
GMW-9	10/3/2016	77.16		38.02		39.14
GMW-10	10/3/2016	73.35	33.65	35.10	1.45	
GMW-12	10/3/2016	75.21		34.45		40.76
GMW-13	10/3/2016	74.17		33.20		40.97
GMW-14		Well	removed prior to	remedial excava	ation	
GMW-15	10/3/2016	76.21		34.51		41.70
GMW-16	10/3/2016	77.00		Inaccessible - ı	unable to locate	
GMW-17		Well	removed prior to	remedial excava	ation	
GMW-18	10/3/2016	75.36	33.27	35.34	2.07	
GMW-19	10/3/2016	76.83		Inaccessible - ı	unable to locate	
GMW-20	10/3/2016	75.10		34.19		40.91
GMW-21	10/3/2016	76.23		34.38		41.85
GMW-22	10/3/2016	77.24		37.70		39.54
GMW-23	10/3/2016	74.85		36.15		38.70
GMW-24	10/3/2016	77.48		39.31		38.17
GMW-25	10/3/2016	78.14		38.70		39.44
GMW-26	10/3/2016	74.52		35.12		39.40
GMW-27		Well	removed prior to	remedial excav	ation	
GMW-28	10/3/2016	74.68		35.81		38.87
GMW-29	10/3/2016	77.57	35.75	36.00	0.25	
GMW-30	10/3/2016	74.91		36.30		38.61
GMW-31	10/3/2016	76.50			unable to locate	
GMW-32			removed prior to	remedial excav		
GMW-33	10/3/2016	74.88			soil in well vault	
GMW-35		Well	removed prior to	remedial excav	ation	
GMW-36	10/3/2016	76.66	34.65	35.05	0.40	
GMW-37	10/3/2016	77.32		35.10		42.22

					Measured	
		Top of Casing	Depth to	Depth to	Product	Groundwater
Well	Date	Elevation (feet MSL)	Product (feet btc)	Water (feet btc)	Thickness (feet)	Elevation (feet MSL)
		, ,	,	, ,	(leet)	<u> </u>
GMW-38	10/3/2016	75.47		34.10		41.37
GMW-39	10/3/2016	75.05		33.20		41.85
GMW-40	10/3/2016	ns		34.98		
GMW-41	10/3/2016	ns 75.50		35.97	unable to locate	
GMW-42	10/3/2016					
GMW-43	10/3/2016	74.44			unable to locate	40.00
GMW-44	10/3/2016	74.45		33.62		40.83
GMW-45	10/3/2016	ns		34.60		
GMW-47	10/3/2016	75.98		34.25		41.73
GMW-48	10/3/2016	ns		37.03		
GMW-54	10/3/2016	75.16			unable to locate	1
GMW-56	10/3/2016	76.52		34.73		41.79
GMW-57	10/3/2016	76.66		34.86		41.80
GMW-58	10/3/2016	75.48			unable to locate	Т
GMW-59	10/3/2016	75.28		32.24		43.04
GMW-60	10/3/2016	76.24		34.37		41.87
GMW-61	10/3/2016	76.24		33.72		42.52
GMW-62	10/3/2016	76.34	34.72	34.73	0.01	
GMW-63	10/3/2016	77.32		34.89		42.43
GMW-64	10/3/2016	75.84		33.45		42.39
GMW-65	10/3/2016	76.78		34.75		42.03
GMW-66R	10/3/2016	79.23		37.35		41.88
GMW-67	10/3/2016	76.00		34.05		41.95
GMW-68	10/3/2016	75.52	32.80	35.80	3.00	
GMW-69	10/3/2016	75.31		33.33		41.98
GMW-O-1	10/3/2016	71.45		31.20		40.25
GMW-O-2	10/3/2016	72.54		31.30		41.24
GMW-O-3	10/3/2016	72.19		31.45		40.74
GMW-O-4	10/3/2016	71.95		30.90		41.05
GMW-O-5	10/3/2016	72.36		31.43		40.93
GMW-O-6	10/3/2016	71.41		29.00		42.41
GMW-O-7	10/3/2016	70.98		28.10		42.88
GMW-O-8	10/3/2016	70.91		29.51		41.40
GMW-O-9	10/3/2016	73.50		33.03		40.47
GMW-O-10	10/3/2016	73.98		33.13		40.85
GMW-O-11	10/6/2016	74.17	32.71	32.72	0.01	
GMW-O-12	10/3/2016	73.49	31.90	34.20	2.30	
GMW-O-14	10/3/2016	74.08		34.08		40.00
GMW-O-15	10/3/2016	74.23	30.92	31.00	0.08	
GMW-O-16	10/3/2016	74.10		32.00		42.10
GMW-O-17	10/3/2016	73.78		31.10		42.68
GMW-O-18	12/13/2016	74.36	31.01	35.95	4.94	

I 		_		1	ı	ī
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Water (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-19	10/3/2016	74.46		32.20		42.26
GMW-O-20	10/3/2016	73.32		33.12		40.20
GMW-O-21	10/3/2016	71.43		33.45		37.98
GMW-O-23	10/3/2016	73.63		34.90		38.73
GMW-O-24	10/3/2016	74.39		32.39		42.00
GMW-SF-7	10/3/2016	75.26		33.72		41.54
GMW-SF-8	10/3/2016	76.75		35.01		41.74
GW-1	10/3/2016	75.97		34.47		41.50
GW-2	10/3/2016	75.78		34.08		41.70
GW-3	10/3/2016	75.79		34.29		41.50
GW-4	10/3/2016	73.86		32.82		41.04
GW-5		Well	removed prior to	remedial excava	ation	
GW-6	10/3/2016	76.38		34.88		41.50
GW-7	10/3/2016	75.02		33.69		41.33
GW-8	10/3/2016	76.15		34.58		41.57
GW-13	10/3/2016	76.85		35.32		41.53
GW-14		Well	removed prior to	remedial excava	ation	
GW-15	10/3/2016	74.94		34.31		40.63
GW-16	10/3/2016	76.33		34.65		41.68
GWR-1		Well	removed prior to	remedial excav	ation	
GWR-3	10/3/2016	77.60	39.15	39.20	0.05	
HL-2	10/3/2016	76.94		35.17		41.77
HL-3	10/3/2016	76.86		37.22		39.64
MW-6	10/3/2016	77.20		35.13		42.07
MW-7	10/3/2016	78.13		37.90		40.23
MW-8	10/3/2016	76.06		34.20		41.86
MW-9	10/3/2016	77.11		33.56		43.55
MW-12	10/3/2016	75.76		35.84		39.92
MW-13	10/3/2016	78.25		36.45		41.80
MW-14	10/3/2016	78.60		36.37		42.23
MW-15		Well	removed prior to	remedial excav	ation	
MW-16	10/3/2016	76.87		35.42		41.45
MW-17	10/3/2016	77.86		36.05		41.81
MW-18 (MID)	10/3/2016	75.67		40.93		34.74
MW-19 (MID)	10/3/2016	78.14		40.60		37.54
MW-20 (MID)	10/3/2016	77.19		38.22		38.97
MW-21 (MID)	10/3/2016	77.55		37.83		39.72
MW-22 (MID)	10/3/2016	79.57		39.79		39.78
MW-24	10/3/2016	78.51		1	damaged casing	1
MW-26	10/3/2016	77.40		35.90		41.50
MW-27	10/3/2016	78.46		37.16		41.30
MW-28	10/3/2016	78.53		Inaccessible - ı	unable to locate	

		Top of Casing Elevation	Depth to Product	Depth to Water	Measured Product Thickness	Groundwater Elevation
Well	Date	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-29	10/3/2016	79.13		37.74		41.39
MW-O-1	10/3/2016	75.48		DRY (to 32.71)		
MW-O-2	10/3/2016	71.90	34.22	34.30	0.08	
MW-SF-1	10/3/2016	78.93		39.20		39.73
MW-SF-2	10/3/2016	78.53		39.60		38.93
MW-SF-3	10/3/2016	78.12		39.40		38.72
MW-SF-4	10/3/2016	79.38		41.05		38.33
MW-SF-5	10/3/2016	79.74		DRY (to 37.80)		
MW-SF-6	10/3/2016	76.80		38.45		38.35
MW-SF-9	10/3/2016	74.10	Inad	ccessible due to c	onstruction activ	vities
MW-SF-10	10/3/2016	76.53		DRY (to 30.40)		
MW-SF-11	10/3/2016	78.56		40.05		38.51
MW-SF-12	10/3/2016	78.07		39.45		38.62
MW-SF-13	10/3/2016	73.40		34.20		39.20
MW-SF-14	10/3/2016	78.16		DRY (to 40.15)		
MW-SF-15	10/3/2016	78.27		39.56		38.71
MW-SF-16	10/3/2016	78.21		39.35		38.86
PW-1	10/3/2016	75.52		DRY (to 28.40)		
PW-2	10/3/2016	74.71		DRY (to 25.90)		
PW-3	10/3/2016	73.71		33.23		40.48
PZ-2	10/3/2016	73.96		34.67		39.29
PZ-3	10/3/2016	76.17	34.37	35.14	0.77	
PZ-5	10/3/2016	73.97		31.00		42.97
PZ-10	10/3/2016	74.34		DRY (to 34.81)		
TF-8	10/3/2016	74.86		33.41		41.45
TF-9			removed prior to	remedial excava		
TF-15	10/3/2016	74.78		Inaccessible - u	inable to locate	
TF-16	10/3/2016	75.89	33.73	37.12	3.39	
TF-17		Well	removed prior to	remedial excava	ition	
TF-18	10/3/2016	73.94	31.61	34.35	2.74	
TF-19	10/3/2016	75.07		32.92		42.15
TF-20		Well	removed prior to	remedial excava	ation	
TF-21	10/3/2016	ns		36.31		
TF-23	10/3/2016	75.31	33.25	33.64	0.39	
TF-24	10/3/2016	76.43		34.85		41.58
VEW-1	10/3/2016	NS		DRY (to 12.35)		
VEW-2	10/3/2016	NS		DRY (to 29.70)		
WCW-1	10/3/2016	72.86		31.50		41.36
WCW-2	10/3/2016	75.34		33.60		41.74
WCW-3	10/3/2016	76.16		34.35		41.81
WCW-4	10/3/2016	78.05		36.10		41.95
WCW-5	10/3/2016	73.49		32.20		41.29

Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Water (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
WCW-6	10/3/2016	75.52		34.00		41.52
WCW-7	10/3/2016	76.44		34.22		42.22
WCW-8	10/3/2016	77.34		35.70		41.64
WCW-9	10/3/2016	77.74		35.29		42.45
WCW-10	10/3/2016	74.06		31.81		42.25
WCW-11	10/3/2016	75.29		33.31		41.98
WCW-12	10/3/2016	76.27		34.60		41.67
WCW-13	10/3/2016	77.70		36.03		41.67
WCW-14	10/3/2016	78.81		36.70		42.11

Notes: feet MSL = feet below mean sea level

feet btc = feet below top of casing

---- = not applicable ns = not surveyed

TABLE 3 HISTORICAL AND CURRENT FLOATING PRODUCT SUMMARY

Defense Fuel Supply Point Norwalk

Well ID	Maximum Product Thickness	Date (Maximum Thickness)	Most Recent Measured Thickness	Date Measured	Percent Reduction
		North-Ce	ntral Area		
GMW-7	5.68	28-May-96	0.00	3-Oct-16	100
GMW-11	2.00*	7-Aug-01	0.00	15-Apr-16	100
GMW-12	0.66	28-May-96	0.00	3-Oct-16	100
GMW-15	0.45*	28-May-96	0.00	3-Oct-16	100
GMW-17	5.82	31-Dec-97	0.00	27-Oct-14	100
GMW-18	6.03	1-May-98	2.07	3-Oct-16	65.7
GMW-20	1.12*	7-Aug-01	0.00	3-Oct-16	100
GMW-21	5.32	28-May-96	0.00	3-Oct-16	100
GMW-34	4.18	20-Nov-96	0.00	1-Oct-10	100
GMW-35	4.52	28-May-96	0.02	27-Oct-14	99.6
GMW-41	0.09	15-Apr-14	0.00	3-Oct-16	100
GMW-42	1.47	28-May-96	0.00	20-Apr-15	100
GMW-45	0.27	15-Apr-14	0.00	3-Oct-16	100
GMW-48	2.21	31-Dec-97	0.00	3-Oct-16	100
GMW-50	0.31*	7-May-01	0.00	14-Apr-16	100
GMW-51	2.01*	7-May-01	0.00	12-Apr-12	100
GMW-53	0.01*	8-Apr-10	0.00	12-Apr-12	100
GW-6	0.01*	7-Jul-11	0.00	3-Oct-16	100
GW-7	0.23*	19-Oct-15	0.00	3-Oct-16	100
MW-11	2.89	28-May-96	0.00	5-Apr-13	100
MW-29	0.25	20-Nov-96	0.00	3-Oct-16	100
PZ-3	6.87	1-May-98	0.77	3-Oct-16	88.8
TF-9	0.04	25-May-99	0.00	27-Oct-14	100
TF-11	0.18	19-Sep-02	0.00	3-Apr-13	100
TF-13	2.92	31-Dec-97	0.00	3-Apr-13	100
TF-14	4.82	31-Dec-97	0.00	3-Apr-13	100
TF-15	3.77	31-Dec-97	2.82	20-Apr-15	25.2
TF-16	4.10	31-Dec-97	3.39	3-Oct-16	17.3
TF-17	2.96	1-May-06	0.00	27-Oct-14	100
TF-18	2.96	11-Apr-16	2.74	3-Oct-16	7.4
TF-19	2.26	20-Apr-15	0.00	3-Oct-16	100
TF-20	4.19	1-Dec-06	0.03	27-Oct-14	99.3
TF-21	0.36	15-May-00	0.00	3-Oct-16	100
TF-22	1.67	1-May-98	0.00	3-Apr-13	100
TF-23	0.39	3-Oct-16	0.39	3-Oct-16	0.0
TF-24	1.94	25-May-99	0.00	3-Oct-16	100
TF-26	1.10	9-Apr-14	1.10	9-Apr-14	0.0
	_		ntral Area		
GMW-58	2.71	7-May-01	0.00	13-Apr-16	100
GMW-59	2.17	5-May-00	0.00	3-Oct-16	100
GMW-61	0.02*	20-Oct-15	0.00	3-Oct-16	100
GMW-62	5.63	27-Oct-14	0.01	3-Oct-16	99.8
GMW-68	3.00*	3-Oct-16	3.00	3-Oct-16	0.0
GW-15	6.07	13-Apr-13	0.00	3-Oct-16	100
	_		ack Area		T
GMW-4	5.74	31-Oct-05	0.02	27-Oct-14	99.7
MW-9	1.59	28-Aug-07	0.00	3-Oct-16	100
MW-15	1.23	12-Nov-07	0.00	27-Oct-14	100

TABLE 3 HISTORICAL AND CURRENT FLOATING PRODUCT SUMMARY

Defense Fuel Supply Point Norwalk

	Maximum	Date	Most Recent		
Well	Product	(Maximum	Measured	Date	Percent
ID	Thickness	Thickness)	Thickness	Measured	Reduction
		South-Ce	ntral Area		
GMW-9	6.67	3-Jul-14	0.00	3-Oct-16	100
GMW-10	7.75	4-Nov-02	1.45	3-Oct-16	81.3
GMW-22	7.42	1-May-98	0.00	3-Oct-16	100
GMW-23	4.18	13-Nov-00	0.00	3-Oct-16	100
GMW-24	6.56	3-Jul-14	0.00	3-Oct-16	100
GMW-25	7.68	1-May-98	0.00	3-Oct-16	100
GMW-27	0.67*	31-Dec-97	0.00	27-Oct-14	100
GMW-28	0.65	1-May-98	0.00	3-Oct-16	100
GMW-29	3.51	19-Oct-15	0.25	3-Oct-16	92.9
GMW-30	6.11	4-May-99	0.00	3-Oct-16	100
GMW-O-11	4.51	3-Nov-14	0.01	6-Oct-16	99.8
GMW-O-12	11.27	30-Oct-15	2.30	3-Oct-16	79.6
GMW-O-13	2.44	20-Nov-96	0.00	8-Apr-02	100
GMW-O-14	0.03*	31-Dec-97	0.00	3-Oct-16	100
GMW-O-20	5.03	7-Oct-13	0.00	3-Oct-16	100
GMW-O-21	2.42	2-Jul-15	0.00	3-Oct-16	100
GMW-O-23	4.56	7-Oct-13	0.00	3-Oct-16	100
GMW-SF-9	1.04	5-Sep-14	0.00	21-Oct-15	100
GWR-3	7.35	24-Jul-15	0.05	3-Oct-16	99.3
MW-18(MID)	0.61	28-May-96	0.00	3-Oct-16	100
MW-O-1	1.53	14-Aug-07	0.00	3-Oct-16	100
MW-O-2	5.19	21-May-15	0.08	3-Oct-16	98.5
MW-O-4	0.05*	4-May-99	0.00	8-Apr-02	100
MW-SF-1	7.17	6-May-14	0.00	3-Oct-16	100
MW-SF-2	16.82	1-Jul-97	0.00	3-Oct-16	100
MW-SF-3	1.53	7-Aug-01	0.00	3-Oct-16	100
MW-SF-4	8.07	19-Nov-99	0.00	3-Oct-16	100
MW-SF-5	0.02	4-Nov-02	0.00	3-Oct-16	100
MW-SF-6	7.94	20-Nov-96	0.00	3-Oct-16	100
MW-SF-9	9.02	20-Apr-15	0.00	11-Apr-16	100
MW-SF-10	0.14	4-Oct-10	0.00	3-Oct-16	100
MW-SF-11	4.03	20-Apr-15	0.00	3-Oct-16	100
MW-SF-12	5.59	5-Sep-14	0.00	3-Oct-16	100
MW-SF-13	5.85	19-Oct-15	0.00	3-Oct-16	100
MW-SF-14	1.25	14-Apr-14	0.00	3-Oct-16	100
MW-SF-15	3.03	19-Oct-15	0.00	3-Oct-16	100
MW-SF-16	0.59	14-Nov-13	0.00	3-Oct-16	100
PZ-2	1.87	9-Aug-99	0.00	3-Oct-16	100
			tern Area		
GMW-36	4.50	26-Dec-12	0.40	3-Oct-16	91.1
GMW-O-15	6.00	28-May-96	0.08	3-Oct-16	98.7
GMW-O-18	4.94	13-Dec-16	4.94	13-Dec-16	0.0

Notes: Measured product thicknesses are in feet.

^{* =} indicates this was the only recorded incidence of free product.

^{---- =} not applicable

TABLE 4
ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-1	SGI	10/7/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	1.7	<10	<2.0	<2.0	<2.0
EXP-1	BT	10/7/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.8	<10	<1.0	<1.0	<1.0
EXP-2	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-2 (EXP-2)	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-2	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-3	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-3	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-4	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-5	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-1	ВТ	10/6/2016	57	150	0.56	<0.50	<0.50	2.9	<0.50	2.0	13	<1.0	<1.0	<1.0
GMW-6	SGI	10/7/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-7	SGI	10/11/2016	560	2,000	7.5	<0.50	<0.50	<1.5	<0.50	1.4	47	<2.0	<2.0	<2.0
GMW-8	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	1.9	0.55	<10	<1.0	<1.0	<1.0
GMW-9	ВТ	10/6/2016	67	140	4.6	<0.50	<0.50	<0.50	0.64	0.84	110	13	<1.0	<1.0
GMW-12	SGI	10/10/2016	<100	1,400	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-13	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-15	SGI	10/10/2016	<100	2,400	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-20	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-21	SGI	10/10/2016	130	2,500	<0.50	<0.50	<0.50	<1.5	<0.50	1.5	<10	<2.0	<2.0	<2.0
GMW-23	ВТ	10/6/2016	130	6,100	2.9	<0.50	<0.50	<0.50	<0.50	<0.50	14	4.8	<1.0	<1.0
GMW-25	ВТ	10/6/2016	70	780	<0.50	<0.50	<0.50	1.1	0.88	0.50	18	1.2	<1.0	<1.0
GMW-26	ВТ	10/6/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	2.3	0.64	<10	2.0	<1.0	<1.0
GMW-28	ВТ	10/6/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.6	46	19	<1.0	<1.0
GMW-30	BT	10/7/2016	360	3,600	24	0.60	2.6	3.0	1.2	2.3	27	6.0	<1.0	<1.0
GMW-37	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-39	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.6	<10	<1.0	<1.0	<1.0
DUP-1 (GMW-39)	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<1.0	<1.0	<1.0
GMW-40	SGI	10/5/2016	<100	1,100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-41	SGI	10/5/2016	<100	330	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-44	SGI	10/5/2016	<100	170	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-45	SGI	10/10/2016	2,200	4,500	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-47	SGI	10/7/2016	<100	2,000	<0.50	<0.50	<0.50	<1.5	<0.50	4.9	120	<2.0	<2.0	<2.0
DUP-5 (GMW-47)	SGI	10/7/2016	<100	1,900	<0.50	<0.50	<0.50	<1.5	<0.50	5.1	140	<2.0	<2.0	<2.0
GMW-48	SGI	10/11/2016	470	1,100	200	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
DUP-8 (GMW-48)	SGI	10/11/2016	530	1,100	200	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
GMW-56	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0

TABLE 4
ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-57	SGI	10/7/2016	<100	570	<0.50	<0.50	<0.50	<1.5	<0.50	1.4	<10	<2.0	<2.0	<2.0
GMW-59	SGI	10/11/2016	470	1,800	110	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
GMW-60	SGI	10/7/2016	<100	870	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-61	SGI	10/7/2016	<100	390	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-63	SGI	10/3/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-64	SGI	10/3/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-65	SGI	10/3/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-66R	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-67	SGI	10/3/2016	<100	<100	4.2	<0.50	0.96	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-69	SGI	10/3/2016	1,600	210	240	<2.5	290	188	<2.5	<5.0	<50	<10	<10	<10
GMW-O-1	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-3	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-5	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-9	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-2 (GMW-O-10)	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-14	ВТ	10/7/2016	30,000	640	12,000	72	390	290	<100	<50	<1,000	220	<100	<100
DUP-7 (GMW-O-14)	ВТ	10/7/2016	32,000	530	12,000	85	470	330	<100	<50	<1,000	230	<100	<100
GMW-O-16	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-17	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-19	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-20	ВТ	10/7/2016	35,000	95,000	2,700	930	230	4,200	<40	38	<400	<40	<40	<40
GMW-O-21	ВТ	10/7/2016	18,000	2,000	2,900	21	280	1,600	<40	<20	<400	<40	<40	<40
GMW-O-23	ВТ	10/7/2016	2,800	170,000	15	<4.0	9.3	110	<8.0	5.0	<80	<8.0	<8.0	<8.0
GMW-O-24	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-1 (GMW-O-24)	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-7	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	ВТ	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GW-1	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	9.1	<1.0	<10	<2.0	<2.0	<2.0
GW-2	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	1.6	<1.0	<10	<2.0	<2.0	<2.0
GW-3	SGI	10/5/2016	<100	100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-4 (GW-3)	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-4	SGI	10/10/2016	<100	120	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-6	SGI	10/5/2016	<100	140	<0.50	<0.50	<0.50	<1.5	<0.50	1.4	<10	<2.0	<2.0	<2.0
GW-7	SGI	10/11/2016	<100	120	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0

TABLE 4
ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GW-8	SGI	10/7/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-13	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	8.1	<1.0	<10	<2.0	<2.0	<2.0
GW-15	SGI	10/11/2016	8,700	24,000	730	<2.5	<2.5	<7.5	<2.5	<5.0	<50	<10	<10	<10
GW-16	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
HL-2	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-2 (HL-2)	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-3	BT	10/6/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-6	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	0.96	1.2	<10	<1.0	<1.0	<1.0
MW-7	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<10	<1.0	<1.0	<1.0
MW-8	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.85	<10	<1.0	<1.0	<1.0
MW-9	BT	10/5/2016	85	280*	<0.50	<0.50	<0.50	<0.50	<0.50	1.3	22	<1.0	<1.0	<1.0
MW-12	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-13	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-14	SGI	10/4/2016	<100	<100	1.3	<0.50	<0.50	<1.5	6.3	<1.0	<10	<2.0	<2.0	<2.0
MW-16	SGI	10/7/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-17	SGI	10/4/2016	<100	<100	<0.50	<0.50	0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-1 (MW-17)	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-18 (MID)	BT	10/6/2016	200	490	6.1	<0.50	<0.50	1.5	<0.50	2.7	55	1.3	<1.0	<1.0
MW-19 (MID)	BT	10/5/2016	54	<50	<0.50	<0.50	<0.50	<0.50	3.8	0.68	220	19	<1.0	<1.0
MW-20 (MID)	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	13	7.1	22	7.2	<1.0	<1.0
MW-21 (MID)	BT	10/5/2016	57	82	<0.50	<0.50	<0.50	<0.50	3.2	1.2	<10	<1.0	<1.0	<1.0
MW-22 (MID)	SGI	10/5/2016	<100	170	1.5	<0.50	<0.50	<1.5	7.1	4.4	<10	<2.0	<2.0	<2.0
MW-26	SGI	10/5/2016	170	270	2.2	<0.50	<0.50	<1.5	<0.50	1.0	<10	<2.0	<2.0	<2.0
MW-27	SGI	10/5/2016	<100	220	<0.50	<0.50	<0.50	<1.5	<0.50	3.1	<10	<2.0	<2.0	<2.0
DUP-3 (MW-27)	SGI	10/5/2016	<100	250	<0.50	<0.50	<0.50	<1.5	<0.50	3.2	<10	<2.0	<2.0	<2.0
MW-29	SGI	10/7/2016	<100	250	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-6 (MW-29)	SGI	10/7/2016	<100	230	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-SF-1	BT	10/7/2016	55	1,200	<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<10	<1.0	<1.0	<1.0
MW-SF-4	BT	10/7/2016	<500	4,700	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<50	<5.0	<5.0	<5.0
MW-SF-6	BT	10/7/2016	8,400	10,000	430	<5.0	35	640	<10	53	390	<10	<10	<10
MW-SF-13	BT	10/7/2016	5,300	4,400	<5.0	<5.0	200	340	<10	<5.0	<100	<10	<10	<10
MW-SF-15	BT	10/7/2016	<500	16,000	7.1	<2.5	<2.5	<2.5	<5.0	26	720	12	<5.0	<5.0
PW-3	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
PZ-2	BT	10/6/2016	410	550	3.5	0.84	8.2	22	<0.50	1.7	23	<1.0	<1.0	<1.0
DUP-6 (PZ-2)	ВТ	10/6/2016	370	700	3.1	0.80	7.0	20	<0.50	1.6	21	<1.0	<1.0	<1.0
PZ-5	BT	10/6/2016	1,200	970	<1.0	<1.0	<1.0	1.4	<2.0	7.2	110,000	<2.0	2.7	<2.0
DUP-5 (PZ-5)	BT	10/6/2016	950	1,100	<1.0	<1.0	<1.0	0.86	<2.0	6.5	130,000	<2.0	2.5	<2.0

TABLE 4 ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TF-8	SGI	10/10/2016	<100	770	<0.50	<0.50	<0.50	<1.5	<0.50	1.2	<10	<2.0	<2.0	<2.0
DUP-7 (TF-8)	SGI	10/10/2016	<100	800	<0.50	<0.50	<0.50	<1.5	<0.50	1.3	<10	<2.0	<2.0	<2.0
TF-21	SGI	10/11/2016	1,300	7,800	8.5	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
TF-24	SGI	10/11/2016	<100	1,100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
WCW-2	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-3	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	0.74	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-5	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-7	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-8	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-12	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

Notes: Detected concentrations are shown in **bold**.

TPH = total petroleum hydrocarbons

BTEX Compounds = benzene, toluene, ethylbenzene, and total xylenes

1,2-DCA = 1,2-dichloroethane

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel

MTBE = methyl tertiary-butyl ether TBA = tertiary-butyl alcohol

DIPE = diisopropyl ether

ETBE = ethyl tertiary-butyl ether

TAME = tertiary-amyl methyl ether

μg/L = micrograms per liter

SGI = The Source Group, Inc.

<100 = not detected at or above the indicated laboratory reporting limit

BT = Blaine Tech Services, Inc.

"DUP" indicates a laboratory-blind duplicate sample.

* TPHd concentration may include contributions from ligher -end hydrocarbons that elute in the DRO range

TABLE 5
SUMMARY OF ADDITIONAL VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	hд/Г)	다 (국 n-Butylbenzene	ர் (T) Sec-Butylbenzene	표 (국 (국	ਸ (ਜ (T)	다 다 기	五 (立 (元) cis-1,2-Dichloroethene	ت الا Isopropylbenzene	ਜ ਨੂੰ 4-Isopropyltoluene (ਾ	hg/L)	ர் (T/n	ਜ ਨੂੰ Tetrachloroethene	ਜੂ 1,2,4-Trimethylbenzene	ਨੂੰ 1,3,5-Trimethylbenzene
EXP-1	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
EXP-1	BT	10/7/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
EXP-2	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
DUP-2 (EXP-2)	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
EXP-2	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
EXP-3	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
EXP-3	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
EXP-4	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
EXP-5	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-1	BT	10/6/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	1.2	<1.0
GMW-6	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-7	SGI	10/11/2016	<10	<0.50	1.6	0.79	<0.50	<0.50	<0.50	4.6	1.7	<2.0	1.1	3.8	1.0	3.3
GMW-8	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-9	BT	10/6/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-12	SGI	10/10/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-13	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-15	SGI	10/10/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-20	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-21	SGI	10/10/2016	<10	<0.50	3.4	1.1	<0.50	<0.50	<0.50	5.4	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-23	ВТ	10/6/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-25	ВТ	10/6/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-26	BT	10/6/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-28	ВТ	10/6/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-30	ВТ	10/7/2016	<10	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<10	1.7	<1.0	2.6	1.5
GMW-37	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-38	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-39	ВТ	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
DUP-1 (GMW-39)	ВТ	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-40	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-41	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-44	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-45	SGI	10/10/2016	<10	<0.50	4.1	1.2	<0.50	<0.50	<0.50	17	<1.0	6.8	13	<0.50	<0.50	<0.50
GMW-47	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	0.67	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
DUP-5 (GMW-47)	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	0.72	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-48	SGI	10/11/2016	<20	<1.0	2.9	1.1	<1.0	<1.0	4.0	25	<2.0	<4.0	2.2	1.2	<1.0	<1.0
DUP-8 (GMW-48)	SGI	10/11/2016	<20	<1.0	2.6	<1.0	<1.0	<1.0	3.7	23	<2.0	<4.0	2.1	<1.0	<1.0	<1.0

TABLE 5
SUMMARY OF ADDITIONAL VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	成为 (元/Acetone	ர் ab n-Butylbenzene	ش أحراك) جود-Butylbenzene	π) (¬) tert-Butylbenzene	(علم) (عارك)	ت رح ۲,1-Dichloroethane	تا رح cis-1,2-Dichloroethene	க் த - -	π a 	لتاً/ Naphthalene	n-Propylbenzene	لت) رح (جا Tetrachloroethene	ਜੇ ਨੂੰ 1,2,4-Trimethylbenzene ⊤	n 7 1,3,5-Trimethylbenzene
GMW-56	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-57	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	2.8	0.64	<0.50	1.7	<1.0	<2.0	0.51	<0.50	<0.50	<0.50
GMW-59	SGI	10/11/2016	<20	<1.0	4.3	1.5	<1.0	<1.0	4.8	32	<2.0	5.1	2.5	2.3	<1.0	<1.0
GMW-60	SGI	10/7/2016	31	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.85	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-61	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-63	SGI	10/3/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-64	SGI	10/3/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-65	SGI	10/3/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-66R	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GMW-67	SGI	10/3/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<1.0	<2.0	0.93	<0.50	1.4	<0.50
GMW-69	SGI	10/3/2016	<50	<2.5	3.2	<2.5	<2.5	<2.5	<2.5	28	<5.0	45	30	<2.5	130	4.2
GMW-O-1	ВТ	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-2	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-3	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-4	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-5	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-9	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-10	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
DUP-2 (GMW-O-10)	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-14	BT	10/7/2016	<2,000	<100	<100	<100	<400	<100	<100	<100	<100	<400	<100	<100	150	<100
DUP-7 (GMW-O-14)	ВТ	10/7/2016	<2,000	<100	<100	<100	<400	<100	<100	<100	<100	<400	<100	<100	190	<100
GMW-O-16	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-17	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-19	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-O-20	BT	10/7/2016	<800	90	<40	<40	<160	<40	<40	<40	58	310	50	<40	1,400	600
GMW-O-21	BT	10/7/2016	<800	75	<40	<40	<160	<40	<40	<40	<40	300	71	<40	680	190
GMW-O-23	BT	10/7/2016	<160	<8.0	<8.0	<8.0	<32	<8.0	<8.0	<8.0	<8.0	<32	8.6	<8.0	200	60
GMW-O-24	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
DUP-1 (GMW-O-24)	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
GMW-SF-7 GMW-SF-8	BT BT	10/5/2016 10/5/2016	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
GW-5F-6 GW-1	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-2	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-3	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
DUP-4 (GW-3)	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0 <2.0	<0.50	<0.50	<0.50	<0.50
GW-4	SGI	10/3/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50

TABLE 5
SUMMARY OF ADDITIONAL VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER, OCTOBER 2016

Well	Sampled By	Sample Date	Ð	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Chloromethane	-Dichloroethane	,2-Dichloroethene	Isopropylbenzene	4-Isopropyltoluene	alene	ylbenzene	etrachloroethene	,4-Trimethylbenzene	1,3,5-Trimethylbenzene
			Acetone	n-Buty	sec-Bu	tert-Bu	Chloro	1,1-Dic	cis-1,2.	Isoprop	4-Isopr	Naphthalene	n-Propylbe	Tetrack	1,2,4-Tı	1,3,5-Tı
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GW-6	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-7	SGI	10/11/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.63	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-8	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-13	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
GW-15	SGI	10/11/2016	<50	<25	6.0	2.6	<2.5	<2.5	<2.5	11	16	31	7.0	<2.5	20	12
GW-16	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
HL-2	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
DUP-2 (HL-2)	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
HL-3	BT	10/6/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-6	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-7	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-8	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-9	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-12	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-13	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-14	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-16	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-17	SGI	10/4/2016	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<1.0	<2.0	<0.50	<0.50	< 0.50	<0.50
DUP-1 (MW-17)	SGI	10/4/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-18 (MID)	BT BT	10/6/2016 10/5/2016	<20	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	3.4	<1.0	<10 <10	1.6	<1.0	<1.0	<1.0
MW-19 (MID) MW-20 (MID)	BT	10/5/2016	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
MW-21 (MID)	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-22 (MID)	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-26	SGI	10/5/2016	<10	<0.50	0.94	0.64	<0.50	<0.50	<0.50	3.5	<1.0	3.8	2.7	<1.0	<0.50	<0.50
MW-27	SGI	10/5/2016	<10	<0.50	< 0.50	<0.50		<0.50			<1.0				<0.50	<0.50
DUP-3 (MW-27)	SGI	10/5/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
MW-29	SGI	10/7/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
DUP-6 (MW-29)	SGI	10/7/2016	<10	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	< 0.50	<0.50	<0.50	<0.50
MW-SF-1	BT	10/7/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
MW-SF-4	BT	10/7/2016	<100	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0
MW-SF-6	BT	10/7/2016	<200	48	<10	<10	<40	<10	<10	<10	<10	64	<10	<10	440	310
MW-SF-13	ВТ	10/7/2016	<200	<10	<10	<10	<40	<10	<10	12	<10	71	26	<10	660	<10
MW-SF-15	BT	10/7/2016	<100	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0
PW-3	ВТ	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0

TABLE 5 SUMMARY OF ADDITIONAL VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER, OCTOBER 2016

Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

Well	Sampled By	Sample Date	(T/S/T) Acetone	ர் நி n-Butylbenzene ்	ர் த (၂ (၂	ர் டி tert-Butylbenzene (၂	다) (기 (T)	ர் ர ர	ர் ட் cis-1,2-Dichloroethene	五 (年 (上) (上) (上)	ਜ ਨੂੰ 4-lsopropyltoluene ੍ਰ	المكرك) (عار Naphthalene	ம் (T) (T)	ர் ந் ர	ர் ரீ 1,2,4-Trimethylbenzene	ਨੂੰ 1,3,5-Trimethylbenzene
PZ-2	ВТ	10/6/2016	<10	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	3.0	<1.0	<10	3.5	<1.0	12	6.3
DUP-6 (PZ-2)	BT	10/6/2016	<20	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	2.7	<1.0	<10	3.1	<1.0	10	5.8
PZ-5	BT	10/6/2016	<40	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<10	<2.0	<2.0	2.6	<2.0
DUP-5 (PZ-5)	BT	10/6/2016	<20	<1.0	1.2	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	2.3	<1.0
TF-8	SGI	10/10/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
DUP-7 (TF-8)	SGI	10/10/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
TF-21	SGI	10/11/2016	<10	<0.50	4.9	1.2	<0.50	<0.50	< 0.50	28	<1.0	11	22	1.7	<0.50	<0.50
TF-24	SGI	10/11/2016	<10	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	0.63	<1.0	<2.0	<0.50	<0.50	<0.50	<0.50
WCW-2	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-3	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-4	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-5	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-6	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-7	BT	10/5/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-8	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-12	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-13	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
WCW-14	BT	10/4/2016	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0

Notes: Detected concentrations are shown in **bold**.

MEK = methyl ethyl ketone μ g/L = micrograms per liter SGI = The Source Group, Inc. BT = Blaine Tech Services, Inc.

<10 = not detected at or above the indicated laboratory reporting limit

"DUP" indicates a laboratory-blind duplicate sample.

TABLE 6 ANALYTICAL RESULTS FOR ANALYTES DETECTED IN FIELD DUPLICATE SAMPLES

Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

	Sampled	Sample	Нд	Þ	zene	euer	ylbenzene	sees	ethyl tertiary-Butyl Ether	ary-Butyl Alcohol	opropyl Ether	। tertiary-Butyl Ether	-Butylbenzene	Butylbenzene	Dichloroethane	1,2,-Dichloroethene	oropylbenzene	opylbenzene	etrachloroethene	4-Trimethylbenzene	5-Trimethylbenzene
Sample ID	Ву	Sample Date	(µg/L)	Η μ (μg/L)	Β (μg/L)	enlo_ (µg/L)	(آahylbo (احتا) χ (μg/L)	μg/L)	(µg/L)	isi O (µg/L)	(µg/L)	ο ο (μα/L)	(hg/r)	(hg/F) ,	<u>.ς</u> (μg/L)	<u>δ</u> (μg/L)	طّ د (µg/L)	(µg/L)	(ha/r)	(hd/r) 4. 6.
EXP-1	SGI	10/7/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	1.7	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EXP-1	BT	10/7/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	1.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EXP-2	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-2 (EXP-2)	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EXP-2	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EXP-3	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EXP-3	ВТ	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
GMW-39	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	1.6	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUP-1 (GMW-39)	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
GMW-47	SGI	10/7/2016	<100	2,000	<0.50	<0.50	<0.50	<1.5	4.9	120	<2.0	<2.0	<0.50	<0.50	0.67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-5 (GMW-47)	SGI	10/7/2016	<100	1,900	<0.50	<0.50	<0.50	<1.5	5.1	140	<2.0	<2.0	<0.50	<0.50	0.72	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
GMW-48	SGI	10/11/2016	470	1,100	200	<1.0	<1.0	<3.0	<2.0	<20	<4.0	<4.0	2.9	1.1	<1.0	4.0	25	2.2	1.2	<1.0	<1.0
DUP-8 (GMW-48)	SGI	10/11/2016	530	1,100	200	<1.0	<1.0	<3.0	<2.0	<20	<4.0	<4.0	2.6	<1.0	<1.0	3.7	23	2.1	<1.0	<1.0	<1.0
GMW-O-10	BT	10/4/2016	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUP-2 (GMW-O-10)	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
GMW-O-14	BT	10/7/2016	30,000	640	12,000	72	390	290	<50	<1,000	220	<100	<100	<100	<100	<100	<100	<100	<100	150	<100
DUP-7 (GMW-O-14)	ВТ	10/7/2016	32,000	530	12,000	85	470	330	<50	<1,000	230	<100	<100	<100	<100	<100	<100	<100	<100	190	<100
GMW-O-24	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUP-1 (GMW-O-24)	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
GW-3	SGI	10/5/2016	<100	100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-4 (GW-3)	SGI	10/5/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
HL-2	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUP-2 (HL-2)	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-17	SGI	10/4/2016	<100	<100	<0.50	<0.50	0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-1 (MW-17)	SGI	10/4/2016	<100	<100	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-27	SGI	10/5/2016	<100	220	<0.50	<0.50	<0.50	<1.5	3.1	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-3 (MW-27)	SGI	10/5/2016	<100	250	<0.50	<0.50	<0.50	<1.5	3.2	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-29	SGI	10/7/2016	<100	250	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-6 (MW-29)	SGI	10/7/2016	<100	230	<0.50	<0.50	<0.50	<1.5	<1.0	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
PZ-2	BT	10/6/2016	410	550	3.5	0.84	8.2	22	1.7	23	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	3.0	3.5	<1.0	12	6.3
DUP-6 (PZ-2)	BT	10/6/2016	370	700	3.1	0.80	7.0	20	1.6	21	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7	3.1	<1.0	10	5.8
PZ-5	BT	10/6/2016	1,200	970	<1.0	<1.0	<1.0	1.4	7.2	110,000	<2.0	2.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.6	<2.0
DUP-5 (PZ-5)	BT	10/6/2016	950	1,100	<0.50	<0.50	<0.50	0.86	6.5	130,000	<2.0	2.5	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0
TF-8	SGI	10/10/2016	<100	770	<0.50	<0.50	<0.50	<1.5	1.2	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DUP-7 (TF-8)	SGI	10/10/2016	<100	800	<0.50	<0.50	<0.50	<1.5	1.3	<10	<2.0	<2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

Detected concentrations are shown in **bold**.

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as deisel μ g/L = micrograms per liter

SGI = The Source Group, Inc.

<10 = not detected at or above the indicated laboratory reporting limit

BT = Blaine Tech Services, Inc.

"DUPE" and "DUP" indicate laboratory-blind duplicate samples.

TABLE 7 ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, AND SELECTED VOCS IN TRIP BLANKS AND EQUIPMENT BLANKS

Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

Sample ID	Sampled By	Sample Date	(ha)/_)	РНДТ (µg/L)	(hanzene	(πα/γ.)	ர் (¬Ethylbenzene	(μg/L)	க் 7.2-Dichloroethane	ந் நி Methyl tertiary-Butyl Ether	ட் நீ tertiary-Butyl Alcohol
QCTB-1	SGI	10/3/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
QCEB-1	SGI	10/3/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
QCTB-1	SGI	10/4/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
QCEB-1	SGI	10/4/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
TB-1	BT	10/4/2016			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
EB-1	BT	10/4/2016	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
EB-2	BT	10/4/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
EB-2	BT	10/5/2016	<50	<50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10
QCTB-1	SGI	10/5/2016			<0.50	<0.50	< 0.50	<1.5	<0.50	<1.0	<10
QCEB-1	SGI	10/5/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
TB-2	BT	10/5/2016			<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<10
EB-3	BT	10/5/2016	<50	<50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<10
QCTB-1	SGI	10/7/2016			< 0.50	<0.50	< 0.50	<1.5	< 0.50	<1.0	<10
QCEB-1	SGI	10/7/2016			<0.50	<0.50	< 0.50	<1.5	<0.50	<1.0	<10
TB-3	BT	10/6/2016			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10
EB-5	BT	10/6/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
EB-6	BT	10/7/2016	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
QCTB-1	SGI	10/10/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
QCEB-1	SGI	10/10/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
TB-4	BT	10/7/2016			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10
QCTB-1	SGI	10/11/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10
QCEB-1	SGI	10/11/2016			<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10

Notes: Detected concentrations are shown in **bold**.

TPH = total petroleum hydrocarbons

BTEX Compounds = benzene, toluene, ethylbenzene, and total xylenes

VOCs = volatile organic compounds

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel

μg/L = micrograms per liter

SGI = The Source Group, Inc.

---- - not analyzed

<0.50 = not detected at or above the indicated laboratory reporting limit

BT = Blaine Tech Services, Inc.

APPENDIX A SEMIANNUAL EVENT FIELD FORMS (CD ROM ONLY)

MONITORING WELL GAUGING DATA

Second Semiannual 2016 Monitoring Event Defense Fuel Support Point Norwalk

15306	Norwalk	Boulevard,	Norwalk	California	90650
10000	1401 AACIII	Louis valu.	IAOI AA GIIV.	Valliullia	20000

Well ID	Date Measured	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Notes
EXP-1	10-3-16		61.17		
EXP-2	10-3-14		62.18		
EXP-3	10-3-16		60.42		
GMW-5	10-3-16	_		_	Unable to locati
GMW-6	10-3-16	~	35.43	- Thomas	
GMW-7	10-3-14		34,36	÷	Sock well
GMW-12	10-3-14		34.45	_	
GMW-15	10-3-14		34.51	-	
GMW-16					
GMW-17	Well removed prior to remedial excavation.				avation.
GMVV-18	10-3-11	33,27	35.34		
GMW-19	10-3-16	- 9	dan.		Unable to locate
GMVV-20	10-3-76	-	34,19	-	
GMW-21	10-3-14		34.38	~	
GMW-31	10-3-16			-	Unable to locate
GMW-32	Well removed prior to remedial excavation.				
GMW-33	10-3-16	-	Dry	, -	Soit in well.
GMW-35	Well removed prior to remedial excavation.				
GMW-40	10-3-16		34,98	-	
GMW-41	10-3-16	_	35.97	_	
GMW-42	10-3-16	•	_	_	Unable to locate
GMW-43	10-3-16		-	-	Unable to local
GMW-44	10.3-16		33.62	-	
GMW-45	10-3-16	• •	34.60	_	Casing added to well
GMW-47	W-3-26	_	34.25	_	
GMW-48	10-3-16	~	37,03	_	Casing added to well
GMW-54	10-3-16	_		_	Unable to locate

MONITORING WELL GAUGING DATA

Second Semiannual 2016 Monitoring Event Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

Well ID	Date Measured	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Notes
GMW-56	10-3-16		34,73	-	
GMW-57	10-3-16		34.86		
GMW-58	10-3-16				Unable to locate
GMW-59	10-3-14	arte.	32.24	-	
GMW-60	10-7-16		34.37		
GMW-61	10-3-16		33.72		
GMW-62					
GMW-63					
GMW-64					
GMW-65					
GMW-66R	10-3-14		37,35		
GMW-67					
GMW-68					
GMW-69					
GW-1	10-3-14		34.37		
GW-2	10-3-14		34.08		
GW-3	10-2-14		34.29		
GW-4	10.3-14		32,82		
GW-5	Well removed prior to remedial excavation.				
GW-6	10-3-16		34.81		
GW-7	10-5-16		33.69		
GW-8	10.3-16		34.58		
GW-13	10-3-16		35.32		
GW-14	Well removed prior to remedial excavation.				
GW-15	10-3-14		34.31		GWTS pumping well
GW-16	10-3-16		34.45		VI VI
MW-13	16-3-16	_	36.45	-	

MONITORING WELL GAUGING DATA

Second Semiannual 2016 Monitoring Event Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard	, Norwalk,	California	90650
-------------------------	------------	------------	-------

Well ID	Date Measured 10-3-16	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Notes
GMW-54					
GMW-56					
GMW-57					
GMW-58					
GMW-59					
GMW-60					
GMW-61					
GMW-62	1150x	34.72	34,73	0,01 514	SOCK/CAGE WORLE.
GMW-63	8 STA	8	34.89	S	·
(GMW-64)	930	0	33,45	6	
GMW-65	1000	0	34,75	6	
GMW-66R					
GMW-67	1035	034.050	34.05	0	
GMW-68	1140 nm	32,80	35.80	3.00 PT	
GMW-69	1110 Am	0	33,33	O	
GW-1					
GW-2					
GW-3					
GW-4					
GW-5		Well	removed prior to	remedial exca	avation.
GW-6					
GW-7					
GW-8				110	
GW-13					
GW-14		Well	removed prior to	remedial exca	avation.
GW-15					

MONITORING WELL GAUGING DATA Second Semiannual 2016 Monitoring Event Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

Well ID	Date Measured	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Notes
MW-14	10-3-14		34.37	No.	
MW-16	10-3-16		35.42		
MW-17	10-3-16	_	36.05		
MW-22-MID	10-3-16		39.75	_	
MW-24	10-3-16		NM		Casin land de
MW-26	10-3-16		35.90		Casing loose/damagec
MW-27	10-3-14		37.16		
MW-28	10-3-16	_		_	unable to localy
MW-29	10-3-16	_	37.74	-	
PZ-3	10-3-16	34.37	35.14		
TF-8	10-3-40		33,411		
TF-9		We	Il removed prior to	remedial exca	avation
TF-15					
TF-16	10-3-16	33.73	37.12		
TF-17			I removed prior to	remedial exca	avation
TF-18	10-3-16	31.61	34.35		Pumping Well
TF-19	10-3-16	-	3292		Sock well
TF-20		Wel	removed prior to	remedial exca	vation.
TF-21	10-3-16	-	36.31	_	casing added to well
TF-23	10-3-16	3325	33,64		
TF-24	10-3-16	man ²	34,85		

Notes:

Sample wells in BOLD text

feet btc = feet below top of well casing

Project #:	091-NDLA-018	/Task 5				Well ID:	EXP-/		_
Client/Station:	Defense Fuel S	Support Point Norw	alk 8	2-122 8	SCR JU	Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, California					Date:	10-7-16	2	_
			67.33						
	TD	61:17 DTW	Water Column	4					
		epth, Screened A	bove Water Tab	,	< OR >	Pump Intake De	pth, Submerged	d Screen:	
	DTW	+ 1/2(33, 8 7	$\frac{2}{2}$) = $\frac{99.8}{2}$		- 5	1/2(_
	61.17	Column	Depth		25	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-7-16				End (24 Hour)	1145		
	Date Sampled:	10-7-10	Start	(24 Hour)//	45	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O.	COLOR	TURBITY
1127	.25	NI	7,49	1,018	-120,7	22,25	(mg/L) Z-48	(visual)	(visual or NTU)
1129	.10	61.25	7.47	1.019	-121.6	22.25	2,16	11	1,04
1/3/	,25	61.28	7.46	1.019	-121.5	22.24	1.94	17	0.97
1/38	1.0	MT	7.45	1.021	-120,7	22.22	1,71		0,93
1/35	1.15	Mr	7.43	1.022	-119.3	2223	1,60	- 17	MT
1137	1.50	61.32	7.42	1,022	-117.3	22.25	1.29	٠,	NT
1139	175	61.35	7.42	1.022	- 116.5	22.25	1.04	.,	1.01
1141	2.0	MT	7.41	1.022	-115.7	22.29	1.20	5.1	0,93
1148	2.11	M	7.41	1.023	-115.1	22.31	1,16	146	N7
1745	2.50	61.35	7.41	1,023	-114,7	72.33	1,13	,	0.89
		PURGING E	DUIPMENT			SAMPLING E	OUIDMENT]
		Centrifugal Pump		Vac Truck	. And	Centrifugal Pump	ACON MENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subn	nersible Pump		0	Other : Dedicated Tub	ping		
Remarks:	splits	sample w	1/ Blaine	tich					
					0				
							<u>.</u>		
Completed By (Prin	nt Name):	Dave Lu	ubben			Signature:	er	Luls	
Reviewed By:		·D	S			Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	EXP-Z		
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"		
Address:	15306 Norwalk Norwalk, Califo		90-12	O SCRIN	7	Date:	10-4-	16	
	149.00	- 62.18	- 86.82						
	TD	DTW	Water	5					
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth. Submerge	d Screen:	
		+1/2(43.41	1= 105.5		B-10-11-11-11	90 +1/2(= 105	
	DTW	Water	Pump Intak	-	1	op of Screen	Screen	Pump Intake-	
		Column	Depth	/1	30 pm	Depth	Length	Depth	
	Date Purged:	10-4-16	Start ((24 Hour)/ d	pm	End (24 Hour)	125		
	Date Sampled:	10-4-16	Start	(24 Hour)	250	End (24 Hour)			
		DEPTH TO							
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1232	. 25	ND	7.35	1.676	-50.9	22.60	NT	claer	1.19
12 34	,50	62.25	7,30	1.680	-43.9	22,20	3.69	и	1,04
12 36	.75	62.28	7.26	1.684	-42.1	22.18	3.11	11	NT
1238	1.0	62,30	7.23	1,686	-40.4	22,11	2,66	Υ	MT
1240	1.25	NT	7.21	1.686	-38.8	22.07	2.30	ı(1.33
1242	1.5	MY	7.20	1,686	-37,7	22,03	2,06	te	1,14
1244	1.75	62.33	7.19	1.685	-36,8	22.01	1.87	10	1,09
1240	2.0	NT	7.19	1,685	-36.1	22.00	1.75	4.1	N7
1248	2.25	MT	7,19	1-684	-35,6	22.00	1.71	**	MI-
1250	25	B2.35	7,18	1.684	-35.2	21,99	1.67	1,	1.17
									- 22
		PURGING E	QUIPMENT	1		SAMPLING E	QUIPMENT		
		Centrifugal Pump	100000000000000000000000000000000000000	Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	mersible Pump		0	Other : Dedicated Tul	bing		
Remarks:	DUP-Z	obtained	ned he	ne,					
	501145	obtarned	LAR BLA	inetech					
A									
Completed By (Prin	nt Name):	Dave L	ubben			Signature:	1116/16	uh	
Reviewed By:		DS	()			Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	Exp-5		_
Client/Station:	Defense Fuel S	Support Point Norw	alk 50	R-INT		Well Diameter:	4"		-
Address:	15306 Norwalk Norwalk, Califo		30	86-116		Date:	10-4-1	16	_
	150,00 TD	<u>60,42</u>	= 89.56 Water Column	8					
	Pump Intake D	epth, Screened A		le:	< OR >	Pump Intake De	oth, Submerge	d Screen:	
		+ 1/2(44, 78	J. Dalland, a. L. Soc Sept. 14-07-45		_			= 100	_
	DTW	Water Column 1D - 4-16	Pump Intake Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged: Date Sampled:	10-4-16		24 Hour)	85F	End (24 Hour) End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
837	,25	WT	7.43	1.046	-66.4	21.65	1,22	den	NT
8 39	.50	60.48	7.40	1.047	-66.3	21.66	1,16	11	1.22
8 41	75.	60.30	7.39	1.048	-65.3	21.67	1.11	/)	1.16
843	1,0	60.52	7.37	1.047	-62,9	21.69	1.05	11	1.18
8 45	1.25	NT	7.36	1.046	-62./	21.71	1,02	1.6	NT
842	1.5	NT	735	1.046	- 61,4	21.76	1.02	,,	NT
8 49	1.75	60.57	7.35	1.046	-60.9	21.70	1.00	74	1.22
851	2.0	60.58	7.35	1.045	-60:3	21.71	0196	l _f	1,02
8 13	2.25	HT	7.35	1.045	-59.9	21.71	0.95	1.	NT
812	2.50	60.60	7.35	1.045	-59.5	- 21.71	0.95	'n	1,01
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
	0	Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	\square	Other: Low Flow Subr	mersible Pump		0	Other : Dedicated Tub	oing]
Remarks:	ern spli4	samples	for Blin	etech.					
Completed By (Pri	nt Name):	Dave L	ubben			Signature:	li a		
Reviewed By:		DS				Date:	n 116/16		

Project #:	091-NDLA-018/	Task 5				Well ID:	cmw.6		_
Client/Station:	Defense Fuel S	upport Point Norw	alk a	5-50		Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califor		a	0		Date:	10-7-16	,	-
	50.00	35,63	= 14.37						
	TD	DTW	Water	-					
	Francisco Sorres	epth, Screened A	bove Water Tab		< OR >	Pump Intake De	pth, Submerge	d Screen:	
		+1/2(7,18	_)= 42.		1 <u></u>	02. 023350		=_e43	
	DTW	Water Column	Pump Intak Depth	е		Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-7-16	Start	(24 Hour) 8	40	End (24 Hour)	900		
	Date Sampled:	10-1-16	Start	(24 Hour)	00	End (24 Hour)			
		DEPTH TO		T	T			T	
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
842	125	HT	7,47	0.691	-299	2229	4,48	elen	1,47
844	.50	35.71	7.44	0.691	- 31.3	22.30	Z,69	"	1.31
846	T	35.74	7.38	0.690	-28.4	22.33	1.63	ч	MT
848	1.0	35,76	7.36	0.690	-27.8	22.33	1.43	4	RIT
820	1.25	NIT	7.35	0.689	-27.1	22.34	1.37	18	1.23
852	1.5	MT	7.35	0.689	- 26,6	22,36	1.13	11	1.33
854	1.75	35.80	7.34	0.688	-26.4	22.37	1.10	γ.	MT
829	2.0	35.80	7.33	6.689	-25.8	22.36	1.07	H	ut
878	2.25	NT	7.33	0.689	-25,4	2237	1.05	* 1	1,19
900	2.50	146	7.31	0.688	-25.0	22.39	1.02	и 5-	1.22
						•			
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	3.0
		Other: Low Flow Subi	mersible Pump		(0)	Other: Dedicated Tub	ping		
Remarks:									
a III ve e		ь				. /	Cillw.	1	
Completed By (Pri	nt Name):	Dave L	ubben	*		Signature:	0 0.0	V	
Reviewed By:		D	S			Date:	11/16/16		

Project #:	091-NDLA-018	7/Task 5			Well ID:		6mw-7		_
Client/Station:	Defense Fuel S	Support Point Norw	alk	SCR-INT		Well Diameter:	4"		-
Address:	15306 Norwalk Norwalk, Califo			25-50		Date:	10-11-1	6	-
	50.00 TD	34.36 s							
	Pump Intake D	Depth, Screened A	Column bove Water Tab	le:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34.36	+1/2(7.82)= 42/	8		+1/2()= 042	
	DTW	Water Column	Pump Intak Depth	е	Т	op of Screen Depth	Screen Length	Pump Intake Depth	2
	Date Purged:	1011-16		24 Hour)/	000	End (24 Hour) _	1000	Борат	
	Date Purged:	10-11+16		(24 Hour)	1000	End (24 Hour)		-	
	T	DEPTH TO		Ī					
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1002	121	HT	6.95	1.395	-51.6	25.58	2.86	clan	37.9
1001	,50	36.44	691	1.395	-53.6	25.40	NT	11	33.8
10a	,75	36.47	6.89	1.396	-62,7		1,71	11	NE
1008	1.0	NT	690	1.398	-74.3	25.93	1, 33	14	29,4
1010	1.05	MT	6.90	1.399	-79.6	25,98	NT	16	28,7
1012	1.50	36.54	6.90	1.401	-81./	26.01	NT	1.	NIT
1014	1.25	3655	6,91	1.401	-8216	2610	0.73	11	14
1016	2.0	MT	6.91	1.400	-83.5	26,13	0,72	ži.	21.6
1010	2.25	MT	691	1.400	-841	26.19	0.71	11	21.0
1000	2.50	36.56	6.91	1.401	-84.4	2617	0.69	ıį	19.4
]
		PURGING E	QUIPMENT	V T1		SAMPLING E	QUIPMENT	T. O. D	
		Centrifugal Pump Submersible Pump		Vac Truck Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump	proposació i amp	0	Other : Dedicated Tul	bing	Total Control	1
Remarks:							· Mily of the		2
_								7,50	
Completed By (Pri	int Name):	Dave L	ubben			Signature:	l'il	M	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	611W-	12	_
Client/Station:	Defense Fuel S	Support Point Norw	alk	25-50		Well Diameter:	4"		
Address :	15306 Norwalk Norwalk, Califo			po s		Date:	10-10	-16	_
	50,00 TD	34.45 DTW	Column						
		epth, Screened A			< OR >	Pump Intake De		1	
	54141 DTW	+ 1/2(7.78 Water	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	3	-	+1/2(Top of Screen	Screen) = e42	
		Column	Depth			Depth	Length	Depth	
	Date Purged:	10-10-16 10-10-16	Start ((24 Hour) 7 4	1 //m	End (24 Hour)	801		
	Date Sampled:	10-10-16	Start	(24 Hour)	(End (24 Hour)	-		
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
747	125	34.49	6.97	1367	-71.8	23.14	6,43	Clem	69,4
749	,50	34.54	6.95	1,365	-72.3	23.17	NT	71	NT
70	,21	MT	6 94	1,363	-7012	23.19	NT	44	MT
713	40	Ner	6.93	1.362	-70,0	23-20	6.04	1,	58.8
70	145	34.58	6.93	1.362	-72,6	23,20	4,47	и	Mt
7 57	1.00	34.60	6.93	1.362	-74.0	23.21	3.84	h	MIT
719	1,25	MT	6.92	1.361	-76.3	23.21	3,21	*1	51.3
8-01	2-0	M	6.92	1.361	-75,9	23.21	3.06	1,	HIT
8-03	2.15	34.63	692	1.360	-79.5	23.22	2.99	14	43.6
805	2.5	34.64	6.91	1.360	-79,3	23.23	2,95	1.	41,0
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	2	Other: Low Flow Sub	mersible Pump		(a)	Other : Dedicated Tul	bing		
Remarks:		<u> </u>			1413	us/em			
Completed By (Pri	nt Name);	Dave L	ubben			Signature:	lil	ily	
Reviewed By:		DS				Date:	11/16/16		

Project # : Client/Station: Address :	15306 Norwalk Norwalk, Califor SO, OO TD	Boulevard rnia 90650 34.5/ DTW Pepth, Screened At + 1/2(7.75) Water Column / 0.10-16	Water Column Dove Water Tab Pump Intak Depth Start	ole: 6	< OR >	Pump Intake De	oth, Submerged	I Screen:		1
TIME	VOLUME	DEPTH TO WATER	pH	E.C.	ORP	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)	
(24 Hr) 1007	(gallons)	(feet btc)	7.21	(sM/cm)	(mV)	24,04	6.13	claer	NT	
1009	,50	34,60	7.16	1.503	13.6	24.00	NT	BROWN	XXXX	10
10"	,75	34.84	7.14	1.500	9.3	23.92	4,15	1, te biow.		
1013	1.0	rut	7.11	1.495	3.3	23.96	2.88	16	MT	
1015	1.25	pol	7.10	1.490	0.01	23.91	2.31	4	211.1	
1017	1.10	34.68	7.08	11485	-310	23.96	2,06	76	MT	
1018	1.25	MT	7.07	1,481	-610	23,96	1.93	V/	Mb	
1021	2.0	pet	7,07	1.477	-7.4	23 96	1.85	.1	124.6	
1013	2.25	34.71	7.07	1.473	-8.0	23.96	1,77	4.5	101.3	
1025	2.50	34.72	7,06	1,471	-8,2	23.95	1,74	W	88.9	-
										-
										-
		PURGING E	QUIPMENT			SAMPLING	EQUIPMENT]	
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer		
	0	Submersible Pump	701 123	Disposable Pump	(i)	Submersible Pump	L1	Disposable Bailer	1	
Remarks:		Other: Low Flow Sub	mersible Pump			Other : Dedicated Tu	bing		1	-
Completed By (P	rint Name):	Dave L	ubben	_		Signature:		lubh	44	-
Reviewed By:_		DS				Date:	11 16 16			-307

Project #:	091-NDLA-018	Task 5				Well ID:	GMW-Z	0	_
Client/Station:	Defense Fuel S	upport Point Norwa	alk ~	50		Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califor		Sc	50 CRINT		Date:	10-5-16	>	_
		34.19 :	Water	ži.					
	2 1 1	epth, Screened A + 1/2(7,9/	Column bove Water Tab	41.000	< OR >	Pump Intake De		ed Screen:	
	DTW	Water	Pump Intak Depth		7	Top of Screen Depth	Screen Length	Pump Intake Depth	76
	Date Purged:	10-5-16		(24 Hour) 8	77	End (24 Hour)	915	Бери	
	Date Sampled:	10-5-16	Start	(24 Hour) 8	nr -	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
857	:25	MT	7.21	0,891	34.5	22.53	5.63	den	43.9
819	.70	34.25	7.19	0.892	37,1	22.65	2.27	1)	31.6
901	.25	34.28	7.18	0.891	37.9	22.67	1.80	t/	NT
903	1.0	34,30	7.17	0.891	38,5	22.68	1.66	11	NIT
905	1.15	MT	7.17	0.891	39,0	22.70	1.53	7.(20.4
907	1.30	MT	7.17	0.891	39.4	22.70	1,48	16	13.1
904	1.25	34.33	7.17	0.892	39.5	22-71	1.43		NT
911	2.0	34.34	7.16	0.892	39.3	22-73	1.37	11	10.3
913	2.45	NT	7.16	0.892	39.5	22.72	1.33	• 1	8,9
910	2.5	111	7.16	0.893	39.6	22-73	1.30	11	9.(
			15010						
		PURGING E	QUIPMENT			SAMPLING I	EQUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	Q	Other: Low Flow Subr	nersible Pump		0	Other : Dedicated Tu	bing]
Remarks:									
			· ·						
Completed By (Pri	nt Name):	Dave L	ubben			Signature:	11/16/16	u	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	GMW .	2/	-
Client/Station:	Defense Fuel S	Support Point Norwa	alk 25 57	SCR/INI	-	Well Diameter:	411		<u></u>
Address:	15306 Norwalk Norwalk, Califo	rnia 90650				Date:	10-10-	16	-
	50.00 TD	<u>34,38</u>	= 15.62 Water						
		epth, Screened A	Column	le:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34.38	+ 1/2(7.8/)= 42,1	19	_	+1/2()= 42	_
	DTW	Water Column	Pump Intake Depth	е	Т	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-10-16	Start ((24 Hour) 930	Am	End (24 Hour)	910		
	Date Sampled:	10-10-16	Start	(24 Hour) 9	0	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
982	.25	NT	7.11	1.199	-88.2	25.40	0.62	clem	the MT
934	,50	34.45	7.10	1.199	-94,3	25.28	0.56	71	25.7
936	.25	34,48	7.10	1.198	- 969	25.22	0.48	13	MT
938	1,0	UT	7.10	1.200	-104.8	25-20	0.44	21	1816
940	1.25	MT	7.10	1.200	-107.1	25.26	0,43	1 \	14,3
942	1.50	34,55	7.10	1.201	= 111.3	25,30	0.41	y x	15.1
944	1.75	34.56	7.16	1.201	-//3.4	25.31	0.41		HT
946	2.0	MT	7.09	1,202	114,0	25.30	0.42	. 1	NT
948	211	34,58	7.09	1.202	114.4	25.30	0.43	-1	12.6
950	2.50	34.58	7.09	1.202	114.9	27.30	0.41	Y	12.2
		PURGING E	QUIPMENT			SAMPLING E	EQUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	-
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tu	bing		
Remarks:	25 oder								
-							581 6d		-
Completed By (Pr	rint Name):	Dave L	ubben			Signature:	le W	4,	
Reviewed By:_		ī	S			Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	-		
Client/Station:	Defense Fuel S	Support Point Norwa	alk o	20-50		Well Diameter: _	411		<u> </u>
Address:	15306 Norwalk Norwalk, Califo		Si	CR-INT			10-5-16		
	50,50 TD	<u>34,98</u>	15.52 Water						
	Pump Intake D	epth, Screened A	Column bove Water Tab	le:	< OR >	Pump Intake Dej	oth, Submerge	d Screen:	
		+1/2(7,76				+1/2()= 048	
	DTW	Water	Pump Intak		-	Top of Screen Depth	Screen Length	Pump Intake Depth	-
	Date Purged:	10-5-16		24 Hour)	45 AM	End (24 Hour) _		Бори	
		10-5-16		(24 Hour)	805 805	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
747	7.00	HT	6.82	2,214	- 16.8	22.81	2.82	Cloudy	3/3.0
749	.50	35,06	6.82	2.214	- 19.6	22.86	2.43	Cloudy	542.0
751	.25	35,09	6.81	2.215	-21.7	22.90	2.16		NT
713	1,0	35.11	6.81	2.215	-23.6	22.93	2.0/	3.0	NT
755	115	NT	6 81	2.216	-24.9	22.96	1.88	1 +	191.0
757	1.50	NI	6-81	2.216	-25.9	22.99).8/		MT
719	1.25	35.15	6.81	2.216	-26.5	22.99	1.73	Is.	NT
801	2.0	35.18	681	22 16	-27.3	23.01	1.65	,	Ni
803	2.25	NT	6.81	2.217	-27.9	23.01	1.60	15:	73.7
805	2.50	35.20	6.81	2.217	-28.2	23.02	1.56	tre	63.4
				-					
									*
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	Q	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tub	ping		
Remarks:									
Completed By (Pri	int Name):	Dave L	ubben /			Signature:	2 ic Wal		
Reviewed By:		D.	S			Date:	11/16/16		

Project #:

091-NDLA-018/Task 5

GMW-41

Well ID:

Client/Station:	Defense Fuel S	Support Point Norwa	alk			Well Diameter:	4"		
Address :	15306 Norwalk Norwalk, Califo					Date:	10-5-16		-
		35,97 =	= 14,53 Water Column	Đ					
		Depth, Screened A	bove Water Tal		< OR >	Pump Intake Dep			
	35,97	+ 1/2(7, 27 Water	_)=_43.0	24				= <u>e43</u>	- 37
	DTW	Column	Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-5-16	Start	(24 Hour) 8 2		End (24 Hour) _	8,40		
	Date Sampled: _	10-5-16		(24 Hour)	840	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
872	,25	NT	7.27	0.911	0.5	22.67	0.96	clan	34.2
844	150	36.06	7.25	0,909	2,2	22.79	0.80	4	17.3
816	.75	36.10	7.24	0.908	3.4	22.84	0.74	tį	NT
828	1,0	NT	7.24	0,909	4.1	22.87	0.69	11	13.1
8 30	1.25	AIT	7.23	0,909	416	28.22	0.67	1.4	NT.
832	1.10	36.15	7.22	0.909	5.1	22.89	0.64	1.	11.3
8 34	121	36.16	7.22	0.909	5.5	22.90	0.62	.1	9.6
8 36	2.0	IVT	7.22	0.909	5.9	22.92	0.60	+4	NT
8 33	2-4	MT	7.22	0.907	6,2	22.91	0.59	4.5	8.8
8 40	2.5	36.17	7.22	0.906	6.4	22.93	0.58	4	7.6
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	1
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	a	Other: Low Flow Subi	mersible Pump		0	Other : Dedicated Tut	bing		
Remarks:									
Completed By (Pr	int Name):	Dave L	ubben	-		Signature:	11/16/16		
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well Diameter: 4"			_
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	meter: 4 //		
Address :	15306 Norwalk					Date:	10-5-16	2	
	Norwalk, Califo		16 88						
	TD	33.6Z DTW							
	Pump Intake D	Depth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	ed Screen:	
	33.62	+ 1/2(8.44)= 42.0	6		+1/2()= 42	
	DTW	Water	Pump Intak Depth	е		Top of Screen Depth	Screen Length	Pump Intake Depth	-
	Date Purged:	10-5-16	2	(24 Hour) 9 30	Am		950	Бериі	
	Date Purged:	10.5.16		· · · · · · · · · · · · · · · · · · ·	10	End (24 Hour)			
	Date Sampled:		Start	(24 Hour)/	1	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
932	,25	NT	7.03	0.909	27.9	23.34	1.02	den	29.0
9 34	.50	33,70	6.99	0.909	29.9	23,27		"	21.3
930	.25	33.73	6.96	0.909	32.5	23.27	0.58	ıç	NT
938	1.0	AIT	6.94	0.909	32,8	13.27	0.54	4	ut
940	1.25	NIT	6.93	0.908	33.0	23 28	0.54	4/	13.7
942	1.50	33.78	6.93	0.909	32.6	23.30	0.51	9.4	11.0
944	1.75	3380	6,92	0.909	32.1	23.32	0.50	11	MT
946	2.0	het	6.92	0,909	31,8	23.32	0-49	15	HE
948	2.1	LtT	6,91	0.909	31.7	23.33	0.50	(3	9,1
950	2.5	3381	691	0.909	31.5	23.33	0.48	ıı	9.3
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT]
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
	E	Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	(1)	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tul	bing		
Remarks:									
Completed By (Pri	int Name):	Dave L	ubben /			Signature:	ei	uh	
Reviewed By:		DS				Signature:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	conw-4	-	
Client/Station:	Defense Fuel S	Support Point Norw	alk	10-50 SCR	IM	Well Diameter:	4"		-
Address:	15306 Norwalk Norwalk, Califo		0			Date:	10-10-	10-16	-
	50.50	34.60 DTW		-					
	Pump Intake D	epth, Screened A	Column bove Water Ta	ble:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34.60	+ 1/2(7,95)=42,	55		+1/2(1=042-43	
	DTW	Water Column	Pump Intal Depth	ke	Т	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-10-16	Start	(24 Hour) 10	35	End (24 Hour)	1000		
	Date Sampled:	10-10-16	/	t (24 Hour)	1055	End (24 Hour)		_	
TIME	VOLUME	DEPTH TO WATER	pН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1037	125	MT	7.11	1.525	-98.8	23.31	0.65	clen	NT
1039	.13	34.68	7.10	1.523	-100.0	23.32	0.40	7 (11.6
104	.75	34,71	7.10	1.522	-100.6	23.34	0.35	+ 1	10.4
1043	1,0	MT	7.10	1.522	-101.1	23.35	0.38	1	417
1045	1.25	pet	710	1.523	-102.0	23.37	0.41	"	NET
1047	1.50	34.75	7.09	1.523	-104.0	23.38	0.43	14	2.42
1049	1.75	34,77	7.09	1.522	-104.8	23.40	0.44	13	8.89
1011	2.0	alt	7,09	1.521	-105.5	23.41	0.43	4.1	MT
1013	2,65	M	7.09	1.521	-106 d	23.42	0.45	*1	MT
1000	2.50	34,79	7.09	1.521	-106,4	23.40	0,47	1-	8,68
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tut	oing		1
Remarks:									
-									
Completed By (Pri	nt Name):	Dave L	ubben	_		Signature:	in w	ar .	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	Task 5				Well ID:	amw-1	4 77	-
Client/Station:	Defense Fuel S	upport Point Norw	alk		n = 0	Well Diameter:	4"		
Address:	15306 Norwalk Norwalk, Califo			25-50	IMT	Date:	10-7-16	5	-
	50.50	34,25	= 16,25						
	TD	DTW		•					
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34.25	+1/2(8.13)= 42.B	8_	_	+1/2(= 042	
	DTW	Water Column	Pump Intak Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-7-16	4-33-5-5-6	(24 Hour)	1		935	Бериг	
	1784 (Company	10-7-16		(24 Hour)	35				
	Date Sampled: _/	0 1-10	Start	(24 Hour)/		End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR	TURBITY
917			690	100000000000000000000000000000000000000	17% V = 5000	0.00	IIV IIIVEENINGE	(visual)	(visual or NTU)
919	.50	34.33	6.90	1,761	-16.9	23.31	0.74	Clin	1,22
911	.75	34,36	690	1.760	-18.9	23.32	0,76	1/	MT
913	1.0	Att	6.89	1.760	-19.6	23.34	0.73	14	0,94
945	1.27	NIT	6.89	1.760	-21.5	23.35	0.73	*1	0.98
917	1,5	34,40	6.88	1.760	-22.4	23.35	0.71	ε,	pet
529	1.25	34,42	6,88	1.759	-2312	23.35	0,68	٠.	1.03
931	2.0	MT	6.89	1.759	-23.6	23.36	0.67	N.F.	0.93
933	2.45	34,44	6.89	1.759	-23.9	23.36	0.67	٠,	NT
935	2.50	34.41	688	1.759	-24.3.	23.36	6.65	7	1.01
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT]
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tut	ping		
Remarks:	DIP.	5)06	tai h	en					
Completed By (Pri	nt Name):	Dave L	ubben /	e.		Signature:	e i	Cery	
Reviewed By:		7	DS			Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well ID:	Gmw-4	8	
Client/Station:	Defense Fuel S	Support Point Norw	alk 2A	-50		Well Diameter:	4"		
Address :	15306 Norwalk Norwalk, Califo	Boulevard	20				10-11-16		-
		37.03	- 13.47						
	TD	DTW	Water						
	Pump Intake D	Depth, Screened A	Column Above Water Tab	le:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	37.03	+ 1/2(6.74)= 43,7	7	· ·	+1/2(==43-44	
	DTW	Water Column	Pump Intak Depth	Э	Т	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-11-16	10300 \$440.5	24 Hour)	925	End (24 Hour)	945	Борит	
		10-11-16		(24 Hour)	941	End (24 Hour) End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
927	.25	MT	7:11	1,54/	-86,1	22.51	4.44	cleer	88.3
929	,50	NT	7-10	1,541	-88,3	22,60	3,61	11	82,5
931	AT	37.12	7.09	1.542	-901	72,65	3.13	11	MĪ
933	1.0	32.15	7.08	1.543	-91,5	22,69	2,61	1 (MT
935	1.25	14.7	7.07	1.5-14	-94.5	22,76	2.04	L	69.4
937	1.5	M	7,06	1.544	-96.2	22.81	1.69	r,	67.7
939	1,35	37.19	7.06	1.544	-97,0	72-87	1,60	4	MT
941	2.0	37.20	7.06	1.1-45	-97,6	22.91	1. 1	7.6	53.4
943	2.65	HT	7.06	1.545	-98.2	22.95	1.52	* *	48.5
945	2.5	M	7.06	1.545	-98.6	22.96	1.48	*1	45.2
		PURGING E	OUIDMENT			SAMPLING E	OURDMENT		
		Centrifugal Pump	QOIFWENT	Vac Truck		Centrifugal Pump	QUIPMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub		Dioposition amp	0)	Other : Dedicated Tub	ning	Disposable Ballel	
Remarks:	DVP-8	obkine	dheu						
Completed By (Prin	nt Name):	Dave L	ubben /			Signature:	11/16/16	luh	
Reviewed By:		PS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	Aw. 24	- GMW	-56
Client/Station:	Defense Fuel S	Support Point Norw	ralk			Well Diameter:	411		_0
Address :	15306 Norwalk Norwalk, Califo					Date:	10-4-	16	-
	55.00 TD	34,73 DTW		-					
	Pump Intake D	epth, Screened A	Column bove Water Tal	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34,73	+ 1/2(10.14)= 44, 8	7		+1/2(= 45	
	DTW	Water Column	Pump Intak Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-4-16	Start	(24 Hour) //	\$0	End (24 Hour)	1210	PERSONAL PROPERTY.	
	Date Sampled:	10-4-16			1210	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1152	* LT	NT	7.23	0.868	-61.7	23.33	0.95	den	92.5
1/54	,10	34,8/	7.22	0.873	-61.0	23.25	0-76	17	63.4
1156	,4	34.85	7.21	0.873	-60,7	23.25	0.69	1 (NT
1/50	1.0	MT	7.21	0.872	-60.5	23.25	0,67	11	W/
12 00	1.15	MT	7.20	0.871	-60.2	23.23	0.64	11	48.9
1202	1.50	34.91	7.20	0.821	-60.0	23.21	0.63	11	45.3
1204	1.75	34.91	7.20	0.872	-59.8	23.20	0.62	1/	MT
12 06	2.0	MT	7:20	0.875	-59.6	23.19	0,62	11	HE
1208	2.25	MT	7.20	0.876	059.7	23.18	0.62	11	33.6
1210	2.50	34.90	7.19	0.877	- 59.9	2318	0.63	4	32.7
					3				
- C-									F 19
									7
		PURGING E	QUIPMENT	I		SAMPLING	EQUIPMENT		-
		Centrifugal Pump Submersible Pump		Vac Truck Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer	-
	0	Other: Low Flow Sub	mersible Pump	Disposable Fullip	0	Other : Dedicated Tu	bing	Disposable Bailer	
Remarks:	<u> </u>								
N									
Completed By (Pri	int Name):	Dave L	ubben			Signature:	25	lny	
Reviewed By:		Ī)S			Date:	11/16/16		3 1

Project #:	091-NDLA-018	3/Task 5				Well ID:	GMW-E	7	_
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califo		1	9-54		Date:	10-7-1	6	-
	55.00 TD	34.86 DTW	= 20,14 Water						
	Pump Intake I	Depth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerged	d Screen:	
	34.86	+1/21/0.07	1= 44.9	3		+1/2(=045	
	DTW	Water	Pump Intak	9	T	op of Screen	Screen	Pump Intake	-
		10-7-16	Depth		07.5	Depth	Length /0 ⁷³	Depth	
	Date Purged:	10-7-16	/	24 (1001)	1010	End (24 Hour)			
	Date Sampled:	10-1-16	Start	(24 Hour)/		End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
96 950	,25	MT	7.32	1.657	-66.7	23.40	KIT	din	IXT
952	,50	34,95	7.26	1,653	-73.9	23.40	5.07	17	1,17
954	.25	34,98	7.24	1.652	- 76.3	23.44	2.95	11	1.04
956	1.0	MT	7.23	1.651	-77.4	23.46	2,54	//	KT
958	1.45	NT	7.23	1.649	-79.1	23.48	1.49	1,	m
1000	1.50	35.02	7.23	1.647	-80.8	23.52	1.40	1,	1,15
1002	1.85	35.05	7.23	1.693	-81.9	23.55	1.26	11:	1.22
1004	2.00	35.07	7.23	1.641	-82.5	23.57	1.18	1,	MT
1006	2.15	LIT	7.23	1.640	-82.8	23.58	1.14	И	1,16
108	2.5	35.07	7.23	1.639	-83.1	23.60	1,10	γ	1.04
1810			70.						
								•	· 1
	-	PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	-
	100	Submersible Pump Other: Low Flow Subr	moreible Bump	Disposable Pump	0	Submersible Pump Other: Dedicated Tu	bla =	Disposable Bailer	-
Remarks:						100000000000000000000000000000000000000	onig		
			6						
Completed By (Pri	int Name):	Dave L	ubben			Signature:	W	ihr	
Reviewed By:		D	5			Date:	11/16/16		

Project #:	091-NDLA-018/	Task 5				Well ID:	6MW-5"	9	
	Defense Fuel S	upport Point Norw	alk	20-FT C	CRTMT	Well Diameter:	GMW-5"		•
Address :	15306 Norwalk	Boulevard		do-co			10-11-16	0	-
	Norwalk, Califor		22.76						
		<u>32,24</u> :	Water						
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerged	Screen:	
	32,24	+ 1/2(// 38 Water)= 43 . 6	52		+1/2()	=044	
	DTW	Water	Pump Intak Depth	е	Т	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-11-16		(24 Hour)	343	End (24 Hour)	90		
	Date Sampled:	10-11-18	,	(24 Hour) 9	343	End (24 Hour)		_	
	Date Sampled:		Start	(24 Hour)		End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
847	,25	NT	6.83	1.259	-31.5	22,52	0,73	don	NT
849	.50	32.32	6.80	1.258	- 33.5	22.64	0.71	11	22.1
871	14	32.35	6.79	1.258	-34.9	22,73	0.72	1,	18.1
8 23	1.0	NT	6.78	1.259	-3614	72, 78	0.73	4)	NT
811	1.25	MT	6.78	1.261	-37.7	72.82	0,79	8	NT
84	1.50	32,40	6.77	1.261	- 38.8	22.86	6.83	11	16.4
8 19	1.75	32.42	6.77	1.261	-39.8	22,88	0,86	11	16.7
901	2.0	NT	6.77	1.261	-40,5	22.89	0.85	7.1	MT
903	2.25	M	6.77	1.261	-41.0	72.91	0.84		1211
901	2.50	32.45	6.72	1.261	-41.3	22-92	0,86	b-	10.8
									1
		PURGING E	QUIPMENT	Vac Truck		SAMPLING I Centrifugal Pump	QUIPMENT	Teflon Bailer	-
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	1
	0	Other: Low Flow Sub	mersible Pump		W	Other : Dedicated Tu	bing]
Remarks:									
-									
Completed By (Pr	int Name):	Dave L	ubben /	-		Signature:	en lu	14	
Reviewed By:		کر				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	6MW.	60	-
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"		2
Address:	15306 Norwalk Norwalk, Califo		25-6	10_		Date:	10-7-16	,	-
		- 34.37	= 15.63						
	TD	DTW	Water	7,0					1
	Pump Intake D	epth, Screened A		ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	1 above see
	34.37	+1/2(7.82			_	+1/2(= @ 39 '	
	DTW	Water Column	Pump Intak Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-7-16	Start	(2411001)	, ZO	End (24 Hour) _	1040		
	Date Sampled:	10-7-16	Start	(24 Hour)	040	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1022	-25	MI	7.07	2.578	-152,0		0.19	BURHLIT	NT
1024	150	34,45	7.07	2.577	-163,7	23.30	0,16	t (9,6
1016	.75	34.48	7.07	2.572	-179,4	23.36	0.16	'1	9,4
1028	1.0	MT	7.08	2577	-1913	23,39	0.17	cleer	6,3
1030	1,25	M	7,08	2.577	-205.8	23,42	0.17	111	MT
1032	1.50	34,52	7,09	2577	- 2190	73.44	0.19	71	MT
1034	1.25	34.54	7.10	2-572	-225.0	23.47	0.18	11	7,9
1030	2.0	MT	7,10	2576	-2291	23,49	019	7.1	8.3
1033	7.25	Not	7.11	2.576	-232.3	23.50	0.20	٠,	7,7
1040	2.50	34.17	7.11	2.526	-234,5	23.49	6.21	12	MA
		PURGING E	OUIDMENT			SAMPLING E	OUIDMENT]
		Centrifugal Pump	QOI MEITT	Vac Truck		Centrifugal Pump	LIGOTI MILIT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tu	bing		
Remarks:									
				-			2 5		
Completed By (Pr	int Name):	Dave L	ubben			Signature:	es.	lun	
Reviewed By:		D	S			Date:	11/16/16		

	091-NDLA-018	/ Table o				Well ID:	GMW	0/	-
lient/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"		21
ddress :	15306 Norwalk			30-40	٠	Date:	10-7-14	2	_
	Norwalk, Califo	- 33.72		_		40-33	,72 = 6.2	8 K. T = 3.1	Y+33.77 =
	D Intaka F	DTW	Water Column	ers.	4 OD 5	D I-1-1- D.			
		Depth, Screened A			< OR >	Pump Intake De			
	DTW	+ 1/2(<u>8 / / /</u> Water	Pump Intal	ke		+1/2(Top of Screen	Screen) = <u>@ 3 7</u> Pump Intake	(
		Column	Depth	15	10	Depth	Length	Depth 110	
		10-7-16	Start	(24 Hour)	1.10	End (24 Hour) _			
	Date Sampled:	10-7-16	Start	(24 Hour)	11.0	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1052	,25	NT	7.19	2.397	-117.8	22.89	3.07	den	5.32
1014	.50	33.80	7.18	2.391	-118.2	72,90	2,42	4	5,23
1056	.75	33.83	7.17	2.388	-118,0	23.90	2.06	L	MT
1058	1.0	NOT	7.17	2.384	-117,6	23.90	1,59	i (MT
1100	1.25	pot	7.17	2,380	-117.2	23.92	1.33	1,	5.09
1/02	1.10	33.87	7.16	2,377	- 117.0	2394	1.26	1/	5.01
1/04	125	33 89	7.16	2.375	-116.8	23.95	1,20	***	MT
1100	2.0	IXT	7.16	2.375	-116.5	23.93	1.13	4,	4,99
1109	7.15	bit	7.16	2.371	-116.3	23 95	1.09	**	496
1/10	7.50	33.91	7.16	2.369	-116.2	23.96	1.05	34	MT
							-		
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
		1	mersible Pump		M	Other : Dedicated Tut			

Non <u>41</u> Pun 34	006 Norwalk walk, Califo TD TD	Support Point Norw Boulevard Bo	= 6.// Water Column Above Water Tal) = 38.0 Pump Intak	ble:	< OR >	Pump Intake De	10-3-	-16	
Non <u>41</u> Pun 34	malk, California TD TD mp Intake E FROM DTW	ornia 90650 3 4, 8 9 Depth, Screened A + 1/2(3 // 2 Water	Water Column Above Water Tal Output Description: Water Column Pump Intak	ble:	< OR >	Pump Intake De	10-3-	-16	
<u>41</u> <u>Pun</u> <u>34</u>	TD T	3 4, 8 9 DTW Depth, Screened A + 1/2(3 // 2 Water	Water Column Above Water Tal Output Description: Water Column Pump Intak	ble:	< OR >	and the same of th	pth, Submerge	ed Screen:	
<u>34</u>	np Intake E	Depth, Screened A + 1/2(Water Column Above Water Tal Output Description: Water Column Pump Intak	ble:	< OR >	and the same of th	pth, Submerge	ed Screen:	
<u>34</u>	DTW	+ 1/2(Nbove Water Tall $(38.0) = 38.0$ Pump Intak	1	< OR >	and the same of th	pth, Submerge	ed Screen:	
<u>34</u>	DTW	+ 1/2() = <u>38,0</u> Pump Intak	1		and the same of th	ptii, Subilierge	d Screen.	
Date	DTW	Water	Pump Intal			1 101		76 12	
	Purged:	Column		ke	7	+1/2(Fop of Screen	Screen) = <u>38,00</u> Pump Intake	
	Purged:	111-7-11	Depth	0.00		Depth	Length 921	Depth	
Date				(24 Hour) 900	920	End (24 Hour) _	75.		
Date	Sampled:	10-3-16	2 Start	(24 Hour)	90	End (24 Hour)	-		
TIME	VOLUME	DEPTH TO WATER	pH	E.C.	ORP	TEMPERATURE			
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
905	.25	NT	6.55	1.715	167.5	20.60	4.53	claus	1.19
907	.50	34.95	6.74	1.635	147.3	20.70	2.47	der	1,09
909	25	34.98	6.78	1.626	145.0	20.74	1.96	. "	NT
911	1.0	35.00	6.82	1.620	143.4	20.79	1.73	11	NT
913	1,25	WT	6.84	1.615	142.7	20.84	1.61	11	604
915	1.50	NT	6.85	1,610	1414	20,88	1.59	4	0.98
917	1.75	38.05	6.86	1,606	141.2	20.90	1.55	1	MT
919	2.0	35.06	6.86	1.602	140.9	20.92	1.47	1/	fit
94	252	NT	6.86	1.599	140.5	20.95	1.44	17	1.02
	2.50	NIL	6.86	1.597	140.3	20.96	1.42	1,4	0.95
921									
		PURGING E	QUIPMENT			SAMPLING E	OUIDMENT	1	F1
		Centrifugal Pump		Vac Truck		Centrifugal Pump	QOIFMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
					28	Other : Dedicated Tub	V7		

cmw-64

Project #:	091-NDLA-018	/Task 5				Well ID:	GMW-64		_
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"	2	
Address:	15306 Norwalk Norwalk, Califo					Date:	10-3-16		-
			- 7.55						
	TD	33.45 DTW							
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	2
	33.45	+ 1/2(3,78)=37,2	3		+1/2()= -37	
	DTW	Water Column	Pump Intake Depth	е	1	Top of Screen Depth	Screen Length	Pump Intake Depth	-
	Date Purged:	10-3-16	Start ((24 Hour) 9	35 AU	End (24 Hour)	5)	10	
		10-3-16	Start	(24 Hour)	517	End (24 Hour)	-		
		DEPTH TO	7/2						
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
938	.25	NT	7.08	1.962	120,5	20,61	2.81	den	22.1
940	,50	33.53	7.02	1.960	120.4	20.73	1.73	"	19,4
942	,25	33.57	7.02	1.959	120.8	20.77	1,41	11	MT
944	1.0	MT	7.01	1.959	121,0	20.80	1,26	1.	Mr
946	1.25	NIT	7.01	1958	121.2	20.82	1.16	4	13.6
948	1.50	33.62	7.01	1.957	121.3	20.83	1.08	U	10.9
950	1.25	33.64	7.01	1957	121.4	20.86	1.01	11	MT
952	2.0	MT	7.01	1.957	121.4	20.87	0.98	()	AT
954	2.15	pr	7.01	1.957	121.5	20.87	0.96	r.3	9.2
956	2.51	33.67	7.01	1.957	121.5	20.89	0.95	. 4	8,7
		PURGING E	QUIPMENT			SAMPLING E	EQUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		V V	Other : Dedicated Tu	bing		
Remarks:									
							-		
Completed By (Pri	nt Name):	Dave L	ubben			Signature:	e lu	4	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well ID:	61110-6	20	
Client/Station:	Defense Fuel S	Support Point Norwa	alk			Well Diameter:	4"		_
Address:	15306 Norwalk					Date:	10-3	-16	_
	Norwalk, Califo	<u>34,75</u> :	= 6,25 Water Column						
	Pump Intake [Depth, Screened A	bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	34.75	+1/2(3,38)= 384	13	_	+1/2()=_38	_
	DTW	Water Column	Pump Intak Depth			Fop of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-8-16	Start	(24 Hour) 10	05	End (24 Hour)	130		
	Date Sampled: _	10-3-16	_	(24 Hour)	1025	End (24 Hour)	2		
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1007	125	MT	6.98	2.713	-49.1	21,40	0.89	cleu	143.0
1009	.50	34.82	6.97	2,713	-53,4	21.41	086	11	119.0
1011	.25	34.85	6.95	2,713	-56.1	21.43	0.82	11	INT
10/3	1.0	34.87	6 95	2.211	-63.9	21.42	0.65	11	MT
1015	1.25	NT	6.96	2.709	-69.2	21.40	0.56	1,	NU
1017	1.50	NT	6.99	2.701	-68.9	21,40	0.55	ei	31.4
1019	1.25	3490	7.01	2.691	-6811	21.42	0.55	4.4	22,1
1021	2.0	34,90	7.01	2.688	-67.3	21.43	0.56	* (NT
1023	2.15	MT	7.01	2.685	-63.0	21.45	0.16	11	13.6
1021	2.50	34.92	7.01	2.681	-66.9	21.45	0.58	٧	9.8
									The same of the sa
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT]
		Centrifugal Pump		Vac Truck	- 64	Centrifugal Pump		Teflon Bailer	_
	B	Submersible Pump		Disposable Pump	2)	Submersible Pump		Disposable Bailer	-
	0	Other: Low Flow Subr	nersible Pump		0	Other : Dedicated Tub	oing		_
Remarks:									
Completed By (Pri	nt Name):	Dave L	ubben			Signature:	eli	1 luh	
Reviewed By:			25			Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	GMW-66	R	_
Client/Station:	Defense Fuel S	Support Point Norw	ralk 20-4	5		Well ID: Well Diameter:	4"		_
Address :	15306 Norwalk Norwalk, Califo		City (104-16		- -
		<u>37,35</u>	= 9.75 Water Column	-					
	Pump Intake D	epth, Screened A		ole:	< OR >	Pump Intake De			
	37.35	+ 1/2(4.58	_)=41,9		-	+1/2(= 042	_0
	DTW	Water Column	Pump Intak Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-4-16	Start	(24 Hour) 10	30	End (24 Hour)	10 50		
	Date Sampled:	10-4-16		(24 Hour)/	000	End (24 Hour)			
	I	DEPTH TO							
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1032	.25	NT	7.26	2.774	-91.0	22.95	0.79	den	NT
1034	-50	37,42	7.24	2.784	-997	22.95	0.58	11	7,58
10 36	,7	37.46	7.23	2.785	-101.8	22.98	0.51	* 1	7.00
1033	1.0	37.50	7.23	2.785	-103.4	22.99	0.46	4.7	NT
1040	1.25	MT	7.23	2,283	-105.9	23.00	0.43	*1	MI
10 42	1.50	Ket	7.23	2,782	-106,7	23.0/	0.41	**	6.49
1044	1875	NOT	7.23	2,781	-107,6	23.01	0.38		6.69
1046	2.0	37.54	9,23	2.780	-107.9	23.01	0.36	* 1	HT
1048	2.15	32-55	7.23	2.779	-108.2	23.0/	036	*1	MC
1000	2.5	ALT	7.23	2,779	-108.5	2302	0.36	11	6.31
			Name of the last o						
		PURGING E	QUIPMENT			SAMPLING I	EQUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tu	bing]
Remarks:									
Completed By (Pr	int Name):	Dave I	ubben /			Signature:	lielu	3hr	
Reviewed By:			DS			Signature:	11 16 16		

Well ID:

Project #:

091-NDLA-018/Task 5

6MW-67

Client/Station:	Defense Fuel S	Support Point Norwa	alk			Well Diameter:	4"		_
Address:	15306 Norwalk					Date:	10-3-1	16	
	Norwalk, Califor		1295						7:
	77.00 TD	34,05 =	Water						
		epth, Screened Al	Column	lo:	< OR >	Pump Intake De	nth Cubmoraed	I Coroon.	
		+ 1/2(6 · 48			<u> </u>			/	
	DTW	Water	Pump Intake		Te	op of Screen) Screen	Pump Intake	-
		Column / / / 2 - / /	Depth	10	35 A	Depth	Length	Depth	
	Date Purged:/	10-3-16		24 (1001)	5	End (24 Hour) _	105		
	Date Sampled:	10-3-16	Start ((24 Hour)		End (24 Hour)	-		
TIME	VOLUME ←	DEPTH TO WATER	pН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1037	425	125	7.22	2,316	-53,9	21.38	5.86	den	25.5
1039	34.13	.50	7.18	2.315	- 57,5	21.23	2,76	21	21.1
1041	34.16	.25	7.16	2.315	-585	21.21	2.36	to.	NT
1043	34.20	1.0	7.17	2.3/7	-59.7	21.19	2.00	1 -	NU
1045	MT	1.25	7.17	2.318	-60.3	21.19	1.79	*,	18.0
1042	MT	1.50	7.16	2.320	-62.0	21.21	1.46	21	13.6
1049	34.22	1.75	7.16	2.322	-62.8	21.22	1.26	**	NT
100	NT	2.0	7.16	2.323	-63,5	21-23	1.20	* *	NIT
1013	LET	2.25	7.15	2.3 23	-63.9	21.21	1.16	.54	10.2
1015	34.23	2.5	7.15	2,324	-643	21.20	1.13	٧	9./
					gardan and a second				
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump Submersible Pump		Vac Truck Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer Disposable Bailer	
	6	Other: Low Flow Subn		Disposable Fullip	0	Other: Dedicated Tut		Disposable Baller	
Remarks:									ı
Completed By (Pri	nt Name):	Dave Lu	ubben			Signature:	l)	loh	
Reviewed By:		τ	>S			Date:	11 16 16	lich	

Project #:	091-NDLA-018/	Task 5				Well ID:	6MW-E	00	
Client/Station:	Defense Fuel S	upport Point Norwa	alk 7777	0032.80	0	Well Diameter:	6MW-E		_
Address:	15306 Norwalk			1035.8		Date:	10-3-1	6	
	Norwalk, Califor	nia 90650 35,80=							
	73.00 TD		vvatei	-					
	Pump Intake De	epth, Screened A	Column Dove Water Tab	le:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
		+ 1/2() =			+1/2() =	
	DTW	Water	Pump Intake Depth	9	To	op of Screen Depth	Screen	Pump Intake Depth	
	Date Purged:/	10-3-16	Start (24 Hour) // 42	2	End (24 Hour)	1200	<u>.</u> ,	
	Date Sampled:	10-3-16	Start (V	End (24 Hour)			
		DEPTH TO							
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1142	, 25	(loot bto)	M	DU1661	VG OR	SAMOL	710	(vioual)	(Visual of IVIO)
1144	-50		170	JU161	0000	O myser			
1146	.75								
1142	1.0								
1/50	1,25								
1152	1,50								
1/54	1,25								
1/16	2.0								
11 58	2.4								
1200	2.50								
		PURGING E	DUIDMENT			SAMBLING	EQUIPMENT		1
		Centrifugal Pump	AOIL MEM.	Vac Truck		Centrifugal Pump	LOGOIFMENT	Teflon Bailer	1
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	6	Other: Low Flow Subr		Disposable Fullip	0	Other: Dedicated Tu	bing	Disposable Ballel	
Remarks:									-
GMW-	62 34	72 DTP							
	34.	28 DW							
	(0.	01 SH- SOU	kin wel,	odorous					
Completed By (Pri	int Name):	Dave L	ubben			Signature:	l)	ling	
Reviewed By:						Date:			

Project #:	091-NDLA-018/	Task 5				Well ID:	GMW-B	9	_
Client/Station:	Defense Fuel S	upport Point Norw	alk			Well Diameter: _	4"		_
Address:	15306 Norwalk Norwalk, Califor					Date:	10-3-	16	 0
		33, 33 DTW	= 11.67						
	TD	DTW		•					
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake Dep	oth, Submerged	d Screen:	/
		+ 1/2(5,84			_	+1/2()	= @ 39	_
	DTW	Water Column	Pump Intak Depth	е	T	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-3-16	Start	(24 Hour)//	10	End (24 Hour)	1/30		
	Date Sampled:	10-3-16			1/30	End (24 Hour)			D*
		DEPTH TO							T
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1112	125	HT	7.32	2.024	-87.0	20.82	0.46	cleur	NT
1/14	,50	33.41	7.32	2.025	-88,6	20.81	0.42		2.94
1116	175	33.44	7.31	2.023	- 93.1	20.78	0.35	240	2.81
1/18	1,0	33.47	7.31	2.023	-93.7	20,77	0.33	71	NT
1120	1.25	MT	7.31	2.022	-93.3	20.75	0.34	٠,	MT
1722	1.50	14	7.30	2.022	-95.8	20.73	0.34	**	2.77
1/24	1.25	3353	7.30	2.022	- 96.7	20.73	0.34	55	2.61
1/26	2.0	33.54	7.30	2.020	- 97.5	20.74	0.34	٠.	NT
1/20	2.25	HT	7.30	2.020	-98.1	20.75	0.35	V _k	MY
1/30	2-50	hen	7, 30	2.019	-98.4	20,74	0.35	١.	2.39
		PURGING E	OUIPMENT			SAMPLING E	OUIPMENT		7
		Centrifugal Pump	agon ment	Vac Truck		Centrifugal Pump	QUI INCITI	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	1
	Ø	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tub	ing]
Remarks:									
Completed By (Pri	nt Name):	Dave L	ubben			Signature:	11/16/16	lelin	
Reviewed By:		7	25			Date:	11/16/16		

Project #:	091-NDLA-018/	Task 5				Well ID:	GW-1		-
Client/Station:	Defense Fuel S	upport Point Norw	alk	T-60 SC	P-TNT	Well Diameter:	4"		<u>=</u> 9
Address:	15306 Norwalk Norwalk, Califor		ZV	-60 sc	16-4-11	Date:	10-5-1	16	-
	63.00	34,37	28,63						
	TD	DTW	Water						
		epth, Screened A	bove Water Tab		< OR >	Pump Intake De	pth, Submerge	d Screen:	/
		+ 1/2(14, 32			-	+1/2()=048-49	÷3
	DTW	Water Column	Pump Intake Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-5-16	Start (24 Hour) / /	41	End (24 Hour)	1205		
	Date Sampled:	10-5-16	Start (24 Hour)	1205	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	pH	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1147	,25	34,37	6.97	4.241	-66/	22.29	2,43	ch	8,41
1149	,50	HT	6.97	4.242	-66.0	22-79	1,91	10	10.63
11 51	25	LOT	6.97	4,242	-66.2	22.79	1.67	11	NT
// 13	1.0	34.48	6.97	4.24/	-66.4	72.81	1,42	4.6	MT
1150	1.65	34,50	6.97	4.241	-66.5	22.81	1.30	71	10.1
11 67	1.50	MT	6.97	4.241	-67.0	28.55	1.19	71	8,91
1154	1.45	NH	6.97	4.240	-67.3	22.83	1,15	· ·	Nt
1201	2.00	34.53	6.97	4.240	-67.8	22.83	1.14) t	81/7
1203	2.25	34_54	6.97	4.240	-67.9	22.83	1.12	11	8:10
1205	2.50	Mr	6.97	4.240	-68.0	22.83	1.10	34	NIL
									142
		PURGING E	QUIPMENT			SAMPLING E	EQUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	mersible Pump		0	Other : Dedicated Tu	bing		
Remarks:									
<u> </u>									
Completed By (Pri	nt Name):	Dave L	ubben /			Signature:	li Eux	~	
Reviewed By:		DS				Signature:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	GW C		-
Client/Station:	Defense Fuel S	Support Point Norwa	alk	T-60 SCR	INT	Well Diameter:	48"		-
Address:	15306 Norwalk Norwalk, Califo		2	1 00		Date:	10-5-1	6	_
	63.00	34,08 =	28.92						
	TD	DTW	Water						
		epth, Screened A	bove Water Tab	4	< OR >	Pump Intake De	pth, Submerge	ed Screen:	
		+ 1/2(14, 46			<u> </u>)= @ 48	_
	DTW	Water Column	Pump Intake Depth	9	Т	op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-5-16	Start (24 Hour) 100		End (24 Hour)	120		
	Date Sampled:	10-5-16		(24 Hour)/20		End (24 Hour)		-	
	A004-000 U-0100000000	DEPTH TO				T	1 655 41 555 7	OF STATE OF	
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
102	125	MD	7.19	2.852	-97.3	22.91	1,76	du	2,36
104	.50	34.15	7.18	2.852	~97.7	22.93	1.69	chr	2.09
106	175	34.19	7.16	2.850	-97.4	22.89	1,11	41	NT
108	1.0	MT	7.14	21848	-97.1	22.83	1.02	н	MT
110	1.25	NIT	7,13	2,848	-96,8	22.84	0.98	7.4	2,18
114	1.5	34,24	7.13	2.848	-96.2	22.83	0.93	1,	2,25
1/4	1.75	34.27	7.13	2.848	- 96.0	22.83	0.90	*1	LIT
116	2-0	NT	7.13	2.848	-96.3	22.84	0.88	9.1	2.13
118	225	pri	7.13	2.847	- 96.2	22.84	0.87	**	2.06
120	2.5	34.29	7.13	2.847	-96.0	2284	0.86	W	2,01
	62								
		PURGING E	QUIPMENT			SAMPLING I	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	mersible Pump		0	Other : Dedicated Tu	bing		
Remarks:							104		
-									
Completed By (Pr	int Name):	Dave L	ubben			Signature:	en 1	n	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well ID:	603		_
Client/Station:	Defense Fuel S	Support Point Norwa	alk			Well Diameter:	411		
Address :	15306 Norwalk					Date:	10-5-	16	=: =:
	Norwalk, Califo		18.92						
	TD	<u>34.08</u> :		-					
	Pump Intake [Depth, Screened A	Column bove Water Tal	ble:	< OR >	Pump Intake De	pth, Submerged	Screen:	
	34.08	+ 1/2(9.46)= 43,			+1/2()	= 043	
	DTW	Water Column	Pump Intal Depth			op of Screen Depth	Screen	Pump Intake Depth	_
	Date Purged:	10-5-16	Start	(24 Hour) 1 3.	5-	End (24 Hour) _	155		
	Date Sampled: _	10-5-16	,	(24 Hour) / 5		End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
137	.25	MY	7.14	2,923	-60.6	23.45	0.47	den	6.73
139	,50	34.15	7.63	2919	-60.5	23.45	0.85	11	6.19
1 41	.21	34.19	7.13	2916	-60.9	23.46	0.23	//	M
1 43	1.0	MT	7.12	2914	-61.3	23.47	0.42	11	NT
145	1.11	MI	7.12	2,914	-61.0	23.49	0.44	21	6,23
147	1.5	34.23	7,12	2.913	-60.8	23,52	0.43	7	6.04
149	1.75	34.25	7.12	2,912	-60,5	23.53	0.43	ec	pt.
151	2.0	MT	7,12	2911	-60.2	23.53	0.41	, (pt
153	2-15	Mi	7.11	2,909	-59.9	23.55	0.41	-1	5.82
155	7.50	34.29	7.11	2,908	-600	23.55	0.40	ч	5.87
									1.1
, , , , , , , , , , , , , , , , , , , ,									
		PURGING E	DUIPMENT			SAMPLING E	OUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	1
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	1
	&P	Other: Low Flow Subr	nersible Pump		(1)	Other : Dedicated Tut	oing		
Remarks:	Dp 9) obta	ie h	en					
								-	· · · · · · · · · · · · · · · · · · ·
							0 -	01 4	
Completed By (Pri	nt Name):	Dave L	ubben	=8		Signature:		lun	
Reviewed By:		D.	S			Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well ID:	GW-4		_
Client/Station:	Defense Fuel	Support Point Norw	alk	1 ra		Well Diameter:	4"		
Address:	15306 Norwalk Norwalk, Califo		24	1-59		Date:	10-10-	16	-
	63.0	_32.82	= 30.18						
	TD	32.8Z DTW							
	Pump Intake I	Depth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	32.82	+1/2(15.09)= 47.9	7/		+1/2(-	= 048	
	DTW	Water	Pump Intak Depth	e	-	Top of Screen Depth) = <u>948</u> Pump Intake	-
				8	MAU	End (24 Hour) _	Length 9/1	Depth	
	Date Purged:	10-10-16	Start	(24 Hour)	915				
	Date Sampled: _	101010	Start	(24 Hour)	-1	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
817	.25	MT	7.32	1249	10.3	22.89	0.86	clear	NT
819	,50	32.91	7,30	1,246	8.5		0.76	4	6.34
901	,25	32.95	7.29	1.243	7.4	22.27	0.69	1/	6.13
903	1.0	147	7.28	1,24/	6,6	22.70	0.66	V	ит
905	1.25	MT	7,27	1.240	6,0	22,68	0.62	4	14t
907	1.50	32.98	7.26	1.239	5,5	22.69	0.60	A	7.06
909	1.75	32.98	7.26	1.238	5.1	22.70	0.58	0	6.76
911	2.0	MT	7.26	1.238	4.8	22.70	0.57	33	MT.
913	2.25	MT	7.26	1.237	4,6	22.73	0.55	2.	HI
911	2.50	32,41	7.25	1.237	4.3	22,75	O.TT	,	6,59
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
	1/100	Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tut	ping		
Remarks:									
Completed By (Prin	nt Name):	Dave L	ubben /			Signature:	11/16/16	Щ	
Reviewed By:		DS				Date:	11/16/16		

TIME (24 Hr) (gallons) (12 12 12 1.25 22 1.25 22 2.25 2.25	evard 0650 3 4, 8 8 : DTW :	= 18 (12 Water Column bove Water Tab Pump Intak Depth Start (e	< OR >	Pump Intake Dep	AND TO SOME		TURBITY (visual or NTU) NT 36.6
Norwalk, California 90 63.06 - 3 TD Pump Intake Depth, 34.88 + 1/20 Date Purged:	0650 3 4 8 8 EDTW Screened A (9.06 Water Column 5 / 6 DEPTH TO WATER (feet btc) NT 34.95 34.98 35.00	= 18 (12 Water Column bove Water Tab Pump Intak Depth Start (pH (units) 7.22 7.68 7.67	(24 Hour)	<or> 10 230 ORP (mV) -55.0 -55.9 -57.3</or>	Pump Intake Dep +1/2(op of Screen Depth End (24 Hour) End (24 Hour) TEMPERATURE (°F°C) Z3.52 Z3.70	D.O. (mg/L)	COLOR (visual)	(visual or NTU)
10 10 10 10 10 10 10 10	DTW Screened A 9.06 Water Column 5./6 DEPTH TO WATER (feet btc) NT 34.95 34.98 35.00	Water Column bove Water Tab = \frac{\cap 3.90}{\cap 9.00} = \frac{\cap 4.00}{\cap 9.00} = \	(24 Hour)	000 ORP (mV) -55.0 -57.3	+1/2(pp of Screen Depth	Screen Length 2 30 D.O. (mg/L) 2,82 2,40	Pump Intake Depth COLOR (visual)	(visual or NTU)
TD Pump Intake Depth, 34,88	DTW Screened A (9.06 Water Column 5./6 DEPTH TO WATER (feet btc) NT 34.95 35.00 AT MF	Water Column bove Water Tab = \frac{\cap 3.90}{\cap 9.00} = \frac{\cap 4.00}{\cap 9.00} = \	(24 Hour)	000 ORP (mV) -55.0 -57.3	+1/2(pp of Screen Depth	Screen Length 2 30 D.O. (mg/L) 2,82 2,40	Pump Intake Depth COLOR (visual)	(visual or NTU)
34,88	Screened A 9.06 Water Column 5./6 F./6 DEPTH TO WATER (feet btc) NT 34.95 35.00 AT	Column bove Water Tab	(24 Hour)	000 ORP (mV) -55.0 -57.3	+1/2(pp of Screen Depth	Screen Length 2 30 D.O. (mg/L) 2,82 2,40	Pump Intake Depth COLOR (visual)	(visual or NTU)
34,88	Water Column Column College Water Column College Water Column College Water Column WATER (feet btc) NT 34.95 34.95 34.95) = 43.94 Pump Intake Depth Start (Start (pH (units) 7.22 7.49 7.48 7.47	(24 Hour)	000 ORP (mV) -55.0 -57.3	+1/2(pp of Screen Depth	Screen Length 2 30 D.O. (mg/L) 2,82 2,40	Pump Intake Depth COLOR (visual)	(visual or NTU)
Date Purged:	Water Column Col	Pump Intak Depth Start (Start (pH (units) 7.22 7.49 7.48 7.47	E.C. (sM/cm) 0.83/ 0.830 0.829 0.828	0RP (mV) -55.0 -57.3	TEMPERATURE (°F°C) Z3.52 Z3.42	D.O. (mg/L) 2.82 2.40	COLOR (visual)	(visual or NTU)
Date Sampled:	DEPTH TO WATER (feet btc) NT 34.98 35.00 MT	pH (units) 7.22 7.19 7.18 7.17	E.C. (sM/cm) 0.83/ 0.830 0.829 0.828	230 ORP (mV) -55.0 -55.9 -57.3	End (24 Hour) End (24 Hour) TEMPERATURE (°F/°C) Z 3. 5 2 Z 3. 7 0 Z 3. 42	D.O. (mg/L) 2,82 2,40	COLOR (visual)	(visual or NTU)
Date Sampled:	DEPTH TO WATER (feet btc) NT 34.95 34.98 35.00 MT	pH (units) 7.22 7.19 7.18 7.17	E.C. (sM/cm) 0.83/ 0.830 0.829 0.828	230 ORP (mV) -55.0 -55.9 -57.3	TEMPERATURE (°F/°C) Z3.52 Z3.70	D.O. (mg/L) 2,82 2,40	(visual)	(visual or NTU)
TIME (24 Hr) (gallons) (12 12 12 1.50 22 1.50 22 2.25 2.25	DEPTH TO WATER (feet btc) NT 34.95 34.98 35.00 MT	7.22 7.19 7.18 7.17	E.C. (sM/cm) 0.83/ 0.830 0.829 0.828	ORP (mV) -55.0 -55.9 -57.3	TEMPERATURE (°F/°C) 23.52 23.50 23.42	(mg/L) 2,82 2,40	(visual)	(visual or NTU)
TIME (24 Hr) (gallons) (124 Hr) (gallons) (125 Hr)	WATER (feet btc) NT 34.95 34.98 35.00 MT	(units) 7.22 7.69 7.68 7.68	(sM/cm) 0.83/ 0.830 0.829 0.828	(mV) -55.0 -65.9 -57.3	(°F°C) 23.52 23.50 23.42	(mg/L) 2,82 2,40	(visual)	(visual or NTU)
212 ,25 214 ,50 3 216 2T 3 218 1.0 3 220 1.25 222 1.50 224 1.25 3 226 2.00 3	NT 34.95 34.98 35.00 MT MT	7.22 7.19 7.18 7.17	0.831	(mV) -55.0 -65.9 -57.3	23.52 23.50 23.42	(mg/L) 2,82 2,40	(visual)	(visual or NTU)
214 ,50 3 216 27 3 218 1.0 3 220 1.27 222 1.56 224 1.37 3 226 2.00 3	34.98 34.98 35.00 MT	7.19 7.18 7.17	0.830	-65.9 -87/3	23,50	2.40	1/	
216 -77 3 218 1.0 3 220 1.27 222 1.76 224 1.27 3 226 2.00 3 228 2.25	34.98 35.00 MT	7.18	0.828	-57/3	23.42			36.6
218 1.0 3 220 1.2T 222 1.50 224 1.2T 3 226 2.00 3 228 2.25	35.00 MT MT	7.17	0.828			2,21	71	
2 20 /.25 2 22 /.50 2 24 /.25 3 2 26 2.00 3 2 28 2.25	MT	7.17		-5813	6		4	22,8
222 1.50 224 1.25 3 226 2.00 3 228 2.25	MT	7.16	a 010		23.28	2.00	· · · · · ·	20.0
222 1.50 224 1.25 3 226 2.00 3 228 2.25	MT		N 1000	-88.6	23,13	1.91		INT
226 2.25		7.14	0.830	-58.8	73,08	1,76	= u	acU
218 2.25		7.14	0.831	-58.9	23,06	1,67	S	131
	35.05	7,/3	0.831	-59.1	23.08	1,60	s t	10.2
- 77	NT	7.13	0.830	-592	23.09	200	* 1	9.1
230 2.50 3	35.05	7.13	0.830	-59.3	23.10	1.51	ų	7.6
								*
						13ki		
	PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
Centri	rifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
Subm	nersible Pump		Disposable Pump	- 3	Submersible Pump		Disposable Bailer	
Other:	r: Low Flow Subn	nersible Pump		0	Other: Dedicated Tub	ng		

Project #:	091-NDLA-018	/Task 5				Well ID:	GW-+		- 2
Client/Station:	Defense Fuel S	Support Point Norwa	alk	60 SCR	-IMT	Well Diameter:	4"		
Address :	15306 Norwalk		021			Date:	10-11-1.	6	
	Norwalk, Califo	<u>33,65 </u>	29.35						
	TD	DTW	Water	5					
		epth, Screened A	Column bove Water Tab	le:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
		+1/2(14.68	_)=_48.3			+1/2(2007 (1000)	= 48	
	DTW	Water Column	Pump Intak Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-11-16	Start (24 Hour) 10		End (24 Hour)	1055		
	Date Sampled:	10-11-16	Start	(24 Hour)	755	End (24 Hour)		-	
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
10 37	.25	HT	7.09	0,926	-20.2	22147	0.56	den	XXXX
10 39	,50	33,74	7.06	0.928	-21.5	22.53	0.41	ORANGE	int
1041	,25	33.78	7.05	0928	22.3	22,54	0.38	tlen	ST
1043	1.0	OUT	7.03	0929	-23./	22.58	0.39	n	415
1045	1.25	MT	7.03	0.929	-23.3	22.59	0.38	1/	215
1042	1,50	33.82	7.01	0.931	-23.8	22.61	0.40	11	XH
1049	1.21	33.84	6,99	0 433	-24.3	22.02	0.43		MIT
1011	2.0	Net	6.99	0.935	-24.7	22.62	0.45	*1	13310
1013	2-15	pet	6.98	0.936	-24.9	QZ.63	0.44	14	122,0
1050	2.50	33.84	6.98	0.937	-21.2	22-63	0.47	*1	129.0
102									
1		PURGING E	QUIPMENT			SAMPLING I	EQUIPMENT		1
S. Parker		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump	- 7	Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	nersible Pump		0	Other : Dedicated Tu	bing		
Remarks:									
-									
W.							0	. ,	
Completed By (Pri	nt Name):	Dave L	ubben /			Signature:		um	
Paviawad By:		DS	,			Data	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	5W-8		
Client/Station:	Defense Fuel S	Support Point Norw	alk		379	Well Diameter:	4"		5)
Address :	15306 Norwalk Norwalk, Califo		Ó	24-59 SC.	RITM		10-7-16		
	63.00 TD	- <u>34,58</u>	= <u>28</u> .42 Water						
	Pump Intake D	epth, Screened A	Column bove Water Tab	le:	< OR >	Pump Intake De	pth, Submerged	l Screen:	
	211 -0	+ 1/2 14,21)= 48.7					5465 986	
	DTW	Water	Pump Intake	-	1	op of Screen		= <u>648-49</u> Pump Intake	-
		10-7-16	Depth	89	00	Depth	Length $\otimes \mathcal{W}$	Depth	
	ABORRON CHRISTIANS	10-7-16		24110di/	820	End (24 Hour)			
	Date Sampled:	10-1-10	Start	(24 Hour)	<i>V</i>	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
802	.25	47	7.45	1103	-89.8	21.66	3.87	1 to blome	39.4
804	.10	34.66	7.41	1,104	-88,9	21.74	3.03	den	17,3
806	. 75	34.80	7.40	1,104	-88.4	21.70	2.61	11	NT
808	1.0	MT	7.39	1,104	-90.2	21.81	2,34	1(Nr
800	1.65	24	7.38	1,104	-90.0	21.85	2.15	il	1119
81Z	1.10	74,83	7.37	1.105	-90.5	21.87	1,96	٤	10:3
814	1.45	34.85	7,37	1.105	-91.2	21.88	1,86	11	NT
816	2.0	MT	7,37	1,105	-91.5	21.89	1,73	11	9.7
818	7.85	MT	737	1.105	-91,9	21.90	1,68	.,	9.9
8w	25	34.85	7.37	1.605	-92.2	21.92	1.63	et.	9.3
MA I		DUDOUS -	OURDING:						_
		PURGING E	QUIPMENT	Ma a Taval		SAMPLING E	QUIPMENT	T	175 1
		Submersible Pump		Vac Truck Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer Disposable Bailer	
	0	Other: Low Flow Subr	mersible Pump	Disposable Fullip	0	Other : Dedicated Tu	200.00	Disposable baller	
Remarks:									1
Completed By (Pri	nt Name):	Dave L	ubben /			Signature:	lilu	ly	
Reviewed By:		DS				Date:	11/16/16		

Pui 2 Date	306 Norwalk, Califo TD TD mp Intake D DTW	Boulevard	= 31,68 Water Column bove Water Tal Pump Intak Depth Start	ble:		Pump Intake De +1/2(op of Screen Depth		ed Screen:) =	-
Pui 2 Date Date (24 Hr)	mp Intake D 35.32 DTW e Purged: e Sampled:	rnia 90650 35, 32 DTW Pepth, Screened A + 1/2(/5.8 4/	Column bove Water Tal Pump Intak Depth Start	ble:	To	Pump Intake De +1/2(op of Screen	pth, Submerge	ed Screen:) =	
Date TIME (24 Hr)	mp Intake D 35.32 DTW e Purged:e Sampled:	epth, Screened A + 1/2(/5.8 4 Water Column	Column bove Water Tal Pump Intak Depth Start	ble:	To	+1/2(Screen) = OS/ Pump Intake	
Date TIME (24 Hr)	mp Intake D 3 5 . 3 2 DTW e Purged: e Sampled:	+ 1/2(/5.8 \forall \text{Water} \text{Column}	Column bove Water Tal Pump Intak Depth Start	ble:	To	+1/2(Screen) = OS/ Pump Intake	
Date TIME (24 Hr)	mp Intake D 3 5 . 3 2 DTW e Purged: e Sampled:	+ 1/2(/5.8 \forall \text{Water} \text{Column}	Column bove Water Tal Pump Intak Depth Start	ble:	To	+1/2(Screen) = OS/ Pump Intake	_
Date Date TIME (24 Hr)	DTW e Purged:	+ 1/2(/5.8 / Water Column	= 5/,//2 Pump Intak Depth Start	ke /2	To	+1/2(Screen) = OS/ Pump Intake	-
Date Date TIME (24 Hr)	DTW e Purged:	Water Column 10-5-16	Pump Intak Depth Start	ke / 2		op of Screen	Screen	Pump Intake	20
TIME (24 Hr)	e Sampled:	10-5-16	Start	(24 Hour) 12	20.	Depth	Length		
TIME (24 Hr)	e Sampled:			(24 Hours)	1 nm		1250	Depth	
TIME (24 Hr)		10-1-16		. • • • • • • • • • • • • • • • • • • •		End (24 Hour) _	10	P	
(24 Hr)	VOLUME		Start	t (24 Hour)/	250	End (24 Hour)			
(24 Hr)	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE		00100	
1232	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU
10	.25	MT	6.97	3,300	-85.8	23.63	6.08	der	1.19
1234	.10	35,40	7.01	3,292	-85.6	23.67	2.16	11	1.09
1236	,25	35,43	7.01	3.292	-85.7	23.67	1.81	11	MT
12 38	1.0	HIT	7.01	3.288	-85.5	23.68	1.60	4.6	0.24
1240	14	MT	7.01	3.286	-85.6	23,68	1,43	9	0.97
1242	1.50	35.48	7.01	3.283	-85.3	23.69	1,26	ej	NIT
1244	1.75	35,50	7.01	3.279	-813	23.69	1.15	4	pet
1240	2.0	HT	7.01	3.275	-82.1	23.70	1.09	i «	1.01
1240	2.25	Net	7.01	3.273	-85.0	23,70	1.04	3.5	0,95
1250	2.50	35.50	7.01	327/	-84.9	23,71	1.02	~	MT
		PURGING E	QUIPMENT			SAMPLING E	OUIDMENT		1
		Centrifugal Pump	3311.111.	Vac Truck		Centrifugal Pump	QUI MENT	Teflon Bailer	
		Submersible Pump		Disposable Pump	1	Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	nersible Pump		0	Other: Dedicated Tub	ina		

Project #:	091-NDLA-018/	Task 5				Well ID:	600	6 GW-15	
Client/Station:	Defense Fuel S	upport Point Norw	alk 5	CRIMIC		Well Diameter:	6"	6 GW-15 - DS	
Address:	15306 Norwalk Norwalk, Califor		20.S	-60,5		Date:	10-11-1	6	
	63.00	34.65 s	= 28.35						
	TD	DTW	Water Column						
		epth, Screened A			< OR >	Pump Intake De	pth, Submerged	d Screen:	
	34.61 DTW	+ 1/2() = <u>48 , 8</u> Pump Intake			+1/2()	= 048-49	
	DIW	Column	Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-11-16	Start (24 Hour)//	145	End (24 Hour) _	1502	- The state of the	
	Date Sampled:	10-11-16	Start ((24 Hour)	1205	End (24 Hour)	-		
		DEPTH TO							
TIME (24 Hr)	VOLUME (gallons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1147	.25	Mt	7.12	1.532	-73.9	22.86	2.51	dew	MT
1149	.50	34,83	7.11	1,534	-78.8	22.91	2.11	1.	26.9
1151	75	34,76	7.11	1.536	- 92.2	22.98	1,95	t(23.8
113	1.0	MT	7.10	1.538	- 97,2	23.02	1.61	11	NIT
1150	1.15	MT	7.10	1.539	- 98,6	23.06	1.38	• •	145
1/57	1.10	34.8/	7.10	1.542	- 9915	23,10	1.09	11	176
1/59	1.4	34.83	7.10	1.542	-190,6	23.15	0.97	34	15.3
1201	2.0	NT	7.10	1.542	-101,3	23.19	0.90	4.	NT
1203	2-65	HT	7.10	1.541	-101,9	23.22	0.84	٠,	13.1
1805	2.5	34.85	7.10	1.541	-101.2	23.25	0.80	V	1019
							and the same of th		
_									181
*		PURGING E	OLUDACNI			61118	OLUBA TELE		
		Centrifugal Pump		Vac Truck		SAMPLING E Centrifugal Pump	QUIPMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	nersible Pump		0	Other : Dedicated Tub	oing	Disposable Ballet	
Remarks:	Dump in	well.							
	011/15 /00								
Completed By (Prin	nt Name):	Dave L	ubben			Signature:	انال	h	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	GW-16)	_
Client/Station:	Defense Fuel S	Support Point Norw	alk 25 5	60.5 SCR	INT	Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califo		20.5				10-4-16		-
	63.00	34.65 ptw	_ 28.35	5					
	TD	DTW	Water Column						
		epth, Screened A		-	< OR >	Pump Intake De			
	34.65 DTW	+ 1/2(/4, /8 Water) = <u>48 . 8.</u> Pump Intak		_	+1/2()= 048	2
	DIW	Column	Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-4-16	Start	(24 Hour) 9 F	(End (24 Hour) _	1015		
	Date Sampled:	10-4-16	Start	(24 Hour)	1011	End (24 Hour)	april .	-	
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	7.28	(sM/cm)	(mV) -97,9	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
919	,50	AT	_				1.15	den	MT
		34,69	7.28	2.224	- 98.5	22.62	1.05	11	3.34
1001	.75	34,73	7.28	2.226	- 99.4	22.63	0.92	11	3.18
1003	1.0	36.76	7.27	2.227	-100.8	22.64	0,82	(1)	MT
1000	1.25	NT	7.27	2-228	-100.6	22.63	0.78	• (NY
10 07	1.00	MT	7.27	2 229	-101,5	z z-63	0.74	/1	3.19
1009	1.75	34.80	7.27	2,230	-102.5	22.63	0.71	3.54x	3,d
1091	2.0	34,81	7.27	2.230	-103.3	22.63	0.70	11	NT
1013	2.25	MT	7.27	2.230	-1038	22.62	0.68	* 1	2.89
1015	2.50	34.8Z	7.27	2.231	-104.2	22.62	0.67	¥,	295
29 111					-14				
			- HILL						
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT	I	
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
2	8	Submersible Pump Other: Low Flow Subr	nersible Pump	Disposable Pump	0	Submersible Pump Other : Dedicated Tub	ina	Disposable Bailer	
Remarks:		POLITICAL ESPATION COLOR	Torono Tamp			Other . Dedicated Tub	ing		
Completed By (Prin	nt Name):	Dave Lu	ubben			Signature:	Die W.	bh	
Reviewed By:		P	'5			Date:	11/16/16		

Project #:	091-NDLA-018/	Task 5				Well ID: De mwst mw-13				
Client/Station:	Defense Fuel S	upport Point Norw	alk SCR	-INT.		Well Diameter:	4"		_	
Address:	15306 Norwalk			-INT,		Date:	10-4-16	,	<u></u>	
		rnia 9065036,48								
	TD	- 34,73 DTW DL	Water no							
	Pump Intake D	epth, Screened A	Column bove Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	d Screen:		
n.	34.73	+ 1/2(10+14)= 44.8	7	100000000000000000000000000000000000000	+1/2()= 04504	3	
	36.45+	6.78 Water Column 4	Pump Intak 2.23 Depth	e		op of Screen Depth	Screen Length	Pump Intake Depth	-	
	Date Purged:	10.4.16	Start	(24 Hour) ///	15	End (24 Hour)	1135	Борат		
	Date Sampled:	10-4-16		(24 Hour)//	, 35	End (24 Hour)				
		DEPTH TO		,	T					
TIME	VOLUME (gallage)	WATER	pH	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY	
(24 Hr) 17/7	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L) 4,/9	(visual)	(visual or NTU)	
1/19	.10		7.21				2,60		NT	
1121		34.81		1.590	-9.1	22.68	7000 10 10	10	2.79	
1/23	125	34.85	7.20	1.594	-8./	22,69	1,67	(1	2,16	
1/25	1,0	MT	7.20	1.597	-7.0	22.67	1.54	7.1	NT	
	1.25	NT	7.19	1.598	-6.3	22.66	1.48	31	MT	
1/27	1,50	34.89	7.19	1.599	-5.9	22.68	1.43	4.4	2.36	
1/29	1.75	34.90	7.19	1.600	-5.5	22.67	1.46	11	2.60	
// 3/	20	NT	7.19	1.600	- 6.2	22.67	1.42	11	2.53	
// 33	2.25	NT	7.18	1.601	- 5.3	22-68	1.39	.,	MY	
1/3-	2.5	34,90	7.18	1,601	-5.4	22.69	1.35	W	2.47.	
									1	
		PURGING E Centrifugal Pump	QUIPMENT	Vac Truck		SAMPLING E Centrifugal Pump	QUIPMENT	Teflon Bailer		
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer		
	0	Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tub	ing			
Remarks:										
Completed By (Pri	nt Name):	Dave L	ubben /			Signature:	1/16/16	lur	1	
Reviewed By:		PS				Date:	11/16/16			

Project #:	091-NDLA-018/	Task 5				Well ID:	mw-1	4	-
Client/Station:	Defense Fuel S	upport Point Norw	alk	O THI		Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califor		57	CR-INT 18-48		Date:	10-4-1	16	
	50.00	36.37 DTW	_ 13.63						
	TD	DTW	Water	7.					
	Pump Intake D	epth, Screened A		ole:	< OR >	Pump Intake De	pth, Submerged	d Screen:	
	36,37	12.	·)= 43./			+1/2(/	= 043	20
	DTW	Water Column	Pump Intak Depth			op of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-4-16	Start ((24 Hour) /	pm	End (24 Hour)	135	7	
	Date Sampled:	10-4-16	Start	(24 Hour)/	35 p	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	рН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
112	125	20	7.08	2,743	-77.8	23.34	0.65	de	5.53
/19	.50	36.41	7.08	2.737	-78.9	23.32	0:57	/1	5.19
121	,75	36,45	7.02	2.732	-79.7	23.32	0.60	11	MI
/23	1.0	36.48	7.06	2.720	-80.7	23.33	0.63	10	un
125	1.25	NT	7.06	2,703	-81.0	23-30	0.58	lf	4.87
14	1.50	NT	7.06	2,691	-81.3	23,30	0.58	4	4.99
129	1.75	36.53	7.06	2.685	-81.5	23.30	0.59	11	pit
131	20	36.55	7.06	2,680	-81,7	23.30	0.61	17	4.79
1 33	2.15	N7	7.06	2.677	-81.9	23.30	0.62	11	4.63
135	2,50	Mu	7.05	2.675	- 81.9	23.32	0.64		4,32
		DUDONO E	OUIDMENT			0.440,000			
		PURGING E Centrifugal Pump	QUIPMENT	Vac Truck		SAMPLING E Centrifugal Pump	QUIPMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subi	mersible Pump		0	Other : Dedicated Tu	bing		
Remarks:									
Completed By (Pri	nt Name):	Dave L	ubben /			Signature:	eli	lun	
Reviewed By:		DS				Data:	11/16/16		

Project #:	091-NDLA-018/	Task 5				Well ID:	MW-16	ľ.	_
Client/Station:	Defense Fuel S	upport Point Norw	ralk / S	3-48 SCR	ZINT	Well Diameter:			
Address:	15306 Norwalk Norwalk, Califor		7	70 2		Date:	10-7-1	6	- £
		35,42 DTW	= 14.58						
	TD	DTW	Water	1					
		epth, Screened A	bove Water Tab		< OR >	Pump Intake De	pth, Submerged	Screen:	
	35,4Z	+ 1/2(7, 29 Water	$=$ $\frac{92.71}{\text{Pump Intak}}$			+1/2() Screen	= <u>942-43</u> Pump Intake	M 22
		Column	Depth			Depth	Length	Depth	
		10-7-16	Start	(24 Hour) 12	1120	End (24 Hour)	12		
	Date Sampled:/	10-7-16	Start	(24 Hour)	1200	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	pН	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr)	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1202	12,	MT	6.93	1.226	-64.8	25.21	1,80	den	2/1
1204	. 10	35,50	6.91	1,226	-66.9	25.00	1.20	1(0,87
1206	175	35.53	6.90	1.217	-68.2	24.25	1.01	11	0,94
1208	1.0	NT	6,91	1.214	-68,7	24.72	0,88	11	1,02
1200	INT	NIT	6.89	1.207	-67,8	24.57	0.83	11	MT
1212	1.00	35.59	6.87	1.201	-66.9	24.60	0.81	41	1,11
1214	1.25	35.61	6.86	1.1.76	- 66.7	24.64	0,82	. از	1.03
1216	2.0	Ret	6.86	1,194	-66.8	24.66	0.84	11	HT
1218	2.25	KH	6.86	1.191	-66,9	24.67	0.85	31	0.94
1200	2.5	35-61	6.85	1.988	-67.1	24.69	0.85		0,89
		PURGING E	OLUPMENT			SAMPLING E	OUIDMENT		
		Centrifugal Pump	QOI MENT	Vac Truck		Centrifugal Pump	COLLMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Sub	mersible Pump		0	Other: Dedicated Tu	bing		
Remarks:									
-									
Completed By (Pri	nt Name):	Dave L	ubben V	8		Signature:	es a	h	
Reviewed By:		TOS				Signature:	11/16/16		

Project #:	091-NDLA-018	7/Task 5				Well ID:	MW-14	7	_
Client/Station:	Defense Fuel S	Support Point Norw	alk			Well Diameter:	4"		_
Address:	15306 Norwalk Norwalk, Califo		_	18-48 SI	-	Date:	10-4-1	6	-
	50.00	_36.05	13.95						
	TD	DTW	Water Column						
		Depth, Screened A			< OR >	Pump Intake De			
	36.05 DTW	+ 1/2(6 98 Water) = <u>43.0</u> Pump Intake		2 2-	Top of Screen +1/2(Screen) = <u>93</u> Pump Intake	_
		Column	Depth		-	Depth	Length	Depth	
	Date Purged:	10-9-16	Start (Am	End (24 Hour) _	935 An		
	Date Sampled:	10-4-16	2 Start	(24 Hour)	935	End (24 Hour)	-		
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O.	COLOR (visual)	TURBITY
917	,25	NT	7.46	1.778	18.7	22.49	(mg/L)	clen	(visual or NTU)
919	.50	36.12	7.38	1.781	20.3	28.49	4.13	"I	NT 5.03
94	.25	36.15	7.35	1,783	22./	22.52	2.71	71	4.61
913	1.0	NT	7.35	1.783	22.8	22.52	2,40	1.1	нГ
925	1.25	36.20	7.34	1.783	23.6	22.54	2.05	ζ.	4,49
927	1.50	FIT	7.34	1.783	23.8	22.56	1,89	11	4.19
929	1.75	1.1	7.33	1,783	25,1	22.58	1.51	1.1	MT !
931	2.0	36.24	7.32	1.784	26.1	22.61	1.34	1.0	MT
933	2-25	ит	7.32	1.783	26,6	22.62	1.30	1.1	4,16
935	2.50	36.26	7.32	1.783	26,9	22.63	1.25	, .	4.09
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump	don men	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subr	nersible Pump		0	Other : Dedicated Tub	ing		
Remarks:	plicate	oBlair	red her	1					
25									
Completed By (Prin	nt Name):	Dave Lu	ubben /			Signature:	il los	ll .	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	MW-22	MID	_
Client/Station:	Defense Fuel S	Support Point Norw	ralk	2-52 SCR	IN	Well Diameter:	- 4"		-
Address:	15306 Norwalk Norwalk, Califo	rnia 90650				Date:	10-5-16	2	=
	57.90	-39.75	= 18.15	_					
	TD	DTW	Water Column						
	20.75	epth, Screened A	V2-35 284		< OR >	Pump Intake De			
	39,75 DTW	+ 1/2(9.08 Water) = <u>48 +8</u> Pump Intak			1/2 Top of Screen +1/2(Screen	Pump Intake	-
		Column	Depth			Depth	Length	Depth	
	Date Purged:	10-5-16	Start	(24 Hour)//	, 16	End (24 Hour)	1/30		
	Date Sampled:	10-5-16	Start	(24 Hour)//	70	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1/12	-25	39.79	7.41	2.510	-51.0	23.45	1,35	cles	2,79
1/14	-50	39,85	7.22	2.563	-68.3	23,70	0,78	11	
1/16	.25	MT	7.17	2.517	-74.0	23,00	0,60	4	MT
= 1/18	1.0	39.89	7.15	2.491	-75.4	22,82	0.55	Le	2.5(
1/10 "	1.25	39.92	7.14	2.481	-762	22.83	0.52	11	2.43
114	1,50	39.95	7./3	2.475	-77.Z	22.83	0.43	11	art
1124	1.45	ret	7.13	2,471	-77.6	22.84	0,46	1.	my
1166	2.0	NOT	7./3	2.470	-78.0	22.84	0.47	*1	2,49
1/28	2.21	39.96	7.12	2.466	-78.3	22.82	0,45	٧.	2.31
1/30	2.30	KOT	7.12	2.463	-78.7	22.80	0.43	v	mr
					5				
		PURGING E Centrifugal Pump	QUIPMENT	Vac Truck		SAMPLING E	QUIPMENT		
		Submersible Pump		Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer Disposable Bailer	
	0	Other: Low Flow Subi	mersible Pump		9	Other : Dedicated Tut	oing	Disposable Ballel	
Remarks:									
-									
Completed By (Prin	nt Name):	Dave L	ubben /			Signature:	216	2	
Reviewed By:		703	5			Date:	11/16/14		

Project #:	091-NDLA-018/	Task 5				Well ID:	MW 26		_	
Client/Station:	Defense Fuel S	upport Point Norw	73.5-	13.5		Well Diameter:	4"			
Address:	15306 Norwalk Norwalk, Califor		23.5	,		Date:	10-6	5-16	-	
	47,30 TD	<u>35,90</u>		-						
	Pump Intake D	epth, Screened A	Column Above Water Tal	ole:	< OR >	Pump Intake De	pth, Submerge	ed Screen:		
	35,90	+ 1/2(5.70 Water)= 41,6	0		+1/2()= =42		
	DTW	Water	Pump Intak Depth	e	T	op of Screen	Screen	Pump Intake	Test.	
	D. I. D	10-5-16	Start		235	Depth	Length / 0	Depth 5		
		10-5-1	/		21-	End (24 Hour) _				
	Date Sampled:	/ 0 0 /	Start	(24 Hour)		End (24 Hour)				
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)	
1037	145	NT	689	1.604	-98.6	22.42	4.60	clin	MT	
1039	-10	35,96	6.87	1,603	-99.7	22.41	3.11	"	7,93	
1041	.25	36.00	6.86	1.601	-100.8	22,43	2.26	17	8,41	
1043	1.0	36.03	6.86	1,598	-102.0	22.47	1.88	(1	Ma	
1045	1.25	MT	6.86	1.596	-103.4	22.50	1.38	1,	7.12	
1047	1.50	MT	6.86	1.596	-104.2	22.15	1.29	"(NT	
1049	アル	36.07	6.86	1.596	-1047	22.57	1.22	Λ	NIT	
1011	2.0	36.08	686	1.597	-105,3	22.59	1.15	. 1	6.94	
1013	2.25	MT	6.86	1598	-105.8	22.60	1.11	**	6.44	
1055	2.5	36.D	6.86	1.599	-106./	22.61	1.07	Ž.	NEL .	
									8	
								- 0		
			OLUBACETIE							
		PURGING E	QUIPMENT	Vac Trush		SAMPLING E	QUIPMENT	T. 0. D. 1.	15 16 1	
		Centrifugal Pump Submersible Pump		Vac Truck Disposable Pump		Centrifugal Pump Submersible Pump		Teflon Bailer	,	
	(e)	Other: Low Flow Sub	mersible Pump	Disposable Fullip	0	Other : Dedicated Tub	ina	Disposable Bailer		
Remarks:										
Completed By (Prin	nt Name):	Dave L	ubben	6		Signature:	11/16/10	lun		
Reviewed By:		D	5			Date:	11/16/16	Ь		

Project #:	091-NDLA-018	/Task 5				Well ID:	mw-27	_		
Client/Station:	Defense Fuel S	Support Point Norw	/alk	SCR-IN	_	Well Diameter:	eter:			
Address:	15306 Norwalk Norwalk, Califo		18-48	5		Date:	10-5-1	6	-	
	52,30 TD	- <u>37.16</u>	Water	-						
	Pump Intake D	epth, Screened A	Column Above Water Tab	ole:	< OR >	Pump Intake De	pth, Submerge	ed Screen:		
	37.16	+1/2(7.57)= 44 j	+3_		+1/2(8)=@45		
	DTW	Water Column	Pump Intak Depth			Top of Screen Depth	Screen Length	Pump Intake Depth	-	
	Date Purged:/	10-5-16	Start	(24 Hour)	205	End (24 Hour)	1025	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		10-5-16			ger-	End (24 Hour)	-			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY	
1007	(gallolis)	NT.	6,95	(sM/cm)	(mV) -75,9	(°F/°C)	(mg/L)	(visual)	(visual or NTU)	
1009	,50	37.25	6.94	1.810	-76.9	22.54	1,73	clen	2.05	
10"	.75	37.28	6.94	1.811	-77.6	22.56	1.56	12	NC	
1013	1.0	MT	6.94	1.812	-73.6	22.56	1.45	16	NT	
1015	1,25	N+	6.94	1.813	-75.8	22,57	1.36	83	1,79	
1017	1.50	37.32	6.94	1.814	-76.8	22.58	1.29		1.68	
1019	1.75	37.33	6.94	1.815	-77.2	22.58	1.22	31	NT	
104	2.0	NT	6.94	1.815	-77.4	22-59	1.16		1.71	
1043	2.15	*/+	6-94	1.816	-77,7	22.60	1.12	*1	47	
1025	2.50	37.31	6.94	1.816	-77,9	72.61	1.09	w.:	1.61	
								-		
	20									
									1	
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT			
7		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer		
	1)	Submersible Pump		Disposable Pump	2)	Submersible Pump		Disposable Bailer		
		Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tub	bing			
Remarks:	7UP-3	blamed	here-							
Completed By (Prin	nt Name):	Dave L	ubben /			Signature:	li	m		
Reviewed By:		DS				Date:	11/16/14			

Project #:	091-NDLA-018	Task 5				Well ID:	MW 2	9	
Client/Station:	Defense Fuel S	upport Point Norw	alk .	7 117 6		Well Diameter:	MW 2"		
Address:	15306 Norwalk Norwalk, Califor		17	1.5-47.5		Date:	10-7-1	16	-
		-37,74	= 14.66						
	TD	DTW	Water	-0					
		epth, Screened A	bove Water Tab		< OR >	Pump Intake De	epth, Submerge	ed Screen:	
		+ 1/2(7. 33	_)= 44.0			+1/2()= 944	_
	DTW	Water Column	Pump Intak Depth	е	1	Top of Screen Depth	Screen Length	Pump Intake Depth	
	Date Purged:	10-7-16	Start	(24 Hour) 12	35	End (24 Hour)	1251		
	Date Sampled:	10-7-16		(24 Hour)/	211	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
1237		in the state of th	(units)	(sM/cm)	(mV) -122.7	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1239	125	37.81	7.00	1,096	-122,9	25.00	1.47	de-	9,10
1241	175	37.85	7.00	1.096	-123.1	24,94	1.07	1,	MT
1243	1,0	37.88	7.00	1.095	-123.3	24,92	1.05	11	HT
1245	1.25	NIT	7,00	1.094	-123,4	24,95	1.01	. 1	8.81
1242	1.50	Mt	6.99	1.094	-1235	24,96	0.98	1,	8.69
1249	1.25	37.93	699	1.094	-(23.7	24.98	0.96	- 1	MT
12 51	P. 00	37.95	6.98	1.093	-124.0	25.00	6.93	L,	MI
12 13	2.25	MIT	6.98	1.093	-124.2	25.01	0.91	ν,	8.19
1200	2.50	37.96	6.98	1.093	-124.5	2-4.99	0.88	V	8,01
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		1
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
Į	Q	Other: Low Flow Subn	nersible Pump		0	Other : Dedicated Tut	bing		
Remarks:	DNP-6	obt	an h	ed					
					**	T	9	7	
Completed By (Prir	it Name):	Dave Lu	ubben			Signature:	1116/16	lun	
Reviewed By:		DS				Date:	11/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	6mw S	\$ TF-08	
Client/Station:	Defense Fuel S	Support Point Norw		SCUZ-INT		Well Diameter:	4"	,	
Address:	15306 Norwalk Norwalk, Califo		23	7-60		Date:	10-10-16	>	-
	63.00 TD	<u>33.4/</u>		-					
	Pump Intake D	epth, Screened A	Column bove Water Ta	ble:	< OR >	Pump Intake De	pth, Submerge	d Screen:	
	33.41	+ 1/2(14,80			_	+1/2(ingina)= 048	
	DTW	Water Column	Pump Intal Depth	ke	Т	op of Screen Depth	Screen Length	Pump Intake Depth	-
	Date Purged:	10-10-16	Start	(24 Hour) 8	201	End (24 Hour)	840		
		10-10-16	Start	(24 Hour)	160	End (24 Hour)			
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
855	,25	MT	7.00	1.488	- 84.7	23.21	5.34	Clen	/6.9
824	.50	33.48	6.96	1.489	- 84.8	23.29	2.04	uen ')	13.6
816	125	33.52	6.95	1.489	-84.9	23.34	1,57	r(NT
828	1.0	NT	6.95	1.490	-81.2	23.35	1,34	Ч	NT
8 30	1.15	MT	695	1.490	-85.4	23.36	1.23	/(14.1
8 32	1,50	33.56	6.95	1.489	-85,5	23.37	1.17	11	11:2
834	1.75	33.58	695	1.489	-8J.7	23.39	1.14	1,	NT
8 36	2,0	141	6.94	1.489	-85.9	23.41	1.07	7	MI
8 38	215	NOT	6.94	1,489	-86.1	23.41	#,02	11	9.2
8 m	2.50	33.62	694	1.489	-86.1	23.43	1.00	1,	9.8
									tur.
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
		Other: Low Flow Sub	mersible Pump		0	Other : Dedicated Tub	ping		
Remarks:	DUPE	=7 obt	andh	ш					
Completed By (Pri	nt Name):	Dave L	ubben	-		Signature:	w	n	
Reviewed By:		PS				Date:	11/16/16		

Project #:	091-NDLA-018	3/Task 5				Well ID:	TF-21		_
Client/Station:	Defense Fuel	Support Point Norw	alk	75-/ A		Well Diameter:	4"		7. E
Address:	15306 Norwalk Norwalk, Califo		6	25-60		Date:	10-11-1	6	-
	63.00 TD	<u>36.31</u> отw							
	Pump Intake I	Depth, Screened A	Column bove Water Tab	le:	< OR >	Pump Intake De	pth, Submerged	Screen:	
	36.31	+ 1/2(/ 3.35 Water)= 49,6	6	_	+1/2()	= 050	
	DTW	Water Column	Pump Intake Depth	9	loam	Top of Screen Depth	Screen Length	Pump Intake Depth	-
	Date Purged:	10-11-16	Start (24 Hour)	5	End (24 Hour)	8 30		
		10-11-16			30	End (24 Hour)	Notice	_	
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
812	.25	NAT	7.12	1.674	-81.3	23,37	MT	den	13.4
814	,70	36140	7.07	1.676	-88.2	23.31	801	u	
8-16	,75	36,43	7.04	1.677	- 9014	23.27	6.13	4	11,9 MT
818	1.0	NT	7.03	1.678	-91.6	23.20	5-10	V	NT
80	1.25	14/	7.03	1.679	-92.2	23.15	4.37	41	111
822	4.5	36.47	7.02	1.678	-92.8	28,12	3.61	1.6	103
824	125	36.49	7.02	1.678	-93.6	23.10	3,04	it	MT
826	2,0	NT	7.02	1.678	-94.1	23,10	2,91	1.	NT
828	2,25	36,50	7.01	1.677	-94.4	23.08	2.83	16	8,93
830	2.5	11	7.01	1.677	_94,8	Z3.06	2.81	*/	9.41
		PURGING E	QUIPMENT			SAMPLING E	OUIDMENT		1.
		Centrifugal Pump		Vac Truck		Centrifugal Pump	QUIFMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	U	Other: Low Flow Subr	mersible Pump		0	Other : Dedicated Tub	ping		
Remarks:									
Completed By (Prin	nt Name):	Dave Li	ubben V			Signature:	2 i lok	4	
Reviewed By:		DS				Date:l	1/16/16		

Project #:	091-NDLA-018	/Task 5				Well ID:	TF-21	4	
Client/Station:	Defense Fuel S	Support Point Norw	valk	. C(D	TMI	Well Diameter:	TF-21		=7/A
Address:	15306 Norwalk Norwalk, Califo	Boulevard 34.8	1 25	-60 SCR		Date:	10-11-1		-
		34.85 DTW		•					
	Pump Intake D	epth, Screened A	Column Above Water Tab	ole:	< OR >	Pumn Intake De	pth, Submerged	Screen:	
		+ 1/2(14 08						= @49	
	DTW	Water	Pump Intak			op of Screen +1/2(-		
		Column	Depth	, ,	10	Depth	Length	Depth	
	Date Purged:	10-11-16	Start	24 (10ui)		End (24 Hour)	1130		
	Date Sampled:	10-11-16	Start	(24 Hour)//	130	End (24 Hour)			
TIME	VOLUME	DEPTH TO WATER	pH	E.C.	ORP	TEMPERATURE	D.O.	COLOR	TURBITY
(24 Hr) 1 / / Z	(gallons)	(feet btc)	(units)	(sM/cm)	(mV)	(°F/°C)	(mg/L)	(visual)	(visual or NTU)
1114	125	NT	7.26	1.165	-16.7	21.96	1,23	door	NT
11/6	.50	34.94	7.20	1,169	-30,9	22.02	1.00	I.C.	13.3
//	.25	34.96	7.15	1.170	-37,9	22.06	0.80	ll.	11,8
1/18	1.0	MT	7.13	1,171	-42.0	22.08	0.70	t/	MT
1100	1.21	MT	7.12	1.171	-46.9	22,10	0,63	14	HE
1122	1.50	35,01	7:11	1.172	-50.5	22,11	0.60	1 4	10.2
1124	1.75	35.03	7.11	1.171	-5-3.6	22.14	0,67	1(9,43
1126	2.0	NT	7.11	1,171	-550	22.16	0.53		NT
1/20	2.25	NT	7.11	1,170	-558	22.18	0.50		9.17
1/30	2.50	35.06	7.11	1.170	-560	22.21	0.52	ץ	9.01
		77	W						
		PURGING E	QUIPMENT			SAMPLING E	QUIPMENT		
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer	
	(2)	Submersible Pump		Disposable Pump	~	Submersible Pump	[Disposable Bailer	
Į	0	Other: Low Flow Subr	mersible Pump		0	Other: Dedicated Tub	ping		
Remarks:									
Completed By (Prin	nt Name):	Dave L	ubben /			Signature:	li	lure	
Reviewed By:		DS				Date:	11)16/16		

Well ID	Date	Monument	Flush Mount	Access Unobstructed? (Y/N)	Well Easily Visible? (Y/N)	Vault, Well, or Casing Clearly Labeled? (Y/N)	Well Vault, Pad, or Casing Free of Visible Damage? (Y/N)	Well Secured With Water-Tight Cap and Lock? (Y/N)	Well Vault Dry and Free of Debris? (Y/N)	Comments, Corrective Actions Completed in the Field, Corrective Actions Recommended
EXP-1	10-3-16	×		Y	Y	Y	Y	Y	Y	
EXP-2	10-3-14	×		Y	Y	Y	Y	Y	Y	
EXP-3	16-3-16	X		Y	Y	Y	Y	Y	Y	
GMW-5	10-3-16									Unable to locate
GMW-6	10-3-14		×	Y	Y	T	7	Y	Y	
GMW-7	10-3-16		X	Y	Y	Y	Y	Y	Y	
GMW-12	10-3-16	×		Y	Y	Y	Y	Y	Y	
GMW-15	10-3-16			Y	7	0	0	0	0	Wo surface completion. Well casing only
GMW-16	10.3-16									unable to locate
GMW-17			-			We	Il remove	ed prior t	o remed	dial excavation.
GMW-18	10-3-14		×	4	4	Y	Y	Y	4	
GMW-19	10-3-16									unable to locate
GMW-20	10-3-16		X	Y	Y	Y	N	4	N	
GMW-21	10-3-16		X	Y	4	4	N	Y	Υ	No bolts on lid. Steel cover bent
GMW-31	10-3-14				,					Unable to locate
GMW-32					-	Wel	I remove	ed prior t	o remed	dial excavation.
GMW-33	10-3-16		X	Y	4	Y	Y	Y	Y	Soil in well obstructing gaugins
GMW-35						Wel	l remove	ed prior t	o remed	tial excavation
GMW-40	10-3-16	_	0	Y	Y	Y	0	Y	0	No surface completion. Well casing only
GMW-41	10-3-14	-	0	Ý	Y	7	0	4	0	h h h
GMW-42	10-3-16									Unable to locate
GMW-43	10.3.14									h h
GMW-44	10-3-14	-	0	ĭ	Y	ĭ	0	Y	0	No Surface completion well casing only
GMW-45	10-3-16	-	1	Y	Y	0	6	N	0	6 1 1, 1, 1, 1,
GMW-47	10-3-16		X	ĭ	Y	Y	Y	Υ.	4	2
GMW-48	10-3-16	-	0	7	Y	0	0	0		(1) No surface completion, wellowing only

Well ID	Date	Monument	Flush Mount	Access Unobstructed? (Y/N)	Well Easily Visible? (Y/N)	Vault, Well, or Casing Clearly Labeled? (Y/N)	Well Vault, Pad, or Casing Free of Visible Damage? (Y/N)	Well Secured With Water-Tight Cap and Lock? (Y/N)	Well Vault Dry and Free of Debris? (Y/N)	Comments, Corrective Actions Completed in the Field, Corrective Actions Recommended
GMW-54	10-3-16									
GMW-56	10-3-16	-	X	Y	Y	0	0	Y	0	O Surface Completion missing
GMW-57	10-3-16	_	X	Y	4	Y	N	Y	Y	Cement apron damaged.
GMW-58	10.3-16	_		_						unable to locate
GMW-59	10-3-16	-	X	14	4	Y	7	4	Y	155,011
GMW-60	10-3-16		×	Y	4	Y	4	7-	4	Missing bolts
GMW-61	10-3-14		X	Y	Y	7	4	7	Y	1.1
GMW-62										
GMW-63										
GMW-64										
GMW-65										
GMW-66R	10-3-16	×	_	Y	4	4	7	Y	4	
GMW-67										
GMW-68										
GMW-69										
GW-1	10-3-16		×	Y	Y	Y	Y	Y	Y	Pumpin well
GW-2	10-3-16		X	Y	Y	۲	Y	Y	7	GWTS pumping well
GW-3	10-3-14		×	Y	Y	Y	Y	Y	Y	en is pumping well
GW-4	10-3-16		X	Y	Y	Y	Y	Y	4	Pump in well
GW-5					-				remedi	ial excavation.
GW-6	10-3-16		×	Y	Y	-	N	Y		
GW-7	10-3-16		X	Y	Y	Y	Y	4	Y	Surface completion heavily damaged.
GW-8	10-3-16		×	Y	Y	Y	Y	Y	Y	Pump in well
GW-13	10-3-16		×	Y	Y	Y	Y	Y	4	GWTS pumping well
GW-14			3-301 <u>. 9-5</u> 5			Well	removed	d prior to		ial excavation.
GW-15	10-3-16		X	Y	Y	Y	Y	Y	Y	GWTS pumping well

Well ID	Date	Monument	Flush Mount	Access Unobstructed? (Y/N)	Well Easily Visible? (Y/N)	Vault, Well, or Casing Clearly Labeled? (Y/N)	Well Vault, Pad, or Casing Free of Visible Damage? (Y/N)	Well Secured With Water-Tight Cap and Lock? (Y/N)	Well Vault Dry and Free of Debris? (Y/N)	Comments, Corrective Actions Completed in the Field, Corrective Actions Recommended
GMW-54										
GMW-56										
GMW-57										
GMW-58										
GMW-59										
GMW-60										
GMW-61										
GMW-62	19-3-16		K	Y	4	Y	٢	Y	Y	
GMW-63	10-3-16		×	4	4	4	7	7	۲	
GMW-64	10-3-16		Χ	4	4	7	۲	7	۲	
GMW-65	10-3-16		X	Y	Y	7	۲	Y	40	coiled toping in pax
GMW-66R										
GMW-67	10-3-16		X	4	4	7	7	۲	Υ	
GMW-68	10.3-16		X	7	Y	ĭ	7	7	7	
GMW-69	10-3-16		٨	4	4	Y	٢	۲	۲	
GW-1			_							
GW-2			_							
GW-3										
GW-4										
GW-5					Т	Well	removed	d prior to	remedi	al excavation.
GW-6			\dashv							
GW-7		-	\dashv							
GW-8		-	\dashv						\rightarrow	
GW-13										
GW-14	ı				-	Well	removed	prior to	remedia	al excavation.
GW-15										

ſ	T	_								
Well ID	Date	Monument	Flush Mount	Access Unobstructed? (Y/N)	Well Easily Visible? (Y/N)	Vault, Well, or Casing Clearly Labeled? (Y/N)	Well Vault, Pad, or Casing Free of Visible Damage? (Y/N)	Well Secured With Water-Tight Cap and Lock? (Y/N)	Well Vault Dry and Free of Debris? (Y/N)	Comments, Corrective Actions Completed in the Field, Corrective Actions Recommended
GW-16	10-3-14	X		TY	4	4	Y	Y	4	
MW-13	10-3-16	×		14	Y	Y	Y	7	Y	GWTS pumping well
MW-14	10-3-14	X		Y	Y	4	4	Y	Y	
MW-16	10-3-16	X		Y	4	T	Y	Y	7	
MW-17	10-3-16	×		Y	7	7	Y	4	4	
MW-22-MID	10-3-16	×		7	Y	Y	N	N	7	Monument demande
MW-24	10-3-14	X		Y	Y	ĭ	N	V	N	Monument damager casing broken below grade
MW-26	10-3-16	×		4	7	7	7	4	7	
MW-27	10-3-14	X		Y	Y	Y	Y	Y	Y	
MW-28	10-3-14	×		4	4	Y	Y	4	4	
MW-29	10-3-6	X		Y	4	Y	Y	N	Y	needs new plus.
PZ-3	10-3-16		X	Y	7	Y	Y	Y	Y	
TF-8	10-3-16		X	7	ĭ	Y	7	7	4	
TF-9						Wel	remove	d prior to	remed	ial excavation.
TF-15	10-3-16		X	-	-			-	-	Well buried.
TF-16	10-3-16		X	Y	Y	Y	Y	Y	Y	
TF-17			,			Well	remove	d prior to	remedi	ial excavation.
TF-18	10-3-14		×	Y	Y	Y	4	Y	Y	Pump in well
TF-19	10-3-16		×	Y	Y	4	4	7	Y	
TF-20								d prior to		ial excavation.
TF-21	10-3-14	-	-	Y	Y	Y	0	6	9 1	1 No surface completion. Well casing only
TF-23	10-3-16		X	Y	Y	N	N	T	1 1	Vault damaged. NO 1:0.
TF-24	10-3-16	-	0	7	7	0	0	Y	0	1) No Suitace completion. Well casing only

The Source Group, Inc.

INSTRUMENT CALIBRATION LOG Second Semiannual 2016 Monitoring Event Defense Fuel Support Point Norwalk 15306 Norwalk Boulevard, Norwalk, California 90650

Within 10%: Temperature
22.8
0
8-27
22.8
5.27
2- 2- 2
7.65
05/cm 1413 PH-7 PH-10
t-tio
-16
10-3-16
2000
2015
451-556 2015

TECHNICIAN: DATE: 10/3/16 CLIENT KMEP

	Well Size	Sheen	Depth to	Thickness of	Last Events SPH	Depth to water (ft.)	Depth to water (ft.)	Depth to water (ft.)	Depth to	Depth to well bottom	Survey Point: TOB or		
Well ID	(in.)	/ Odor	Liquid (ft.)		1	2Q15	4Q15	2Q16	water (ft.)	1	TOC	Time	
EXP-1 .	4					57.81	59.22		61-31	119.00	TOC	1115	
EXP-2	4					58.53	60.23		61.88	128-13	TOC	1205	1/2
EXP-3	4					56.91	58.43		6052	125.60	POC	1050	
EXP-4	4		`			58.43	60.00		62.71	116.20	70C	1150	
EXP-5	4					51.71	53.27		55.40	113.30	BC	1505	
GMW-1	4	٠				31.19	31.89	36.16	35.80	44,20	poc	1030	د.
GMW-10	4		33.65	1.551	1.05	34.99	32.96	34.47	35:10	龙一	Toc	0819	
GMW-13	4			es .		30.39	31.16		33.20	49.55	70 0	1041	Pulled EXP
GMW-22					2.12			39.73	37.70	61.60	THE	bus	EXP
GMW-23 -	4		-		1.18	36.64	36.10	36.35	36.15	\$7.80	pe	0923	
GMW-24	4				0.96	31.94	32.80	38.83	39.31	40.00	Pou	915	0.11.1
GMW-25	4					Ext. Pump	35.44	38.99	38,70	53,34	Toc	\$1515	EXT
GMW-26	4					35.19	ੇ 35.38	34.56	35.12	48.48	roc	0830	
GMW-28	4					31.23	32.00	35.66	35.81	49.18	poc	CE 38	\$.
GMW-29	4		35.75	0,25'		32.62	31.27	36.15	36,00	_	TOE	6845	
GMW-3	4					31.40	32.12		- vell	Destr	red -	J	- Destoyed
GMW-30	6				1.12	32.70	32.92	36.22	36.50	49-10	TOU	0851	oulled
GMW-36	4		34.65	0.40	0.39	Ext. Pump	33.55		35.05		toc	1100	EXTERM
GMW-37 ^	4					33.51	34.11		35,10	53.50	40C	1044	9:
GMW-38 -	4					31.59	32.33		34.10	53.00	De	1117	
GMW-39	4					31.04	31.87		33.20	50.40	BC	ł.	j.
GMW-8	4					30.43	31.13		33.77	45.20 44.04	TOU	0737	0.41.1
GMW-9	5				0.24	Ext. Pump	34.61	36.10	38.02	48.70	FOC	1520	Ext /
GMW-O-1	4					28.02	28.98	30.66	31.20	49,10	10°	1400	
GMW-O-10	4					30.52	31.17	32.65	33.12	49,84	· Poc	1533	
GMW-O-11	4				0.23	Ext. Pump	33.08	33,39	Gaaged	,			
GMW-O-12	4		31.90		0.80	33,35	34.65	32.40	34.20	·	Toc	1545	

TECHNICIAN: DATE: $\frac{|\delta|^3/4}{|\delta|^3/4}$ CLIENT $\frac{|\delta|^6}{|\delta|^6}$

Well ID	Well Size (in.)		Depth to Immiscible Liquid (ft.)		Last Events SPH Thickness	Depth to water (ft.) 2Q15	Depth to water (ft.)	Depth to water (ft.) 2Q!6	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Time
GMW-O-14	4					30.32	30.98	32.62	34,08	50,40	100	0700
GMW-O-15	81/		30,92	0.08	3.02	Ext. Pump	31.91		31,00		700	1500
GMW-O-16	4					29.69	30.41		32,00	48,90	Toc	1107
GMW-O-17	4					28.96	29.95		31.10	40.01	na	1513
GMW-O-18	4				0.43	28.53	30.90		Punp	stu	ch u	well-
GMW-O-19	4					28.41	30.63		3220	39.90	TOC	1105
GMW-O-2	4					28.34	29.07	30.44	31.30	49.12	De	1430
GMW-O-20	4				7.20	Ext. Pump	31.36	32.54	33.12	37.90	l .	1550
GMW-0-21	81				0.23	30,15	31.43	33.20	33.45	43.30	700	0700
GMW-O-23	4				2.36	Ext. Pump	32.82	34.43	3490	39,50	pc	1554
GMW-O-24	4					30.23	30.95	01.70	32.39	45,00		0745
GMW-O-3	4					28.21	28.94	30,60	31,45	47.80	TOC	1446
GMW-0-4	4			İ		27.79	28.57	30.55	30.90	49.15	TOC	1500
GMW-O-5	4					28.31	29.09	30.98	31.43	49,00	TOC	1510
GMW-O-6	4					26.10	27.50		19.00	49.70	Toc	1448
GMW-0-7	4					26.09	26.63		28.10	49.50		1507
	4					26.39	27.53			49.41	TOC	1405
SMW-O-9	4					29.79	30.33	31.88		50.10		1528
GMW-SF-7	4				,	31.30	32.03	•	3312	43.20	<i></i>	1110
GMW-SF-8	4					32.59			35.01			1055
GWR-3	6		39.15	0.05	1.33	37.25	33.28		39.20		TO C	0905
IL-2	4		y	-	1.00				35.17	28.1u		0730
IL-3	4				<u> </u>	33.37	34.08		37,22			0813
1W-12				1		33.43	34.15	36.84	35-84	•(••		080U
1W-18 (MID)	4				<u> </u>	32.39	26.00		40934	1.15.50	,	-0600 100
1W-19 (MID)	4	N 44				36.29	36.99	40.70				
1W-20 (MID)	4				 	37.61	38.26		40.60 38.M			0710

TECHNICIAN: DATE: 12/3/16 CLIENT KMED

				Thickness	Last					Depth to		
	Well		Depth to	of	Events	Depth to	Depth to	Depth to		well	Point:	
Wall ID	Size	Sheen		Immiscible	SPH	water (ft.)	water (ft.)	water (ft.)	Depth to	bottom	TOB or	T:
Well ID	(in.)	/ Odor	Liquid (ft.)	Liquia (II.)	Thickness	2Q15	4Q15	2Q16	water (ft.)	A	TOC	Time
MW-21 (MID)	4				0.03	34.08	34.77		31.83	6415	Tuc	0210
MW-6	4					33.79	34.47		35.13	51.72	TOC	0717
MW-7	4					34.70	35.36		37.90	5251	70c	0243
MW-8	4					31.86	32.69		34.20	51.90	TOU	1)00
MW-9	4					33.24	34.05	335	36.66	51.67	Too	0817
MW-O-1	4	1				30.39	8.37	DRY	07	32.71	TEC	1600
MW-0-2	6		34.22	0.08	0.63	30.94	32.39	35.49	34.30	3113 3>	TOC	0800
MW-SF-1	6				0.82	34.89	36.35	40.40	39.20	42.50	TOC	ioU
MW-SF-10	4				f	Dry	DRY	DRY	Doy	30,40	pc	1028
MW-SF-11	4				2.04	Ext. Pump	37.42	^{39.56}	40.05	45.40	1BC	ರೡಀಀ
MW-SF-12	4				1.94	Ext. Pump	36.78	39.03	31.45	43.40	Do	092
MW-SF-13	4				5.85	32.44	35.16	34.72	34.20	38.10	TOC	0930
MW-SF-14	4				0.43	Ext. Pump	35.25		Dry	40.15	BC	0934
MW-SF-15	4				3.03	36.63	37.90	39.70	39.56	41.10	BC	0941
MW-SF-16	4					Ext. Pump	34.56	39.60	39.35	40.10	Poc	609
MW-SF-2	4				0.19	Ext. Pump	36.32	39.27	39.60	42.40	Toc	0955
MW-SF-3	4				0.03	34.52	35.18	39.43	39.40	50.02	Poc	0900
иW-SF-4	4				1.87	37.70	38.12	40.80	41.05	42.10	الم المال	0905
MW-SF-5	6			.]		36.05	36.82	DRY	Ory	31.80	pc	0949
MW-SF-6	6			:	0.02	33.23	34.28	38.10	38.45	41.50	Tou	0151
иW-SF-9	4				0.40	36.69	31.44	34.14	- wab		Access -	
PW-1	4					Dry	DRY		Pri	18.40	1BC	0,700
PW-2	4					Dry	DRY		1007	W.90	Tec	0753
PW-3	4					30.62	31.08		33.23		DV.	
PZ-10						30.72	31.42			34,81		0901
PZ-2	4					30.48	31.18	· · · · · · · · · · · · · · · · · · ·	34.67	49.05	BC	0]19
Z-5	4					29.66	30.50	1	31.00	37.80		113 %

TECHNICIAN: DATE: $\frac{10}{3}$ /14 CLIENT $\frac{10}{10}$

·	1			l mi i i		T T		r	Γ	D. d.		т
,	Well		Double to	Thickness of	Last Events	Depth to	Depth to	Depth to		Depth to well	Survey Point:	
	Size	Sheen	Depth to Immiscible		SPH	water (ft.)	water (ft.)		Depth to	bottom	TOB or	
Well ID	(in.)		Liquid (ft.)		Thickness	2Q15	4Q15	2Q16	water (ft.)		TOC	Time
	(111.)	/ Odoi	Liquid (It.)	Diquid (1c.)	THICKIESS	2013	1 1013	2010	water (it.)			
VEW-1	4					Dry	DRY		0~1	12.55	po	1000
VEW-2 ·	4					Dry	DRY		Dry	29.10	Toc	1007
WCW-1	4					29.08	29.90		N.50	52,90	700	1350
WCW-10	4					29.27	30.00		31.81	55,90	Øc.	1343
WCW-11 /	4					31.19	32.02		33.31	57.80	TOC	1304
WCW-12	4					32.62	33.32		39.60	49.62	PC	1310
WCW-13	4					34.10	34.75		3603	60.35	PC	1257
WCW-14	4					35.09	35.71		36.70	58.80	100	1248
WCW-2	4					32.84	32.52		33.60	52.33	Mc	1300
WCW-3	4					32.40	33.38		34.35			1254
WCW-4	4					34.52	35.10		36.10	42,60	Pc	1215
WCW-5	4					29.93	30.77	4.00	32.20	50.6°	PC	1340
WCW-6	4					32.08	32.82	.*	34.00	50.91	730	1320
WCW-7	4			er ĝ		33.22	34.05	erg.	34,22	51.53	PC	1330
WCW-8	4		·			34.05	34.78		35.70	51.50	Toc	13 19
WCW-9	4					33.92	34.91		35.29	48_21	Po	1518

		GVOOL	IDIIAIE	IN SAIVII	TLE FIE	LU DATA	SUEE		
Project #:	091-NDLA-018	/Task 5				Well ID:	EXA-/		
Client/Station:	Defense Fuel S	Support Point Norw	valk 8	32-122	SCRI	Well Diameter:	<u> '</u> ''		
Address :	15306 Norwalk Norwalk, Califo				: }	Date:	10-7-12	6	_
	128.50	- 61:17 DTW	= 67,33	_					
			Column		4				
		epth, Screened A + 1/2(33. 8 3		 ,	<or></or>	Pump Intake De			
	DTW 61.17	+ 1/2(<u>9</u> 5, 6) Water	= 77 x 2 Pump Intak	-		5 <u>2</u> +1/2(op of Screen	Screen) = <u>2/02</u> Pump intake	
		Column 10-7-16	Depth	1)	25	Depth	Length	Depth	
	Date Purged:	10-7-1	160	(24 Hour)//	45	End (24 Hour)			
	Date Sampled:	70 7 7	Start	(24 Hour)//		End (24 Hour)			
TIME (24 Hr)	VOLUME (galions)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1/27	75.	145	7,49	1,018	-120.7	22,25	2-48	clen	NT
1129	.10	61.25	7.47	1.019	-121.6	22.25	2,16	t i	1,04
1/3/	,25	61.28	7.46	1.019	-121.5	22.24	1.94	1/	0.97
1/3B	1.0	MT	7,45	1.021	-120.7	22.22	1,71	स	0.93
1135	1,15	Mr	7.43	1.022	-119.3	2223	1,60	43	MT
11 37	1.50	61.32	7.42	1,022	-117.3	22.25	1.29	٠,	N1
1139	275	61.35	7.42	1.022	-116.5	22.25	1,04	4,	1.01
1/41	2.0	MT	7.4/	1.022	-115.7	22.29	1.20	١,	0,93
1/48	2-65	211	7.41	1.023	-115.1	22.31	1,16	٠.	N7
1745	2.50	61.35	7.41	1,023	-114,7	72.33	1,13	,	0.89
100 PT					:				
								-	
		PURGING EC	QUIPMENT	Vac Truck		SAMPLING E	QUIPMENT	Teflon Bailer	
		Submersible Pump		Disposable Pump		Submersible Pump		Disposable Bailer	
	0	Other: Low Flow Subn	nersible Pump		<i>(</i> 2)	Other : Dedicated Tub	ing		
Remarks:	splits	ample w	1/ Blaine	tich					
		,		-					
					•				· · · · · · · · · · · · · · · · · · ·
Completed By (Prin	it Name):	Dave Lu	ubben		:	عن Signature:	ei	Lulie	
Reviewed By:					·	Date:			

Project#:	091-NDLA-018	/Task 5				Well ID:	EXP-2		_
Client/Station:	Defense Fuel S	Support Point Norw	alk	4		Well Diameter:	4"		-
Address:	15306 Norwalk Norwalk, Califo		90-12	O SCRIM	7	Date:	10-4-	16	-
		_ <i>62.18</i>	= 86.82						
	TD	DTW	Water Column	•					
		epth, Screened A		ole:	< OR >	Pump Intake De	pth, Submerged	I Screen:	
	62:18 DTW	+ 1/2(43.4/ Water) = 105 5 Pump Intak			90 +1/2(op of Screen	Screen	= 105 Pump Intake-	<u>-</u>
	Divi	Column	Donth			Depth	Length	Depth	
	Date Purged:	10-4-16	Start ((24 Hour) /2	pm	End (24 Hour)	1250		
	Date Sampled:/	10-4-16	Start	(24 Hour)	250	End (24 Hour)			•
TIME (24 Hr)	VOLUME (gallons)	DEPTH TO WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)
1232	. 25	ND	7.35	1,676	-50.9	22.60	NT	claur	1,19
12 34	,50	62.25	7,30	1.680	-43.9	22,20	3,69	11	1.04
12 36	.75	62.28	7.26	1.684	-42.1	22.18	3. 1/	t (NĪ
1238	1.0	62,30	7.23	1,686	-40.4	22,11	2,66	Y	NT
1240	1.25	NT	7.21	1.686	-38.8	-22.07	Z.30	Ц	1.33
1242	1.5	NY	7.20	1,686	-37,7	22.03	2.06	lt	1,14
1244.	1.7	62.33	7,19	1.685	-36,8	22.01	7.87	/(1,09
12 40	2.0	141	7.19	1,685	-36.1	22.00	1,75	. 1	N7
1248	2.25	mr	7,19	1.684	-35,6	22.00	1.71	11	NI-
1250	20	B2.35	7.18	1.684	-35.2	21,99	1,67	١,٤	1.17
								·	
		PURGING E	QUIPMENT	:		SAMPLING E	QUIPMENT		
		Centrifugal Pump	_	Vac Truck		Centrifugal Pump		Teflon Bailer	
	0	Submersible Pump		Disposable Pump	0	Submersible Pump		Disposable Bailer	
S		Other: Low Flow Subr	nersible Pump		<u> </u>	Other : Dedicated Tub	oing	ا	
Remarks:	DUP-2	obtain	redhe Ga Bla	re,					
	501745	obtained	for BLA	inetech					
									
Completed By (Prin	it Name):	Dave Lu	ubben	,		Signature:	el D Cu	h	
Reviewed By:		· · · · · · · · · · · · · · · · · · ·				Date:			

Project#:	091-NDLA-018/	Task 5				Well ID: Well Diameter:	<u> EXP-3</u>		-	
Client/Station:	Defense Fuel S	upport Point Norw	alk 50	R-INT		Well Diameter:			•	
Address:	15306 Norwalk Norwalk, Califor		3-	85-115		Date:	10-4-1	6	-	
	150.00	-60,42	89.56							
		epth, Screened A	Column	de.	<or></or>	Pump Intake De	nth. Submerged	i Screen:		
		+ 1/2(44, 78					15 [^])			
	DTW	Water	Pump Intak			op of Screen	Screen	Pump Intake	-	
	Date Purged:	Column <u>10-4-16</u> 10-4-16	Depth Start (24 Hour) 8	35	Depth End (24 Hour)	S TS	Depth		
	Date Sampled:	10-4-16	Start	(24 Hour)	811	End (24 Hour)				
		DEPTH TO								
TIME (24 Hr)	VOLUME (gailons)	WATER (feet btc)	pH (units)	E.C. (sM/cm)	ORP (mV)	TEMPERATURE (°F/°C)	D.O. (mg/L)	COLOR (visual)	TURBITY (visual or NTU)	
837	, 25	NT	7.43	1.046	-66.4	21.65	1,22	lon	NT	
8 ³⁹	,50	60,48	7.40	1.047	-66.3	21.66	1,16	11	1,22	
841	ŢĘ,	60.FO	7.39	1.048	-65.3	21.67	1.//	()	1.16	
843	1,0	60.52	7.37	1.047	-62.9.	21.69	1.05	2.6	1.18	
845	1.25	NT	7.36	1.046	-62,1	21.7/	1.02	, (NT	
842	1.5	NT	7.35	1.046	- 61.4	21.70	1.02	.1	1-77	
8 49	1.35	60.57	7.35	1,046	-60.9	21,70	1.00	/(1.22	
851	7.0	60.58	7.35	1.045	-60,3	21.71	0196	1,	1,02	
8 53	2.21	MT	7.35	1.045	-59.9	21.71	0.95	3,	NT	
835	2.50	60.60	7.35	1.045	-59.5	21.71	0.95	ч	1,01	
									-	
		PURGING E	OUIPMENT			SAMPLING E	QUIPMENT			
		Centrifugal Pump		Vac Truck		Centrifugal Pump		Teflon Bailer		
		Submersible Pump	***************************************	Disposable Pump		Submersible Pump		Disposable Bailer		
	0	Other: Low Flow Subi	mersible Pump		0	Other: Dedicated Tu	oing .			
Remarks:	era sali4	Samales :	Go Blan	SETECH		•				
obtain split samples for BlandeTech.										
Completed By (Prin	nt Name):	Dave L	ubben			Signature:	li u	٠		
Reviewed By:						Date:				

Project #	: 16	1003-1	Dn 1	Client: KMEP Start Date: 10-4-14							
Sampler:				Start Date	: 10-4	1-14					
Well I.D.	: Ex	p-4					∑ 6 8				
Total We	ll Depth:	1/6.	20		Depth to Water: Pre: 62.7/ Post: 62.17						
Depth to	Free Produ			Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	F V)c	Grade	Flow Cell Type: YSI 556							
Purge Meth Sampling M Start Purge		2" Grundf Dedicated	Tubing	300 ml/	Peristaltic l New Tubin	ıg	Bladder Pump Other_ oth://ン				
Time	Temp.	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to water			
0938	21.3	7.11	1781	10	୦,୫୫	-21-4	900	62.76			
०९५।	V1.5	7.14	1790	U	0,95	-25.7	1900	62.76			
0944	21.5	7.14	1795	4	0.84	-26.1	2700	62.76			
0947	21.4	7.14	1794	3	0.83	-28.3	3600	62.77			
0950	UL	7.14	1795	3	0.81	-30.1	4500	6277			
							¢				
							:				
Did well	dewater?	Yes	<u>No</u>		Amount	actually e	evacuated: 4.5	5.6			
Sampling	Time: C	3953			Sampling	g Date:	10-4-14				
Sample I.	D.: Ex	<p-4< td=""><td></td><td></td><td>Laborato</td><td>ry:</td><td>Alpha Analytical</td><td></td></p-4<>			Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:	cer con				
Equipmen	nt Blank I.I	 D.:	@ Time		Duplicate	e I.D.:		-			

		<u> </u>	DOM THE	JUL 111 OT 13		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Project #	: 1610	03-0	~1	Client:			KMEP			
Sampler:	Or.			Start Date:	: /	10-4-	14			
Well I.D.	: Exp	-5		Well Diam	neter: 2	3 4	6 8			
Total We	9	113.3		Depth to V	———— Vater:	Pre: S	5,40 Post:	:55,50		
	Free Produ	***		for 143	Thickness of Free Product (feet):					
Reference		PVC	Grade	ļ	Flow Cell Type: YSI 556					
Purge Methors Sampling M		2" Grundf Dedicated		. 300 ,,	Peristaltic Pump New Tubing Other Pump Depth: 100'					
Start Turge	Time:		Cond.				T			
Time	Temp.	рН	(mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 6D)	Depth to water		
0848	21.5	7.11	1981	10	1.41	31.4	9,00	55.42		
0851	21.4	7.13	1843	5	1.11	10-2	1800	55.45		
0854	21.6	7.15	1850	8	0,91	-16.1	2100	55-45		
0857	21.6.	7.17	1851	5	0,90	-17.9	3600	55.47		
0900	21,4	7.17	1055	4	0,87	-21.4	4500	55.48		
0903	21.7.	7.16	1857	2'	0,85	-22-1	5400	55.50		
	.'			·						
Did well o	lewater?	Yes .	No		Amount a	actually e	evacuated: 5	-,40		
Sampling	Time:	0905			Sampling	; Date:	10-4-1	6		
Sample I.l	Time: D.: $\not \sqsubseteq \not \searrow \not \parallel$	p-5			Laborator	ry:	Alpha Analytical			
Analyzed	•	TPHg TF		s MTBE		Other: 3	Zel C.O.			
Equipmen	ıt Blank I.I	D.:	@ Time		Duplicate I.D.:					

		LOW	LOW ME	ELL MON	ITORING	J DATA	SHEET			
Project #	: 16	1003-0-	. (Client:	KMEP					
Sampler:	Dr	^		Start Date	: :	10-0	e - 16			
Well I.D		nu-1		Well Dian	neter: 2	3 4) 6 8 <u> </u>			
Total We	ell Depth:	49	, 2,5	Depth to V	Depth to Water: Pre: 35.80 Post: 35.95					
Depth to	Free Produ				Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556	7		
Purge Meth Sampling M		2" Grund Dedicated	os Pump		Peristaltic I New Tubin	•	Bladder Pum Othe	-		
Start Purge	Time: 09.	15	Flow Rate: _	500 N	1/2.2	_Pump Dep	th: 451			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or	Depth to water		
0918	22.5	7.13	1816	10	1.05	-84.1	1500	35-81		
0921	23.1	7.15	1824	3	0.90	-89.4	3000	35.84		
0924	23.3	7.16	1831	5	0.84	-91.3	4500	35.89		
0927	23.4	7.17	1834	7	0.81	-93.7	6000	35.93		
0930	23.4	7.17	1829	8	0.78	-94.1	75-00	35.95		
,										
Did well	dewater?	Yes (No		Amount a	actually e	vacuated:	7.56		
Sampling	Time: c	9533			Sampling	g Date:	10-6-14			
Sample I.	D.: GM	1W-1			Laborato	ry:	Alpha Analytica	1		
Analyzed	for:	TPHg Tl	PHfp VOC'	s MTBE	:	Other:	MNA			
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	e I.D.:				

		LOW F	LOW WE	ELL MONI	ITORING	3 DATA	SHEET			
Project #	: 161	003-6	OMI	Client:			KMEP			
Sampler:	рм			Start Date	: /	0-5-16	,			
Well I.D.	: 41	Mw-8	3	Well Dian	neter: 2	3 4	6 8			
Total We	ell Depth:	45,	20	Depth to V	Depth to Water: Pre: 33.47 Post: 33.5:					
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	100	Grade	Flow Cell Type: YSI 556						
Purge Methodorn Sampling M		2" Crundf Dedicated	_		Peristaltic Pump New Tubing Other					
Start Purge	Time: 1406	>	Flow Rate: _	500 ml	/an	_Pump Dep	th: <u>43′</u>			
Time	Temp.	рН	Cond. (mS/cm or µ\$(crh)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nl)	Depth to water		
1403	25.8	6.89	2778	48	0.44	-62.4	1500	33.50		
1406	26.1	7.07	2790	31	0.61	-65-1	3000	33.52		
1409	26.3	7.11	2793	22	0.60	-68.3	4500	37.54		
1412	26.4	7.10	राभ ५	10	0.57	-69.1	6000	33.55		
1415	26.5	7.13	2792	కి	0.55	-70.5	7500	33.57		
1418	26.5	7.15	2801	10	0.54	-71.4	9000	33.58		
,										
			·							
Did well	dewater?	Yes	6		Amount	actually e	vacuated: 94	_		
Sampling	Time:	1420			Sampling	g Date:	10-5-16			
Sample I.	D.: 4	8-WM			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:				
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate	e I.D.:				

		LOW F	LOW WE	LL MON	ITORING	G DATA	SHEET		
Project #	: 161	003-,	OM (Client:			KMEP		
Sampler:	Dw			Start Date	: /0	-6-1	6		
Well I.D.	: Gmw ell Depth:	-9		Well Dian	neter: 2	3 4	<u> </u>		
Total We	ll Depth:	48.	70	Depth to Water: Pre: 38.02 Post: 38,21					
Depth to	Free Produ	ıct:		Thickness	of Free P	roduct (fe	eet):		
Reference	ed to:	PVE	Grade	Flow Cell	Type:		YSI 556		
•	od: lethod:		-	\$	Peristaltic I	-	Bladder Pump Other		
Start Purge	Time: 15	26	Flow Rate: _	300		_Pump Dep	th: 471		
, Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (1))	Depth to water	
1529	25.8	7.18	2099	31	8,40	-151.4	900	38.10	
1532	26.1	7.71	2130	30	0.36	-161.5	1800	38.14	
1535	Uli	7.22	2135	22	6,35	-165.3	2700	38.17	
1538	76.3	7.22	21.36	20	0.34	-166.4	3600	38,20	
1542	26.4	1.27	2137	19	6.33	-169.3	4500	38-21	
Did well	dewater?	Yes	6		Amount	actually e	vacuated: 4	.5L	
Sampling	Time:	1543			Sampling	g Date:	10-6-14		
Sample I.	D.: 6	mv-g			Laborato	ry:	Alpha Analytical		
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:			
Equipmen	nt Blank I.l	D.: &B-	S @ Time	1600	Duplicate	e I.D.:			

		LOW I	LTOM MI			JUAIA	SHEEL			
Project #	t: 1610 o4	,-DMI		Client:	ient: KMEP					
Sampler:				Start Date	: 10.4.1	lo	1			
Well I.D	:: GMW-	13	The Third William Committee	Well Dian	neter: 2	3 (4) 6 8			
	ell Depth:	_		Depth to V	Depth to Water: Pre: 33.20 Post: 33.29					
Depth to	Free Prod	uct: .		***************************************	Thickness of Free Product (feet):					
Referenc		PAC)	Grade	Flow Cell			YSI 556			
Purge Meth Sampling M		2" Grund	•		Peristaltic l New Tubin	•	Bladder Pump			
Start Purge	Time: //4	<u>'1</u>	_Flow Rate: _	300 mc/	uir_	_Pump Dep	oth: 47			
Time	Temp.	pН	Cond. (mS/cm or aS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of mL)	Depth to water		
1144	23.1	7.30	1048	20	0.25	127.6	900	33.26		
1147	23.0	7.28	1041	18	0.20	124.8	1300	33.28		
1150	23.0	7.28	1039	15	0.18	122.9	2700	33. 3 9		
1153	29.9	7.28	1034	14	0-17	122.3	3600	33.29		
1156	29.9	7.27	1037	15	0.17	120.8	4500	33.29		
				***************************************				2'		
							-	Topics .		

							N.			
Did well	dewater?	Yes	(B)		Amount a	actually e	vacuated: 49	500		
Sampling	Time: 1	159			Sampling	g Date:	10,4.16			
Sample I.D.: GMW-13					Laborato	ry:	Alpha Analytical			
				s MTBE		Other: Se	e CoC	1300		
Equipmer	nt Blank I.l	 D.:	@ Time		Duplicate					

		LOW I	LOW WE	LL MON	HORING	DAIA	SHEET			
Project #	: 161	003-1	PM 1	Client:		,	KMEP			
Sampler:	DM			Start Date	: 10-	6-14	,			
Well I.D.	: Ymu	ープタ		Well Dian	neter: 2	3 4) 6 8			
Total We	ell Depth:		,80	Depth to V	Depth to Water: Pre: 36.15 Post: 31.27					
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	éve	Grade	Flow Cell	Type:		YSI 556	1900		
Purge Meth Sampling M	od: lethod:	2" Grundf Dedicated	Tubing	Peristaltic Pump New Tubing Other						
Start Purge	Time: 141	17	Flow Rate: _	500 A	al face	_Pump Dep	th: 541			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ormil)	Depth to water		
1420	22.9	7,13	2511	(0	0.71	-110.4	1500	36.14		
1423	24.1	7.18	2537	5	0.38	-113.5	3000	36./9		
1424	24.5	7.21	2541	٤	0.35	-116.8	4500	30.20		
1429	246	7.23	2543	5	0,36	-117.9	7500	36.24		
1432	24.4	7.23	2546	(q	0.34	-119.4	7500	36.27		

								W4W4.		
							-	3400W3-d6		
Did well	dewater?	Yes	<u> </u>		Amount a	actually e	vacuated: 7	56		
Sampling	Time:	1433			Sampling	Date:	10-6-14			
Sample I.	D.: (1 mw-	33		Laborator	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other: 5	er con			
Fauinmen	ıt Blank I I	· ·	@		Dunlicate					

		LOW I	LOW WE	ELL MON	ITORING	G DATA	SHEET				
Project #	: [61	003-1	mi	Client:			KMEP				
Sampler:	ОМ			Start Date	: /	0-6-	14				
Well I.D	.: Gn	w-25		Well Dian	neter: 2	3 4	6 8				
Total We	ell Depth:	53	.70	Depth to V	Depth to Water: Pre: 38.70 Post: 38.23						
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	Ø	Grade	Flow Cell	Flow Cell Type: YSI 556						
Purge Meth Sampling M	lethod:	2" Grundf Dedicated	Tubing	_	Peristaltic I New Tubin	g	Bladder Pump Other_				
Start Purge	Time: 145	5	Flow Rate: _	500 m	1/mn	_Pump Dep	th: 50'				
Time	Temp.	pН	Cond. (mS/cm or µS/Cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nd)	Depth to water			
1458	25.3	7.13	2211	18	0.61	-81.4	1500	38.74			
1501	25.3	7.15	2214	32	0.60	-83.2	3000	38.75			
15.4	25.3	7.15	2214	25	0.54	-85.1	4500	38.77			
1507	25.4	7.18	2219	21	0.53	-86.5	6000	38.79			
1510	25.5	7.18	2223	23	0.51	-87.1	7500	<i>38.</i> 83			
1.0010											
Did well	dewater?	Yes (Ñ		Amount a	actually e	vacuated: 7.	56			
Sampling	Time:	1515			Sampling	g Date:	10-6-14	:			
Sample I.	D.: GM	1 <u>\$15</u> w-25			Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:					
Equipmer	nt Blank I.I	D.:	@ Time		Duplicate	e I.D.:					

		LUWI	TOW WE	TIT MOM	LIORING	DAIA	SUPPI			
Project #	: 161	003-	DM1	Client:		-	KMEP			
Sampler:	DM			Start Date	: /c	-5-	16			
Well I.D.	: GMW	-26		Well Dian	neter: 2	.3 4	7 6 8			
	•	48.	V	Depth to V	Depth to Water: Pre: 35-12 Post: 35.19					
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	lethod:	2" Grundf Dedigated	Tubing	Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: <u>07</u>	45	Flow Rate: _	500 A	ul/m.n	_Pump Dep	th: <u>45</u>			
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n)	Depth to water		
0748	23.9	7.29	5331	541	0.70	-77.5	1500	35.12		
0751	24.1	7.25	5051	208	0-64	-79.1	3000	35,13		
0754	V4-5	7.21	5027	239	0,61	-80.3	4500	35.15		
0757	24-4	7.20	5025	307	0,60	184.1	6000	35.17		
0800	24.6	7-18	5019	299	0,50	-85.2	7500	35.17		
08-3	24.7	7-17	5018	295	0.57	-87.3	9000	35-19		
Did well	dewater?	Yes (No		Amount a		vacuated: 9			
Sampling	Time: C	205			Sampling	g Date:	10-5-16	0		
Sample I.	D.: 5m,	26			Laborato	ry:	Alpha Analytical			
Analyzed	•		PHfp VOC's	s MTBE		Other:	MNA			
Equipmer	nt Blank I.I	D ·	@	-	Duplicate	· ID·	DIFF			

					22 0 2121 11	<i>5 2 1 1 1 1 1 1 1 1 1 1</i>	DILLE		
Project #	: 16	2100	3-10 m1	Client:			KMEP		
Sampler:	DM			Start Date	: 10)-6-	16		
Well I.D	O ^C	W-28		Well Dian) 6 8		
Total We	ell Depth:	49.18	-	Depth to V	Water:	كر :Pre	で名) Post:	35.90	
Depth to	Free Prod			Thickness	of Free P	roduct (fe	eet):		
Referenc	ed to:	PVC	Grade	Flow Cell	Type:	****	YSI 556		
Purge Meth Sampling M		2" Grunde Dedicated			Peristaltic Pump New Tubing Other				
Start Purge	Time: 13	514	Flow Rate: _	500 N	1/pm	_Pump Dep	th: 45 ¹		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mD)	Depth to water	
1317	25.1	7.11	7870	15	0.52	-100,6	0021	35-84	
1320	25.3	7.08	2879	10	0.39	-1015	3000	35.87	
1323	25.5	7.07	2878	10	0.37	-/02.3	4500	35.90	
1326	25.7	7,10	2875	G	0.35	-104.1	6000	35.90	
1329	25-4	7,11	2879	9	0.34	-105.4	7500	35.90	
	,	,							
	r								
_		١	ri.						
	,								
Did well o	Did well dewater? Yes No Amount actually evacuated: 7.5L								
Sampling	Sampling Time: (33 - Sampling Date: 10 - 6 - 16								
Sample I.l	D.: GM	w-28		The Blance Southeast	Laborato	ry:	Alpha Analytical	100000000	
Analyzed	for:	TPHg TF	PHfp VOC's	MTBE	*********	Other:	AND THE STATE OF T		
Equipmen	quipment Blank I.D.: Output Duplicate I.D.:								

			2011 111	LL IVIOIV	T OIGH 10	ADZ X A Z X	OILE I			
Project #:	161	1003-D	41	Client:	Client: KMEP					
Sampler:	DM			Start Date:	: 10	0-6-1	16			
Well I.D.	: ym	w-36		Well Diam	neter: 2	3 4	<pre>> 6 8</pre>			
Total We	ll Depth:		_	Depth to V	Depth to Water: Pre: 35.05 Post: —					
Depth to	Free Prod	uct: 34	.45	Thickness of Free Product (feet): りんり						
Reference		PVe	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Metho Sampling M		2" Grundfo			Peristaltic P New Tubing	-	Bladder Pump Other_	_		
Start Purge	Γime:	_/_	Flow Rate: _			Pump Dep	th:			
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
	-	0.40	1 501	1 det	ectel	w/	p 6 –			
		I.F.	PO	s se	פ את	Son	p 4 -			
							614.49.49.49.4			
				,						
							##\$###################################			
March Programmer										
				:						
Did well	dewater?	Yes	No /		Amount a	ictually e	vacuated:			
Sampling	Time:				Sampling	Date:				
Sample I.D.:				Laborator	y:	Alpha Analytical				
Analyzed	for:	TPMg TI	PHfp VOC'	s MTBE		Other:				
Equipmen	ıt Blank <u>I</u> z	б.:	@ Time		Duplicate	I.D.:				

Project #	: 161004	-PM1		Client:	KMEP					
Sampler:	KT			Start Date	: 10.4.16					
Well I.D.	: GMW-	37		Well Dian	neter: 2	3 4	O 6 8			
	ll Depth:	53.50)	Depth to V	Depth to Water: Pre: 35.10 Post: 35.2/					
Depth to	Free Produ	uct:		Thickness of Free Product (feet):						
Referenc	ed to:	p(Vc)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M		2" Grundf Dedicated			Peristaltic I New Tubin	•	Bladder Pump Other_			
Start Purge	Time: LI	!	Flow Rate: _	300 mc/n	4ih	_Pump Dep	th: 51			
Time	Temp.	pН	Cond. (mS/em or (uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1217	23.8	7.30	1391	30	0.37	136.4	900	35.17		
1220	23.6	7.30	1399	27	0.31	136.2	(800	35.20		
1233	23.6	7.29	1404	25	0.30	135.8	2700	35,26		
1226	23.5	7.29	1397	25	0.29	135.4	3600	35.20		
1229	23.5	7.28	1399	23	0.27	133.8	4500	35.21		
	-									
Did well	dewater?	Yes (No		Amount	actually e	vacuated: 4	Post: 35, 2/ I 556 Bladder Pump Other SI Atter Removed gals. of mL) Depth to water 35.17 (300 35.20 37.26 36.00 35.20 37.20		
Sampling Time: 1231					Sampling	g Date:	10.4.16			
Sample I.D.: GMW-37					Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other: 5	ee Coc			
Eauipmer	nt Blank I.	 D.:	@ Time		Duplicate		4			

		TOM F	FLOW WE	CLL MON	ITORING	3 DATA	SHEET			
Project #	: 16100	4-BM1	•	Client:	Client: KMEP					
Sampler:	KT	-		Start Date	: 10.4	-14				
Well I.D	: GMU	1-38		Well Dian	neter: 2	3 (4) 6 8			
	ell Depth:			Depth to V	Depth to Water: Pre: 34.10 Post: 34.21					
Depth to	Free Prod	uct: —		Thickness	of Free P	roduct (fe	eet):			
Referenc	ed to:	(vc)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	od: lethod:	2" Grundf Dedicated			Peristaltic New Tubin	•	Bladder Pump Other_			
Start Purge	Time: [[[D		Flow Rate: _	300 mc/M	iN	_ Pump Dep	th: 50 '			
Time	Temp.	pН	Cond. (mS/cm or µ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1113	23.0	7.39	816	24	0.25	158.4	900	34.17		
1116	23.1	7.36	810	20	0.23	154.3	1800	34.19		
1119	23.1	7.35	808	19	0.22	153.7	2700	34.20		
1122	23.0	7.35	811	15	0.22	152.6	3600	34.21		
1125	22.9	7.34	814	15	0.23	152.2	4500	34.21		
							~			
	,									
Did well	dewater?	Yes (No)		15 0.23 152.2 4500 34.21 Amount actually evacuated: 4500					
Sampling	Time: (130			Sampling	g Date:	10-4.16			
Sample I.	D.: Gm	w-38			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:				
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	e I.D.:				

		LUWI	LOW WE	TT MON	LIORING	JUAIA	SHEET			
Project #	: 161003	-PMI		Client:		•	KMEP			
Sampler:	KT			Start Date	: 10.5.	16				
Well I.D.	: GMW-:	39		Well Dian	neter: 2	3 4	68_			
	ell Depth:	50.6	O	Depth to V	Depth to Water: Pre: 33.20 Post: 33.27					
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	pvd)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M		2" Grunds Dedicated	•		Peristaltic I New Tubin	•	Bladder Pump Other_			
Start Purge	Time: 065	9	_Flow Rate: _	300 mc/2	1/N	_Pump Dep	th: 48			
Time	Temp.	pH	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m	Depth to water		
0702	21.4	7.22	1322	15	0.64	160.8	900	33.26		
0705	21.2	7.20	1314	11	0.57	159.9	1800	33.27		
0708	21.2	7.19	1302	10	0.50	157.9	2700	Depth to water 33.26 33.27 33.27 33.27 33.27		
0711	21.2	7.18	1300	7	0.44	158.3	3600	33.27		
0714	21.1	7.18	1306	6	0.43	158.5	4500	33.27		
0717	121.2	7.10	1305	¢	0.40	157.8	5400	33.27		
" '										
Did well	dewater?	Yes (N		Amount a	actually e	vacuated: 54	00		
Sampling	Time: 0	1720			Sampling	Date:	10.5.14			
Sample I.	D.: Gm	w-39			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other)	let Coc			
	+ Dioni- I I	D .	@		Dunlingto	ID.	1			

Equipment Blank I.D.: Duplicate I.D.: Duplicat

		LUWI	LUW WI		HUKIN	JUAIA	SHEET		
Project #	: 1610	003-1	M1	Client:	KMEP				
Sampler:	O~			Start Date	: /	10-7	. 14	,	
Well I.D.	: Gm	W130		Well Dian	neter: 2	3 4	.' 6 8 _		
Total We	ll Depth:	49.7	0	Depth to V	Depth to Water: Pre: 36,30 Post: 36,33				
Depth to	Free Prod			Thickness			**	· · · · · · · · · · · · · · · · · · ·	
Reference	ed to:	PVQ	Grade	Flow Cell Type: YSI 556					
Purge Methors Sampling M		2" Grundf Dedicated	- •		Peristaltic Pump New Tubing Other				
Start Purge	Time: 08 !	10	Flow Rate: _	500	m//m	_Pump Dep	oth: 45'		
Time	Temp.	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 10 L)	Depth to water	
O843	72.5	7.13	1817	15	0.54	-97	1503	36-37	
0844	22.5	7.19	1827	10	6,51	-110	3000	36.32	
0849	22.6	7.22	1830	8	0.50	-1(2	4500	36.32	
0852	22.4	7.22	1834	B	0,47	-99	🗘 ၿပင	36.32	
0855	22.7	7.20	1838	7	0,48	-102	7500	36.33	
			, 100						
Did well o	lewater?	Yes (Ñð		Amount	actually e	evacuated: 7.	56	
Sampling	Time:	0900			Sampling	g Date:	10-7-14	•	
Sample I.D.: Law-30					Laborato	ry:	Alpha Analytical	***	
Analyzed for: TPHg TPHfp VOC'				MTBE		Other: 4	MNA		
Equipmen	t Blank I.I	D.: EB-(@ Time	110	Duplicate	e I.D.:	邑		

							~			
Project #	: 161004	-DMI		Client:	KMEP					
Sampler:	KT			Start Date	: 10.4.1	6				
Well I.D.	: GMW-	-0-1		Well Dian	neter: 2	3 4	6 8			
Total We	ell Depth:	49.10)	Depth to V	Depth to Water: Pre: 31.20 Post: 31.28					
Depth to	Free Prod	uct: -		Thickness	of Free P	roduct (fe				
Referenc	ed to:	rvc)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	lethod:	2" Grund Dedicated	D Tubing		Peristaltic I New Tubin	g	Bladder Pump Other			
Start Purge	Time: 19	10	Flow Rate: _	200 mc	/min	Pump Dep	th: ધાર્			
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or	Depth to water		
1451	23.2	7.11	3443	36	154	158.9	600	31.25		
1454	23.2	7.10	3437	31	1.28	160.4	1200	31-27		
1457	23.1	7.09	3429	27	0.97	158.3	1800	31.27		
1500	23.1	7.09	3434	25	0.88	155.2	2400	31.28		
1503	23-(7.0%	34 32	26	0.85	152.9	3000	31.28		
1506	23.1	7.08	3430	26	0.84	150.6	3600	31.28		
1509	23.1	7.05	3427	24	0.82	150.2	4200	31.28		

Did well o	dewater?	Yes (No)		Amount a	etually e	vacuated:	1200		
Sampling	Time: 15	715			Sampling	Date: /	10.4.16			
Sample I.D.: GMW-0-1					Laborator	ry:	Alpha Analytical	1493		
Analyzed	-,,		PHfp VOC's	s MTBE		Other:	See Coc			
Equipmen	t Blank I.I	D.: EB-1	@ Time I	530	Duplicate			Nagoval.		

		LOW I	CLOW WE	ELL MON	ITORINO PRINCIPALITORINO PER INCIDENTALISMENTALISMENTALISMENTE PRINCIPALISMENTE PRINCIPALIS	G DATA	SHEET			
Project #	: 161004-	DMI		Client:			KMEP			
Sampler:	rT			Start Date	: 10.4	16				
Well I.D	: Gmw	-0-2		Well Dian	neter: 2	3 4	7) 6 8			
Total We	ell Depth:	49.10		Depth to V	Depth to Water: Pre: 31.38 Post: 31.38					
Depth to	Free Prod	uct: -		Thickness	of Free P	roduct (fe	eet): —			
Referenc	ed to:	(NC)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	lethod:	2" Grund Dedicated	Tubing		Peristaltic New Tubir	ng	Bladder Pump Other_			
Start Purge	Time: 085	<u> </u>	Flow Rate: _	300 mc	/mir	_Pump Dep	th: 47			
Time	Temp.	pН	Cond. (mS/cm or uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
0354	22.3	7.15	2626	55	0.59	194.3	900	31.37		
0857	22-1	7.12	2622	50	0.44	199.7	1300	31.38		
0900	22.1	7.11	2629	40	0.36	200.1	2400	31.38		
0903	22.1	7.11	2634	40	0.35	201.9	3800	31.38		
090G	22.1	7.11	2637	30	0.33	203.8	4500	31.38		
Did well	dewater?	Yes C	Nø		Amount	actually e	vacuated: 45	00		
Sampling	Time: 0	908			Sampling	g Date:	10.4.16			
Sample I.	D.: GN	1W-0-	-2	•	Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:	Set Coc			
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate	e I.D.:				

		LOW	LOW WE	JULI IVIOIN		JUZNIZN		
Project #	: 161003.	-DMI		Client:			KMEP	
Sampler:	KT			Start Date	: 10.5.16	!		
Well I.D.	: Gmw.	-0-3		Well Dian	neter: 2	3 (4) 6 8	
	ell Depth:)	Depth to V	Water:	Pre: 31	.45 Post:	31.55
Depth to	Free Produ	uct: _		Thickness	of Free P	roduct (fe	eet): —	
Referenc	ed to:	PVO	Grade	Flow Cell	Type:		YSI 556	
Purge Meth Sampling M	od: lethod:	2" Grundf Dedicated	-		Peristaltic I New Tubin	-	Bladder Pump Other_	
Start Purge	Time: 083	30	Flow Rate: _	300 ML	/min	_Pump Dep	oth: 45	
Time	Telijp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to water
0833	22.4	7.19	2553	u1	0.43	-55.5	980	31.54
0836	22.0	7.18	2560	109	0.39	-56.0	1800	31.55
0839	22.6	7.13	2568	109	0.34	-54.8	2700	31.55
0842	22.7	7.18	2504	107	0.31	-53.5	3600	31.55
0845	22.7	7.18	2570	105	0.30	-52.9	4500	31.55
٠							-	
Did well	dewater?	Yes (No		Amount	actually e	evacuated: 4	1500
Sampling	Time: 6	0850			Sampling	g Date:	10.5.16	
Sample I.	D.: GM	W-0-3		•.	Laborato	ry:	Alpha Analytical	
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE		Other: S	ee Coc	
Fauinmer	nt Blank I l	D ·	@		Duplicate	· I D ·		

		LOWE	TOW ME	LLL MONI	TORING	DAIA	SHEET			
Project #	: 161003	- pmi		Client:			KMEP			
Sampler:	KT			Start Date:	10-5-1	ط				
Well I.D	.: Gmu-	0-4		Well Diam	neter: 2	3 4) 6 8			
	ell Depth:	49.15		Depth to V	Depth to Water: Pre: 30.90 Post: 30.93					
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):			
Referenc	¥	(V)	Grade	Flow Cell			YSI 556			
Purge Meth Sampling M	od: lethod:	2" Grunds Dedicated	-		Peristaltic I New Tubin	-	Bladder Pump Other_			
Start Purge	Time: <u>090</u>	17	Flow Rate: _	200 ml	/min	Pump Dep	th: 47	<u> </u>		
Time	Temp. (Cor°F)	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
0910	23.1	7.22	3363	121	1.40	112.2	600	30.92		
0913	23.2	7.21	3361	115	1.20	112.8	1200	30.93		
0914	23.4	7.20	3357	७०४	1.01	112.9	1800	30.93		
0919	23.3	7.18	3352	103	0.99	113.7	2400	30.93		
0922	23.3	7.18	3355	102	0.90	112.4	3000	30.93		
0925	23.4	7.18	3358	100	0.95	111.8	3600	30.93		
	-									
Did well	dewater?	Yes (N)		Amount a	actually e	vacuated: .3	600		
Sampling	Time: (930			Sampling	; Date:	10.5.14			
Sample I.	D.: GM	W-0-4			Laborato	ry:	Alpha Analytical			
Analyzed			PHfp VOC's	s MTBE		ofther: 5	iee GC			
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		LIO II	LOW WE	LL MOIN	LUMIN	1 10/11/11			
Project #	: 161004	-DMI		Client:			KMEP		
Sampler:	Kt			Start Date:	10.4	.16			
Well I.D.	: Gmw-	0-5		Well Diam	neter: 2	3 4	68		
Total We	•	49.0	0	Depth to V	Depth to Water: Pre: 3\.43 Post: 31.51				
Depth to	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):				
Reference	ed to:	(PVC)	Grade	Flow Cell	Type:		YSI 556		
Purge Metho Sampling M		2" Grunds Dedicated	-		Peristaltic F	•	Bladder Pump Other_		
Start Purge	Time: <u>09</u> 2	30	Flow Rate: _	300 mc/	min	Pump Dept	th: 47		
Time Cond. (mS/cm or Turbidity D.O. ORP Water Removed (mV) (gals. or mL) Depth to water									
0933	23.9	7.30	1800	32	1.14	174.8	900	31.50	
0936	23.4	7.28	1754	27	1.08	170.3	1800	31.51	
0939	23.1	7.26	1718	12	1.11	171.8	2700	31.51	
0942	22.9	7.27	1715	12	0.73	165.4	3600	31.51	
0945	22.8	7.26	1713	11	0-72	162.3	4500	31.51	
0948	22.8	7.26	1712	10	0.70	1605	5400	31.5	
			· ·						
			:						
Did well dewater? Yes (No) Amount actually evacuated: 5400									
Sampling	Time:	0950			Sampling	, Date:	10.4.16		
Sample I.	D.: <u>G</u>	mw-0	1-5		Laborator	ry:	Alpha Analytical		
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other) S	see Coc		
Fauinmer	nt Blank I I	. ·	@ Time		Duplicate	·ID·			

Equipment Blank I.D.: Duplicate I.D.:

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		LUWI	LOW WE	LLL MONI	HURING	DAIA	SHLLI			
Project #:	: 1610	03-DM	ι,	Client:			KMEP			
Sampler:				Start Date	: 10.5.1	ما				
Well I.D.	: Gmw-	0-14		Well Dian	neter: 2	3) 6 8			
Total We	ll Depth:	48.96)	Depth to V	Depth to Water: Pre: 32.06 Post: 32.14					
Depth to	Free Produ	uct: —	_		Thickness of Free Product (feet):					
Reference		PVO	Grade	Flow Cell			YSI 556			
Purge Metho Sampling M	lethod:	2" Grand	Tubing		Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Time: 1505		Flow Rate: _	300ml/n	11N	_Pump Dep	th:			
Time	Temp.	pН	Cond. (mS/em or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1508	22.0	7.09	1722	29	1.03	160.8	900	32.11		
1511	22.2	7.09	1725	20	0.87	159.3	1000	32.14		
1514	22. 2	7.07	1717	24	0.70	157.9	2700	32.14		
1517	22.3	7.06	1710	23	0.66	156.4	3600	32.14		
1520	22.4	7.04	1708	22	0.57	156.1	4500	32.14		
1523	22.4	7.05	1711	20	0.56	155.5	5400	32.14		
1526	22.4	7.06	1714	20	0.54	156.3	6300	32.14		
Did well o	dewater?	Yes (No)		Amount	actually e	vacuated: (0300		
Sampling	Time: 1	130			Sampling	Date:	0.5.16	70.		
Sample I.l	D.: GMU	u-0-14			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE		Other S	ce Coc			
Equipmen	t Blank I.l	D.: EB-	Z Time	1540	Duplicate	E I.D.:		· · · · · ·		

		LOW F	FLOW WE	ELL MON	ITORING	G DATA S	SHEET		
Project #	: 141003	S-DM L		Client:			KMEP		
Sampler:	K	-		Start Date	: 10.5.16				
Well I.D.	: Gmw-	0-9		Well Dian	neter: 2	3 4) 6 8		
	ell Depth:		٥) ٠	Depth to Water: Pre: 33.03 Post: 33.12					
Depth to	Free Prod	uct: –		Thickness of Free Product (feet): —					
Referenc	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556		
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	-	Bladder Pump Other		
Start Purge	Time: 12	27	Flow Rate: _	300 ML/N	(۱٫٫۰	Pump Dep	th: 48		
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water	
1230	22.4	7.20	2740	22	0.33	149.7	90 O	33.08	
1233	22.6	7.18	2733	20	0.29	150.3	1 % OO	33.10	
1236	22.7	7.17	2738	15	0.27	149.0	2700	33.11	
1239	22.7	7.16	2734	13	0.26	148.7	3600	33.11	
1242	22.7	7.16	2736	11	0.24	147.6	4500	33.12	
							CARAGO NA PARA PARA PARA PARA PARA PARA PARA P		
Did well	dewater?	Yes (No)		Amount	actually e	vacuated: 45	00	
Sampling	Time: 1	245			Sampling	Date:	10.5.16	W	
Sample I.	Sample I.D.: Gmw-o-9				Laborato	ry:	Alpha Analytical		
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:			
Equipmer	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:			

		LOW F	CLOW WE	ELL MONI	TORING	3 DATA	SHEET			
Project #	:161004	-KIT+ 17	mı	Client:			KMEP			
Sampler:	KT			Start Date	: 10.4.1	.6				
Well I.D.	: GMW	-0-10		Well Dian	neter: 2	3 (4	6 8			
Total We	ell Depth:	49.30	(Depth to V	Depth to Water: Pre: 33.13 Post: 33.22					
Depth to	Free Prod	uct: —								
Reference	ed to:	(V)	Grade	Flow Cell	Туре:		YSI 556			
Purge Methors Sampling M	od: ,	2" Grundf Dedicated	-	Peristaltic Pump New Tubing Other						
Start Purge	Time: 135	5	Flow Rate: _	300mc/r	417	_Pump Dep	th: <u>4</u> 7			
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1358	23.8	7.51	2818	30	0.56	190.3	900	33.19		
1401	23.5	7.50	2809	31	0.54	184.7	1800	33.22		
1404	23.5	7.47	2799	27	0.50	182.9	2700	33.22		
1407	23.4	7.47	2801	24	0.48	182.3	3600	33.22		
1410	23.4	7.46	2797	27	0.48	181.6	4500	33.22		
,										
\\				. 100			***************************************	· · · · · · · · · · · · · · · · · · ·		
Did well o	dewater?	Yes (No		Depth to Water: Pre: 33.13 Post: 33.22 Thickness of Free Product (feet): Flow Cell Type: YSI 556 Peristaltic Pump New Tubing Other Pump Depth: 47 Turbidity D.O. (mg/L) (mV) Water Removed (gals. or 2) Depth to water 30 0.56 190.3 900 33.19 31 0.54 194.7 /800 32.22 27 0.50 182.9 2700 33.22 29 0.48 182.3 3600 33.22 27 8.49 181.6 4500 33.22 Amount actually evacuated: 4500 Sampling Date: 10.4.16 Laboratory: Alpha Analytical					
Sampling	Time: /	415			Sampling	g Date:	10.4.16			
Sample I.	D.: Gmi	w-0-1	D		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other: 5	be Coc	**************************************		
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	e I.D.: \(\)	DUP-2			

		2011	2011 112	1110111	CLORUIN	, ,,,,,,,,				
Project #	: 161	1003	-DM(Client:	Client: KMEP					
Sampler:	_ `			Start Date:	: ,	10 - 7	-16			
Well I.D	: Gnw	-0-14		Well Dian	neter: 2	3 <u>(4</u>) 6 8			
Total We	ell Depth:	50	740	Depth to V	Vater:	Pre: 3 1	/しめ Post:	34.22		
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556	V 10 10 10 10 10 10 10 10 10 10 10 10 10		
Purge Meth Sampling M		2" Grundt Dedicated	•		Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Time: 111	<u>o</u>	Flow Rate: _	- Boa	m//m	_Pump Dep	th: <i>48</i> 7			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to water		
1113	23-9	7-30	3101	138	0.36	-94.4	900	34.11		
1114	24.2	7.33	2105	45	0.31	-99.1	1800	34.13		
1119	25.1	7.33	2701	130	0.30	1 '	2700	34.16		
1122	25:3	7.34	2700	33	0.24	-163.2	•	34:19		
1125	25.3	7.35	7489	35.	0,28	-104.7	4500	34.22		
	da — da hadi riyih									
			,							
Did well	dewater?	Yes	No)		Amount a	actually e	vacuated: 5	1.50		
Sampling	Time: \	127			Sampling	Date:	10-7-14			
Sample I.	D.: Gm	٥ -س.	-14		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg Tl	PHfp VOC's	s MTBE		Other:				
Equipmen	nt Blank I.]	D.:	@ Time		Duplicate I.D.: Dage 7					

			20 2	0			<u> </u>		
Project #:	: 16°	1003-	-OM	Client: KMEP					
Sampler:	10	۸		Start Date	: 10-	7-14			
Well I.D.	: hnw	-0-15			neter: 2		<u> </u>		
Total We	ll Depth:	- ~		Depth to V	Water:	Pre: 31	Post:		
Depth to	Free Produ	uct: 30	-92	Thickness of Free Product (feet): つっつ 告 /					
Reference		PVC	Grade	Flow Cell Type: YSI 556					
Purge Metho Sampling M		2" Grundf Dedicated	. /		Peristaltic Pump Bladder Pump New Tubing Other				
Start Purge	Time:		Flow Rate: _			Pump Dep	th:		
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water	
	~o	.081	SPH	letut	4 w/	IH	probe,		
		No	Sarp	e	taler-		,		
							had week north		
				: 			<i>a</i>		
			the Brook Brooks	1000000			1.000		
				,			***************************************		
							LOTATION STORY		
Did well	Did well dewater? Yes No				Amount a	ictually e	vacuated:	WATER STATE OF THE	
Sampling	Time:				Sampling	Date:			
Sample I.D.:				Laboratory: Alpha Analytical					
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:			
Equipment Blank I.D.: @				Duplicate I.D.:					

		LOW F	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: 10	01004	-DM(Client: KMEP						
Sampler:	KT		•	Start Date	: 10.4	-16				
Well I.D	: GWW	·· 0 - 17	[Well Dian	neter: 2	3 (4	68_			
	ell Depth:	y.0h		Depth to V	Depth to Water: Pre: 3\.10 Post: 31.20					
Depth to	Free Prod			Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	(PVC)	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	lethod:	2" Grundf Dedicated	Tubing		Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Time: 1029	8	Flow Rate: _	300 mc/2	rino .	Pump Dep	th: 36			
Time	Temp. °C or °F)	pН	Cond. (mS/cm or us/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or	Depth to water		
1031	22.7	7.25	1813	15	1.01	150.6	900	31.17		
1034	12.6	7.25	1809	12	1.98	147.9	1800	31:20		
1037	22.6	7.25	1806	12	0.53	145.3	2700	31.20		
1040	22.4	7.24	1809	21	0.42	144.3	3600	31.20		
1043	22.6	7.23	1805	20	0.40	142.5	4500	31.20		
***************************************						, Marine year		***************************************		
	1					***				
	-									
Did well	dewater?	Yes (No)		Amount a	actually e	vacuated: 4	500		
Sampling	Time:	1045			Sampling	Date:	10-4-16			
Sample I.	D.: GW	1w-0-	17		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:				
Equipmen	nt Blank I.l	D.:	@ Time	Duplicate I.D.:						

							~ * * * * * * * * * * * * * * * * * * *			
Project #	: [6]	003-R	w (Client: KMEP						
Sampler:				Start Date:	: 10-	6-14	,			
Well I.D.	: limi-	0-18		Well Diam						
Total We	ll Depth:			Depth to V	Vater:	Pre:	Post	•		
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Methor Sampling M		2" Grundfo	<i>_</i>		Peristaltic Pump New Tubing Other					
Start Purge	Time:	/	Flow Rate: _			Pump Dep	th:			
Time	Temp.	pH	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
111111111111111111111111111111111111111	— Ext	Punp	Str	ich N	1 u	el-				

							4 77 6 70 10 10 10 10 10 10 10 10 10 10 10 10 10			
	••••									
Did well	dewater?	Ýas	No		Amount a	ctually e	vacuated:			
Sampling	Sampling Time:				Sampling	Date:	-			
Sample I.I	Sample I.D.:			Laboratory: Alpha Analytical						
Analyzed	Analyzed for: TPHg TPHfp VQC's			's MTBE Other:						
	Equipment Blank I.D.:				Duplicate	I.D.:	/			

		LOWE	LOW ME	LLL MONI	TORING	DAIA	SHEET				
Project #	: 14100	3-0M1		Client: KMEP							
Sampler:	KT			Start Date	: 10.5-11	9					
Well I.D.	: Gmw.	-0-19		Well Dian	neter: 2	3 4) 6 8	<u> </u>			
Total We	ell Depth:	تح م	.90	Depth to V	Depth to Water: Pre: 31.20 Post: 32.33						
Depth to	Free Produ	uct: —	_	Thickness of Free Product (feet):							
Reference	ed to:	PVD	Grade	Flow Cell	Flow Cell Type: YSI 556						
Purge Meth Sampling M	lethod:	2" Grunds Dedicated	Tubing		Peristaltic I New Tubin	g	Bladder Pump Other_				
Start Purge	Time: 1419	β	Flow Rate: _	200ml/	111	Pump Dep	th: 37				
Time	remp. °C or °F)	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ok.mL)	Depth to water			
1421	21.7	7.24	1880	37	0.89	166.7	600	32.28			
1424	21.9	7.24	1863	25	0.74	160.2	1200	32.29			
1427	22.2	7.21	1852	22	0.70	159.8	1800	32.30			
1430	22.2	7.20	1846	18	0.68	160.4	2400	32.32			
1433	22.4	7.20	1844	17	0.67	158.2	3000	32.33			
1436	22.4	7.19	1841	15~	0.65	158.3	3600	32.33			
1439	22.4	7.19	1840	15	0.42	158.9	4200	32.33			

								ANTWOOD - ATT			
Did well	dewater?	Yes (No)		Amount	actually e	vacuated: 4	200			
Sampling	Time: 1	445			Sampling	g Date:	10.5.16				
Sample I.	D.: GMU	19-0-19			Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg T	PHfp VOC'	's MTBE Ophign: See CoC							
Equipmen	nt Blank I.	D.:	@ Time		Duplicate I.D.:						

		LOW F	FLOW WE	ELL MON	ITORING	G DATA	SHEET	Γ		
Project #	: /6	1003	- Om	Client: KMEP						
Sampler:	•		•	Start Date	: /	0-7-	16			
Well I.D.	• •	w-0~7	20	Well Dian	neter: 2	3 4	5 6	8		
Total We	ell Depth:	37		Depth to V	Water:	Pre: 3	3.12	Post:	33.23	
Depth to	Free Produ	uct:		Thickness			•			
Reference	ed to:	EN 0	Grade	Flow Cell	Type:		YSI 55	56		
Purge Method: 2" Grundes Pump Sampling Method: Dedicated Tubing					Peristaltic New Tubir	ıg		der Pump Other_		
Start Purge	Time: \で	40		200	m//aia	_ Pump De	pth:	37'		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)		Removed or D	Depth to wate	
1243	23.9	7.20	2243	189	0.36	-38.1	60	ల	33.15	
1246	८५५	7.23	2268	76	0.31	-89.9	120	90	33.16	
१२५१	25.2	7.25	2274	71	0.29	-91.3	1.8	ט ט	33.18	
1252	25.3	7.24	2279	70	0.25	-93.7	24	UO	33.21	
1255	25.5	7.26	2281	48	0,24	-95-1	300	<i>.</i> 0	33.23	
						·				
Did well o	dewater?	Yes	1		Amount	actually o	evacuate	ed: ଓ)00	
Sampling	Time:	1257			Sampling	g Date:	10.7	-16		
Sample I.l	D.: G~	w -0 -	20		Laborato	ory:	Alpha A	nalytical		
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:	tmn	A		
Equipmen	nt Blank I.I	D.:	@ Time	Duplicate I.D.:						

		LOW I	LOW WE	LL MON	HURING	DAIA	SHEET			
Project #	: 161	003-	0~1	Client: KMEP						
Sampler:				Start Date	: 10-	7-14				
Well I.D.	: 4mu	-0-21		Well Dian	neter: 2	3 4	6 (8)_			
Total We	ell Depth:	45.3		Depth to V	Water:	Pre: 33	. 45 Post:	33.47		
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	€VC	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M		2" (Grindf Dedicated			Peristaltic l New Tubin	-	Bladder Pump			
Start Purge	Time: 07	15	Flow Rate: _	500	m/mn	_Pump Dep	th: 40'			
Time	Temp.	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or	Depth to water		
0718	23.1	7.21	3110	381	0.41	-129.4	1500	33.45		
0721	23,2	7.25	3118	270	0.40	-131.5	3000	33.46		
0724	23.2	7.24	3127	57	0.38	-138.3	4500	33.46		
רגדס	23,2	7.27	3131	55	0.34	-140.1	6000	33.47		
0730	23.3	7.27	3134	53	0.35	-)42.4	7500	33,47		
							and the second s			
						-				
140000										
Did well	ldewater?	Yes	(To)		Amount	actually e	vacuated: 7	! !.5L		
Sampling	Time:	0733			Sampling	g Date:	10-7-14	· ·		
Sample I.	D.: Gm	w-0-21			Laborato	ry:	Alpha Analytical			
Analyzed	<u>*</u> _		PHfp VOC'	s MTBE	MTBE Other: Seel Co.					
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate I.D.:					

		LUWI	CLOW WE	TT MON	LIORING	3 DATA	SHEET			
Project #	: 16/6	007.	Omi	Client:	Client: KMEP					
Sampler:		Dr		Start Date	•	10-	7-14			
Well I.D.	: Gr	w-o-	23	Well Dian	neter: 2	3 4) 6 8			
Total We	ell Depth:	3 <i>t</i> .	50	Depth to V	Depth to Water: Pre: 34.90 Post: 34.98					
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	rve	Grade	Flow Cell	Type:		YSI 556	···		
Purge Meth Sampling M		2" Grandi Dedicated	-		Peristaltic New Tubin	-	Bladder Pump Other			
Start Purge	Time: 2	<i>30</i>	Flow Rate: _	zos mi	/min	_Pump Dep	oth: 38'			
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nd)	Depth to water		
1203	26.3	7.09	1893	387	0.40	-84.2	600	37.93		
1204	24.3	7./3	1899	દ ૧	0.23	-87.7	1200	34.95		
1209	24.0	7.15	/9/7	೪೬	0.21	-91.3	1800	34.96		
1212	24.0	7./7	1915	77	0.17	-72.5	2400	34.97		
1215	25.9	7.18	1914	83	0.18	-93.0	3000	37.98		
	1.00									
Did well	dewater?	Yes	<u> </u>		Amount	 actually e	evacuated: _	<u> </u> }ر		
Sampling	Time:	1217	··· 		Sampling	g Date:	12-7-16	WHE		
Sample I.	D.: (, m	w-0-	23	P. C.	Laborato	ry:	Alpha Analytical			
Analyzed		TPHg T		's MTBE Other:						
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	e I.D.:		All and the second of		

Project #	: 161004	-KT1		Client:			KMEP			
Sampler:				Start Date	: 10.4.16					
Well I.D.	: Gmw	-024		Well Dian	neter: 2	3 (4	68_	_ .		
	ll Depth:			Depth to V	Water:	Pre: 32	2.39 Post:	32,45		
Depth to	Free Produ	uct:		Thickness of Free Product (feet):						
Reference	ed to:	PVC)	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Methors Sampling M	od: lethod:	2" Grunda Dedicated	•		Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Time: 1258)	_Flow Rate: _	300 mc/1	uin	_Pump Dep	th:43 ⁻			
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1301	21.0	7.07	2005	131	0.83	39.6	900	32.41		
1304	21.0	7.10	2000	129	0.77	39.1	1800	32.44		
1307	21.0	7.11	2011	120	0.72	37.8	2700	32.45		
1310	21.1	7.10	2006	138	0.68	37.5	3600	32.45		
1313	21.1	7.08	1998	350	0.66	36.9	4500	32.45		
1314	21.0	7.0%	1995	43.80	0.67	37.4	5400	32:45		
**************************************	,					11.100.0	MATERIAL STATE OF THE STATE OF			
				La calaboration de la constitución			N. M. C.			
Did well	dewater?	Yes (No		Amount	actually e	vacuated: 5	400		
Sampling	Time: 17	320			Sampling	g Date:	10.4.16			
Sample I.	D.: GM	w-02	4	e de la companya de	Laborato	ry:	Alpha Analytical			
Analyzed	· · · · · · · · · · · · · · · · · · ·	ТРНg Т		"s MTBE Other: See GC						
Equipmen	nt Blank I.	D.:	@ Time		Duplicate I.D.: Dup-1					

		LOWF	LOW ME	LLL MON	TORING	DATA	SHEET		
Project #	: 16100	3-DM	1	Client:			KMEP		
Sampler:	K	Т		Start Date	: 10.5	ط1.			
Well I.D.	: Gmu	1-SF-7		Well Dian	neter: 2	3 (4	6 8		
Total We	ll Depth:	43.7	10	Depth to V	Vater:	Pre: 3	3.72 Post:	33.82	
Depth to	Free Prod	uct: —		Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade	Flow Cell	Туре:	<u></u>	YSI 556		
Purge Methors Sampling M		2" Grundf Dedicated			Peristaltic I New Tubin	•	Bladder Pump Other_		
Start Purge	Time: 1140)	Flow Rate: _	300 MC	MIN	_Pump Dep	th: 40-		
Time	Temp.	pН	Cond. (mS/cm or uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Reinoved (gals. or mL)	Depth to water	
1143	23.5	7.10	1505	6	1.37	131.0	900	33.79	
1146	23.9	7.07	1513	5	1.19	123.4	1800	33.81	
1149	24.3	7.00	1502	5	1.06	114.2	2700	33.82	
1152	24.5	7.05	1518	4	0.97	108.0	3600	33.82	
1155	24.6	7.05	1522	4	0.95	107.0	4500	33.82	
1158	24.5	7.05	1524	4	0.93	106.8	5400	33.82	
					·				
Did well	dewater?	Yes (No		Amount a	actually e	vacuated:	4500	
Sampling	Time: 1	150			Sampling	Date:	10.5.16		
Sample I.	D.: GMU	u-SF-	7		Laborato	ry:	Alpha Analytical		
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other.	See CoC		
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate I.D.:				

Tri.

		LOW	FLOW WE	CLL MONI	ITORIN(3 DATA	SHEET	•			
Project #	: 16100.	3-DM1		Client: KMEP							
Sampler:	KT			Start Date	: 10.5.	طا					
Well I.D.	: GMW-	sF-8		Well Dian	neter: 2	3 4) 6 8				
	ll Depth:	43.70)	Depth to V	Depth to Water: Pre: 35.01 Post: 35.13						
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556				
Purge Meth Sampling M	lethod:	2" Grundf Dedicated	Tubing		Peristaltic I	g	Bladder Pump Other_				
Start Purge	Time: 100	٥٥	_Flow Rate: _	300 ML	/min	_Pump Dep	th: 40				
Time	Pemp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water			
1003	23.2	7.30	1775	25	1.54	145.5	900	35.10			
100%	23.1	9.28	סררו	20	1.32	145.0	1800	35.11			
1009	23 · \	7.23	1772	18	1.27	143.6	2700	35.12			
1012	23 ·\	7.24	1771	14	1.23	144.2	3600	35.12			
1095	23.0	7.26	1768	13	1.19	143.9	4500	35.13			
1018	23.0	7.26	1764	10	1.18	143.2	5400	35.13			
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i digita in the second of the				
	M. A. M.						***************************************				
Did well	dewater?	Yes	No		Amount	actually e	vacuated: 5	400			
Sampling	Time:	020			Sampling	g Date:	10.5.16				
Sample I.	D.: Gmu	1- SF-	-3		Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE Other:							
Equipmen	nt Blank I.]	D.:	@ Time	Duplicate I.D.:							

p				TTT MONI	HURING	y DAIA	SHEET			
Project #	: 1410 6	3-DMI		Client:			KMEP			
Sampler:	KT			Start Date:	: 10.0	5-16				
Well I.D.	: HL-	2		Well Diam	neter: 2	3 4) 6 8			
Total We	ell Depth:	38.24		Depth to V	Depth to Water: Pre: 35.17 Post: 35.23					
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	KO)	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M		2" Grund			Peristaltic Pump New Tubing Other					
Start Purge	Time: 130	0°8	_Flow Rate:	200 mc/	Mir	_Pump Dep	th: 37	<u></u>		
Time	femp. (°C or °F)	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1311	24.1	6.39	3363	7/000	0.17	155.3	600	35.19		
1314	24.2	6.88	3367	71000	0.62	156.2	1200	35.21		
1317	24.2	4.89	3365	71000	0.57	155.9	1800	35.22		
1320	24.3	6.89	3364	71000	0.45	155.5	2400	35.22		
1323	24.3	6.89	3360	7 1000	0.46	155.4	3000	3 5.23		
1326	24.3	6.89	3362	71000	0.44	155.2	3600	3 5.23		
							:			
			:							
						٠		The state of the s		
Did well d	lewater?	Yes (No)	n en	Amount a	actually e	vacuated: 3	600		
Sampling	Time: 1	1330			Sampling	Date:	10.5.16			
Sample I.I	D.: HI	L-Z	***************************************	Annie	Laborator		Alpha Analytical	70.000		
Analyzed	for:	TPHg TP	PHfp VOC's	s MTBE		Other: S	ee Coc			
	t Blank I I	D ·	<u>@</u>		Duplicate	·ID·D	10-7			

		LOWE	CLOW WE	LLL MON	TORING	J DATA	SHEET			
Project #	: 16doc	3- DA	n (Client:			KMEP			
Sampler:	Dm		59.0	Start Date	•	10-6	-16	-		
Well I.D.	: HL-	-3		Well Dian		•	7 6 8			
Total We	ell Depth:	41.	40	Depth to V	Depth to Water: Pre: 37.22 Post: 37.28					
Depth to	Free Produ	uct:		Thickness of Free Product (feet):						
Reference	ed to:	We?	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Methors Sampling M	lethod:	2" Grundf Dedicated	Tubing		Peristaltic I New Tubin	g	Bladder Pump Other			
Start Purge	Time: <u></u> 也を	') てて	Flow Rate: _	2002	1/mm	Pump Dep	th: 40.51			
Time	Temp.	рН	Cond. (mS/cm or µ8/6m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 🕦)	Depth to water		
0825	23.1	7-19	2991	457	0.91	-73.9	les	37.22		
08 28	73.3	7.30	3057	401	७.६५	-79-1	1200	37.23		
0831	23.5	7.31	3059	350	0,80	-801	1800	37.24		
0834	~3.%	7.33	3064	348	0.80	-82-3	2400	37.25		
0827	23-9	7.35	3069	352	0.77	~87.1	3000	37.28		
Did well o	dewater?	Yes	160		Amount a	actually e	vacuated: 3	<u>_</u>		
Sampling	Time:	0840			Sampling	;Date: /	0-6-14			
Sample I.l	D.: H	L-3			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:	MMA			
Equipmen	ıt Blank I.I	D.:	@ Time		Duplicate	e I.D.:				

		LUWI	LLOW WE		IONING	DAIA	SILLEI			
Project #	: 16	1003-	Day	Client:			KMEP			
Sampler:	Ø ~			Start Date	•	15.5	-14			
Well I.D.	: MW-6			Well Dian	neter: 2	3 4	6 8			
Total We	ell Depth:	51	. 72	Depth to V	Depth to Water: Pre: 35.13 Post: 35.30					
Depth to	Free Prod	,		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	Eve	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	•	Bladder Pump Other_			
Start Purge	Time: 100	٥ .	Flow Rate: _	500 K	1 Jun	_Pump Dep	th: 42/			
Time	Temp.	pН	Cond. (mS/cm or µS/Sm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. o(m).)	Depth to water		
1003	23./	7.05	2391	10	0-77	-49.7	1500	35.18		
1004	23,0	695	2305	8	0-71	-53.1	3000	35,20		
1009	22.7	691	2310	5	0.70	-55.2	4500	35,22		
1012	22.7	6.90	2313	5	0,10	-57.0	le o vo	35.75		
1015	21.5	6.93	2315	9	0,69	-58.1	7500	35,30		

=										
Did well	dewater?	Yes	(N)		5 0.7° -55.2 4500 35.22 5 0.7° -57.0 6000 35.25					
Sampling	Time:	רום			Sampling	Date: 10	0/5/16			
Sample I.	D.: me	-Ge			Laborato	ry:	Alpha Analytical	- 100		
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:	THN A			
Equipmen	nt Blank I.I	D ·	@		Duplicate	e I.D.:				

		~~ ., ~		I.X O I 12			~			
Project #	: 1610	003-00	~(Client:	nt: KMEP					
Sampler:	Dn			Start Date:	•	10-5	-14	164		
Well I.D.	: MW-	7		Well Dian	neter: 2	3 /5	6 8			
Total We	ll Depth:	53	.51	Depth to V	Depth to Water: Pre: 37.90 Post: 38.10					
Depth to	Free Produ			Thickness of Free Product (feet):						
Reference	ed to:	(V)	Grade	Flow Cell	Type:		YSI 556			
Purge Method: 2" @mdfos Pump Sampling Method: Dedicated Tubing				Peristaltic Pump New Tubing Other						
Start Purge	Time:	10	Flow Rate: _	76 S	00 M/m	/ . Pump Dep	th: 48'			
Time	Water Removed (gals. or fil.)	Depth to water								
1123	23.1	7.11	2511	5	0,61	-71.4	1500	38.00		
1124	23.2	7.14	2537	છ	0,57	-78.1	3600	38.02		
1129	27-3	7-16	2541	t y	0,54	-81.1	4500	38.05		
1132	23.q	7-17	2543	5	0,54	-82.3	(e <i>001</i>	38.05		
1135	23.5	7.17	2544	5	0.53	-83.1	7500	38.10		

•										
Did well	dewater?	Yes (Do.		Thickness of Free Product (feet): Flow Cell Type: Peristaltic Pump New Tubing Other 1500 M/L. Pump Depth: Turbidity (NTUs) (mg/L) (mV) (gals. or fill) Depth to water (mV) (gals. or fill) Depth to water 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 Amount actually evacuated: Sampling Date: Va-5-1k Laboratory: Alpha Analytical					
Sampling	Time:	1137			Sampling	g Date:	10-5-14			
Sample I.	D.: γ	7w-7			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg Tl	PHfp VOC's	s MTBE		Other:	ANA			
Equipmer	nt Blank I.I	D ·	@		Duplicate	e I.D.:				

		LOW F	LOW WE	ELL MONI	TORING	s DATA	SHEET			
Project #	: 161003	5-DM1		Client: KMEP						
Sampler:	KT			Start Date:	: 10.5.	16				
Well I.D.	: MM- ત	>		Well Dian	neter: 2	3 4	6 8 _			
	ell Depth:	51.90	>	Depth to Water: Pre: 34.20 Post: 34.31						
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):			
Referenc	ed to:	evc)	Grade	Flow Cell	Type:	-1,000	YSI 556			
Purge Meth Sampling M		2" Grund Dedicaced	•		Peristaltic Pump New Tubing Other					
Start Purge	Time: 105	છ	Flow Rate: _	300 mc/	min	_Pump Dep	th: 48			
Time	femp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1101	23.5	7.04	1664	23	1.84	148.6	900	34.29		
1104	23.8	٥٥.٢	1663	14	1.66	148.1	1800	34.31		
1107	24.2	7.00	1665	10	1.40	148.0	2700	34.31		
1(10	24.4	7.00	1662	8	1.39	147.6	3600	34.31		
1113	24.4	7.00	1660	8	1.40	147.2	4500	74.31		
1116	24.7	7.01	1458	7	1.38	140.9	5400	34.31		
1119	24.8	7.00	1654	7	1.37	146.5	6300	34.31		
					-					
1018 0001				~ .						
Did well	dewater?	Yes (No		Amount	actually e	vacuated: 6	300		
Sampling	Time:	1122			Sampling	g Date:	10.5.16			
Sample I.	D.: Mu	1-8	ivi		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg Tl	PHfp VOC'	s MTBE		Other: S	ee Coc			
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		LOW	DOW WE	JUL MON	UIUIII	DALA			
Project #	: 16	1003-	-Dug	Client:			KMEP		
Sampler:	DM			Start Date:	: 10-	5-16			
Well I.D.	: Mw	-9		Well Diam	neter: 2	3 4	<u> </u>	,	
Total We	ll Depth:	51.	87	Depth to V	Vater:	Pre: 33	56 Post:	33.43	
Depth to	Free Produ	uct:	***************************************	Thickness	of Free P	roduct (fe	eet):		
Reference	ed to:	6	Grade	Flow Cell	Туре:		YSI 556	W/W/W1A.W.	
Purge Methors Sampling M	lethod:	2" Grund Dedicated	Tubing		Peristaltic Pump New Tubing Other Pump Depth: 45'				
Start Purge	Time: / 30	0	Flow Rate: _	500 M/	/mm	Pump Dep	th: <u>45</u>		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (11))	Depth to water	
1303	2.2.9.	7.10	3143	63	0,83	-29.1	1500	33,60	
1306	29.4	7.70	3149	51	0,75	-79.4	3000	33,60	
1309	261	7.17	3150	48	0,71	-45.4	4500	33,60	
1312	26.1	7.14	3157	45	0.10	-48.1	Cosi	33,61	
1315	UL	7.15	3161	41	0,70	-44.4	1500	33,67	
ų									
,									
							***************************************	Constituted and Constitution of the Constituti	
Did well o	dewater?	Yes (No		Amount a	actually e	vacuated:	7.51	
Sampling Time: 1317 Sampling Date: 10-5-16									
Sample I.	D.: MW	-9			Laborator	ry:	Alpha Analytical		
	Analyzed for: TPHg TPHfp VOC's MTBE Other:								
———— Equipmen	t Blank I.I	D.:	@ Time	***************************************	Duplicate	e I.D.:		*,	

		TOW I	LUW WE	TT MOM	HURING	DAIA	SHEET			
Project #	: 161003-	-DM(Client: KMEP						
Sampler:	KT			Start Date	: 10.5.1	6	_			
Well I.D	: MW-17	2.		Well Dian	neter: 2	3 A	6 8			
Total We	ell Depth:	52.02		Depth to V	Depth to Water: Pre: 35.84 Post: 35.83					
Depth to	Free Prod	uct:		Thickness of Free Product (feet):						
Referenc	ed to:	PVC	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Meth Sampling M		2" Grand Dedicated	Tubing		Peristaltic Pump New Tubing Other					
Start Purge	Time: 074	5	_Flow Rate: _	300 m/n	۸۱۲	Pump Dep	oth: 50			
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. otml)	Depth to water		
0748	22.0	7.19	1034	9	1.65	22.2	400	35.92		
0751	22.5	7.15	1053	8	1.47	18.0	1800	35.93		
0754	22.7	7.14	1054	8	1.37	16.9	3600	35.93		
0757	22.7	7.14	1060	7	1.35	17.2	4500	35.93		
0900	22.8	7.14	1057	5	1.34	17.0	5400	35.93		
***************************************				***************************************						
*****		,								
Did well	dewater?	Yes	(Vo)		Amount a	actually e	evacuated: 59	100		
Sampling	Time: 09	805			Sampling	Date:	10.5.16			
Sample I.	D.: MW	-12			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE		Other	See Coc			
Equipmer	nt Blank I.l	D.:	@ Time		Duplicate	i.D.:				

		LUWF	TOM ME	TTT MOM	LIUKING	r DATA (SHEET	
Project #:	: 161	003-	DMI	Client:			KMEP	
Sampler:	DW.			Start Date:	: /c	0-6-	14	
Well I.D.	: Mw-	18 (MI	0)	Well Diam	neter: 2	3 4	9 6 8	
	ll Depth:	65.5	,	Depth to V	Vater:	Pre: 4	0.93 Post:	40.98
Depth to	Free Produ	uct:		Thickness	of Free Pi	roduct (fe	et):	
Reference	ed to:	ÓC	Grade	Flow Cell	Type:		YSI 556	
Purge Metho Sampling M		2" Gundfe Dedicated			Peristaltic F	•	Bladder Pump Other_	
Start Purge	Time: <u>17</u>	130	Flow Rate: _	500 N	1//~~	Pump Dept	th: 601	
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water
1233	25-5	7.04	1519	5	0.82	-22.4	1500	40.93
1236	25-8	7.10	1530	4	0,80	-78.1	3000	40.93
1239	25-9	7.11	1530	6	0.75	-55.1	4500	40.95
1242	26.1	7-13	1533	5	0.73	-57.4	6000	40,94
1245	27.0	7.15	1535	4	0.71	- 58.9	7500	40.98
								4 .
								.,
Did well o	lewater?	Yes (No)		Amount a	actually e	vacuated:	7.5L
Sampling	Time: [246			Sampling	Date:	10-6-1	6
Sample I.l	D.:		(MID)		Laborator	ry:	Alpha Analytical	
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:		
Equipmen	ıt Blank I.I	D ·	@ Time		Duplicate	e LD.:		

		LOW I	FLOW WE	LL MON	ITORING	DATA	SHEET			
Project #	: 16 to	03-11-	~1	Client:			KMEP			
Sampler:	`			Start Date	: 10	-5-14	é			
Well I.D.	: Ma-1	19 (MI	(4	Well Dian	neter: 2	3 4	> 6 8 _			
Total We	ell Depth:	<i>6</i> 2		Depth to V	Depth to Water: Pre: 40.60 Post: 40.70					
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (fe	eet):			
Referenc	ed to:	PVQ	Grade	Flow Cell	Type:		YSI 556			
	Iethod:	2" Crundi Dedicated	_	1500	Peristaltic I New Tubin	g	Bladder Pump Other_ th:S7 /			
T Turge	T) /				T ump Bep				
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water		
1040	23.4	7.20	2099	10	0.70	-841	1500	40.62		
1043	23.4	7.00	2110	8	0.65	-83.7	3600	40.64		
1046	23,5	7.18	2113	4	0.61	-85.7	4506	40.67		
1049	23.5	7.15	2115	4	0.60	-88.1	6000	40,68		
1052	23.5	7.15	2119	3	0.59	-88.9	7500	40,70		
i	Las vice surviva									
			11000000							
Did well	dewater?	Yes (Ñø		Amount	actually e	vacuated: 7, 5	- L		
Sampling	Time:	1055			Sampling	Date:	10-5-14	72		
Sample I.	D.: Mu	n) -19 (r	110)	, MANAGE TO THE STATE OF THE ST	Laborato	ry:	Alpha Analytical	· · · · · · · · · · · · · · · · · · ·		
Analyzed	for:	TPHg T		s MTBE		Other:				
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		LOW F	LOW WE	LL MON	ITORING	DATA	SHEET	Water Marie		
Project #	: 16	1003-	DM1	Client:			KMEP			
Sampler:	∂M			Start Date	: /0	-5-1	16			
Well I.D.	: MW	-20(1	M!D)	Well Dian	,	_				
Total We	ll Depth:	<i>51.</i>	41	Depth to V	Depth to Water: Pre: 38.22 Post: 38.40					
Depth to	Free Prod	uct:		Thickness	of Free Pr	roduct (fe	eet):			
Reference	ed to:	PVO	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling Months Purge	lethod:	2" (Turdf Dedicated 130	Tubing	500 1	Peristaltic I New Tubin	g	Bladder Pump Other_ th:			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. orm))	Depth to water		
0953	22.9	7.27	2819	36	0.71	705.3	1500	38.23		
0936	23.1	7.31	2821	10	6,70	-//o, i	3000	38-34		
6939	23.3	7,33	2827	5	0.65	-113.2	4500	38.35		
0942	23.4	7.33	2827	5	0,69	-115.3	6000	38-37 38.40		
0945	23.5	7.35	2831	3	0,62	-112-1	7500	38.40		
		4007444W00100000000								
								4-2-		
Did well dewater? Yes Amount actually evacuated: ER 7.5%										
Sampling Time: つうり Sampling Date: / つ/ 5/1 Laboratory: Alpha Analytical										
Sample I.	D.: Mu	س) 20 (س	-7P)		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI		s MTBE	w maneer 244	Other:	e (, u.			
Equipmer	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		LOW F	LOW WE	ELL MONI	TORING	G DATA	SHEET			
Project #:	161	003DN	\]	Client:		74.0	KMEP			
Sampler:	DM			Start Date:	: 1	0-5-1	6			
Well I.D.	: Mw.	21 (MIS	>)	Well Diam	neter: 2	3 4	0 6 8			
Total We	ll Depth:	62.	15	Depth to V	Depth to Water: Pre: 37.97 Post: 37.99					
Depth to	Free Produ	ıct:		Thickness	of Free P	roduct (fe	et):	3		
Reference	ed to:	O	Grade	Flow Cell	Type:		YSI 556			
Purge Metho Sampling M		2" Gamdf Dedikated	-		Peristaltic l New Tubin	-	Bladder Pump Other			
Start Purge	Гіте: <u>(</u>	450	Flow Rate: _	500 10	1/m	_Pump Dep	th: 58 ′			
Time	Temp.	рН	Cond. (mS/cm or µSom)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n ①)	Depth to water		
1453	23.4	7.30	2205	17	0.49	- 40.7	1500	37.85		
1456	24.7	7.24	2219	10	0,75	-70.4	3000	37. tr		
1459	24.9	7,10	2222	В	0.45	-71.5	0024	37.89		
1502	25.3	7.19	22.14	10	0,43.	-12.3	6000	37.91		
1505	25.4	7.18	2214	8	0.49	-73.7	7500	37.94		
		-								
	****		1000 A M II							
							· · · · · · · · · · · · · · · · · · ·			
			LANGUAGO I				1.17.17.17.17			
							2	SL		
Did well o	dewater?	Yes	<u>(19</u>		Amount	actually e	evacuated:			
Sampling	Time: /	507			Sampling	g Date:	10-5-10	,		
Sample I.	D.: MW-	(D)		Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg Tl	PHfp VOC'	s MTBE		Other:				
_		~~	- @	120						

Equipment Blank I.D.: FB-3[@] Time 1525 Duplicate I.D.:

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		20112	2011 112	222 112 01 12	Z O Z CZZ 1 O		OARDE A			
Project #	: 16	1003	~0M1	Client: KMEP						
Sampler:				Start Date:	: sc	· - 7 - 1	6			
Well I.D.				Well Diam	neter: 2	3 4	<u> </u>			
Total We	ll Depth:		_	Depth to V	Depth to Water: Pre: 34,22 Post: —					
Depth to	Free Prod	uct: 34	.30	Thickness of Free Product (feet): 🗢 🌣 🖰						
Reference	ed to:	(eve	Grade	Flow Cell	Туре:		YSI 556	***************************************		
Purge Methors Sampling M		2" Grundf Dedicated	-		Peristaltic P New Tubing		-			
Start Purge	Time:	-/-	Flow Rate: _			Pump Dep	4 6 8			
Time	Temp. (°C or °F)	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)		Depth to water		
	-0.0 No	91	SPH J	e texted	w/		prose			
274, 30, 30 914 94, 40 970 9	\mathcal{N}_{s}	3,	mple -							
							····			
								ANNO SALAMONA A		
			1	,						
Did well	dewater?	Yes	No		Amount a	ctually	vacuated:	-		
Sampling	Time:		/_		Sampling	Date.	water			
Sample I.D.:					Laborator	·y:/	Alpha Analytical	***		
Analyzed	for:	TPHg /TI	PHfp VOC's	s MTBE		Other:	y			
Equipmen	t Blank I.I	D.:/	@		Duplicate	I.D.:				

Equipment Blank I.D.: Duplicate I.D.:

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		LOW F	FLOW WE	ELL MONI	ITORING	G DATA	SHEET	•		
Project #	: /6/	1003-1	Ong	Client:			KMEP			
Sampler:	DM			Start Date	: J	0 - 7	-16			
Well I.D.	: Mw.	- SF-1		Well Dian	neter: 2	3 4	> 6 8			
Total We	ll Depth:	42-5	6	Depth to V	Depth to Water: Pre: 39.20 Post: 39.25					
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):			
Reference	ed to:	Pye	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M	lethod:	2" Grur@ Dedicated	-		Peristaltic I	-	Bladder Pump Other_			
Start Purge	Time: <u>ゆ</u> り	33	Flow Rate: _	200 NI	/~ in	_Pump Dep	th: <u>42</u> ′			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or QL)	Depth to water		
0936	251	7.27	3197	41	0.51	-116.3	600	39.23		
0939	25.4	7.30	3208	30	0.50	-118.4	1200	39.24		
0942	25.6	7.31	3217	35	0,47	-119.5	1600	39.24		
0945	25-7	7.30	3230	32	0,45	120.4	2400	39.24		
0948	25.8	7.32	32-37	29	6.45	-121.5		3 9.25		
0951	25-9	7.32	3240	27	0,44	-122-3	36	39.25		

# 1 AM 1 A										
Did well	dewater?	Yes	No No		Amount a	actually e	vacuated: 3	66		
Sampling	Time:	Mw-5	F1A		Sampling	g Date:	10-7-14			
Sample I.		0953	V		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE		Other:	MNA			
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate	e İ.D.:	7			

Project #	: /4	10.03-	J~-1	Client: KMEP							
Sampler:				Start Date	Start Date: 10.7-16						
Well I.D.	: Mw	- SF -6	·{	Well Dian	neter: 2	3 C 4	O 6 8 _				
Total We	•	42.		Depth to V	Depth to Water: Pre: 41.35 Post: —						
Depth to	Free Produ			Thickness	Thickness of Free Product (feet):						
Reference	ed to:	(PVC)	Grade	Flow Cell	Type:		YSI 556				
Purge Metho Sampling M		2" Grundfo Dedicated	•		Peristaltic Pump New Tubing Bladder Pump Other Other						
Start Purge	Гіте: <u>\3</u>	,23	Flow Rate: _			_Pump Dep	oth:				
Time	Temp. (O or °F)	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water			
•	·					,					
1320	27.0	שו. ד	2680	298	0.43	-108.6					
					• .						
	-I.S	sff EC	12n +	wut	+ +0	<i>م</i> ر, د	_				
		- G~.	s 5.	mple	ture	-					
Did well o	dewater?	Yes	<u></u> €		Amount a	actually e	vacuated: -				
Sampling	Time:	1320			Sampling	g Date: /	10-7-16	•			
Sample I.I	D.: M.	w - SF .	-4		Laborato	ry:	Alpha Analytica	1			
Analyzed			PHfp VOC's	s MTBE Other:							
Equipmen	nt Blank I.I	 D.:	@ Time	Duplicate I.D.:							

						<i>-</i>				
Project #	: N	2100	3 - DMI	Client: KMEP						
Sampler:	•			Start Date	: /2	>-7-1	б			
Well I.D	: Mw	-5F-(ę	Well Dian			•			
Total We	ell Depth:	41	.50	Depth to V	Water:	Pre: 3 &	3,45 Post:	38.54		
Depth to	Free Prod	uct:		Thickness of Free Product (feet):						
Referenc	ed to:	P P	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Meth Sampling M		2" Grand Dedicated	-		Peristaltic Pump Bladder Pump New Trubing Other					
Start Purge	Time:/0	20	Flow Rate: _	204 m/	/= jh	_ Pump Dep	th: 41.51			
Time	Temp.	pН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 🐿)	Depth to water		
1023	26.1	7.23	2189	7/000	0.21	-154.7	600	38.47		
1026	26.1	7.23	2257	71000	0.20	-158.1	1200	38.49		
1029	26.0	7.20	2263	71000	0.11	-161.3	1800	38.51		
1032	25-9	7.11	2269	71000	0.18	-162.5	24 00	38.53		
1035	25.9	7.19	2212	>1000	0.18	-/63.0	3000	38.54		
			·							
								Service Control of the		
Did well	dewater?	Yes (No	,	Amount	actually e	vacuated: 3	L		
Sampling	Time: (037			Sampling	g Date: /	10-7-16			
Sample I.	<u> </u>	۷ - ۲۶	4	Laboratory: Alpha Analytical						
Analyzed	_		PHfp VOC's	s MTBE	W	Other:	+ MN4			
	nt Blank I.l	D.:	@ Time	Duplicate I.D.:						

			2011 112								
Project #	: 16i	>03- <i>0</i>	~-1	Client:	Client: KMEP						
Sampler:				Start Date:	10	-3-1	6				
Well I.D.	: Mw-	SF -9		Well Diam	eter: 2	3 4	6 8	_p rised to			
Total We			_	Depth to V	Depth to Water: Pre: 7 Post:						
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):						
Reference	ed to:	PVC	Grade	Flow Cell	Туре:		YSI 556				
Purge Methors Sampling M	/	2" Grundf Dedicated	•		Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Pime:		Flow Rate: _			_Pump Dep	th:				
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water			
	-	luras	le to	Acce	55 Strice	well					
		due	70	Cen	stries	Sen					
		:			-		A MARKAGA				

	ALPANIA.		***************************************								
Did well dewater? Yes No				/	Amount :	actually e	evacuated:	<u> </u>			
Sampling Time:				Sampling	g Date:						
Sample I.D.:			Laboratory: Alpha Analytical								
Analyzed for: TPHg TPHfp VOC				s MTBE		Other:					
Equipment Blank I.D. @					Dunlicate	/ e I.D.:					

Equipment Blank I.D.: Duplicate I.D.:

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		LOW I	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: /	61003	3-DM	Client:	KMEP					
Sampler:	D~	1		Start Date	Start Date: 10 - 7 - 14					
Well I.D.	.: MW.	-SF-1	 3.	Well Dian	neter: 2	3 4	6 8			
Total We	ell Depth:	38,	10	Depth to V	Depth to Water: Pre: 34.20 Post: 34.38					
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	PYC	Grade	Flow Cell	Type:	***************************************	YSI 556			
Purge Meth Sampling M Start Purge		2" Grundf Dedicated		200 ml/	Peristaltic Pump Bladder Pump 202 M/New Tubing Other Pump Depth: 38'					
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or tol.)	Depth to water		
0803	22.3	7.31	3415	87	0-27	-151.7	600	34.25		
0306	22.7	7.30	3419	85	0.20	-160.3	nos	34.27		
0809	22.7	7.27	3431	120	0.20	-165.2	.1800	34.31		
0812	22.8	7.27	3437	110	0.17	-166.4	2400	34.35		
0815	22.9	1.25	3440	Jio ·	0-15	-167.1	3000	34.38		
						,				
			.							
Did well	dewater?	Yes	No		Amount	actually e	vacuated: 2	3-		
Sampling	Time: 6	0017			Sampling	g Date:	10-7-14	, ,		
Sample I.	D.: M	J-5F-1	3		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE	ITBE Other:					
Equipmen	nt Blank I.	D.:	@ Time		Duplicate I.D.:					

Project #	: 16	1003-	Oni	Client: KMEP							
Sampler:	Pm			Start Date	: /e	>-7-1	4				
Well I.D.	:MuSF-	-15		Well Dian			> 6 8 <u> </u>				
Total We	ll Depth:	41.	10	Depth to V	Depth to Water: Pre: 39.54 Post: —						
Depth to	Free Prod	uct:	******	Thickness of Free Product (feet):							
Referenc	ed to:	PVO	Grade	Flow Cell	Type:	**************************************	YSI 556				
Purge Meth Sampling M Start Purge	lethod:	2" Grundf Dedicated	Tubing		Peristaltic Pump New Tubing Pump Depth: Pump Depth:						
Time	Temp.	рН	Cond. (mS/cm or µS/om)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water			
1330	26.8	7.29	1951	514	0.31	-121.0	<u></u>	<u>.</u>			
· .											
	<u></u>	insuff	rcient	Water	+	orge.	Gres	. `			
		lasuft Sampl	to l	<u></u>		. ,		. :			
		•									
							Manufacture and the second second second second second second second second second second second second second				
Did well	dewater?	Yes (No)		Amount	actually e	vacuated: ,				
Sampling	Time:	1330			Sampling	g Date:	10-7-1	14			
Sample I.	D.: M	w - 51	15		Laborato	ry:	Alpha Analytical				
Analyzed	for:	TPHg TF	PHfp VOC's	s MTBE		Other:		TOTAL LANGUAGE			
Equipmen	t Blank I.I	D.:	@ Time		Duplicate I.D.:						

		LOW I	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: 16100	3-0M	- 1	Client:			KMEP			
Sampler:	M			Start Date	: /	0-6-1	16			
Well I.D.	: PZ-2	/		Well Dian	Well Diameter: 2 3 🔑 6 8					
	ll Depth:		.05	Depth to V	Depth to Water: Pre: 34,67 Post: 34.71					
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	EVE	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M		2" Grundi Dedicated			Peristaltic I New Tubin	•	Bladder Pump			
Start Purge Time: 1348 Flow Rate: 500 ml Jun Pump Depth: 45'										
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n C)	Depth to water		
1351	25.5	7.15	1526	13	0.71	-170,6	1500	34-67		
1354	25-6	7.13	15/4	10	0.64	-180.8	3000	34.68		
1357	25.4	7.10	1540	8	0,62	-181.4	4500	34.71		
138 1400	25-6	7.11	1545	<u>、</u> う	0,60	-183.5	-	34.71		
1403	25.7	7-13	1548	6	0,58	-185,1	7500	34,71		
	, f									
								·		
		i.								
Did well	dewater?	Yes	Ŵ		Amount a	actually e	vacuated: 7.3	<u> </u>		
Sampling	Time: \	405			Sampling	Date:	10-6-14			
Sample I.	D.: P2	-2		Laboratory: Alpha Analytical						
Analyzed	for:	TPHg T	PHfp VOC's	's MTBE Other:						
Equipmen	nt Blank I.I	D.:	@ Time	Duplicate I.D.: Dy-6						

		110 11 1				, 17/11/1				
Project #	: 16	,1003 -	D~1	Client:			KMEP			
Sampler:	0~			Start Date	: (10-8-1	4			
Well I.D.	: PZ	-5		Well Dian	neter: 2	3 4	68			
Total We	ll Depth:	37.9	Bø	Depth to V	Depth to Water: Pre: 31.00 Post: 31.13					
Depth to	Free Prod	uct:	, , , , , , , , , , , , , , , , , , ,	Thickness of Free Product (feet):						
Referenc	ed to:	PØ	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Meth Sampling M	lethod:	2" Grandt Dedieated			Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Time: \o	<u>` </u>	Flow Rate: _	200 M	1/m~	Pump Dep	th:37'			
Time	Temp.	pН	Cond. (mS/cm or µ8/2m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ful)	Depth to water		
1020	22.0	7.08	1951	81	0.70	-43.2	િ હ	31.03		
\023	22.0	7.05	2005	19	0,64	-48.)	1200	31.07		
1024	22.0	7.05	2017	15	0.63	-52.6	1800	31.09		
1029	22.1	7.07	2019	11	0,60	-56.1	74 UD	31.10		
1032	22.2	7.09	7021	(0)	0.59	-56.9	3060	31.11		
1035	22.2	7,09	ror	. 00	0.58	-57.4	3600	31.13		

Did well o	dewater?	Yes	(V)		Amount a	actually e	vacuated: 3	ا، لوا		
Sampling	Time: \	037			Sampling	Date:	10-6-14			
Sample I.	D.: PZ	5		Laboratory: Alpha Analytical						
Analyzed	for:	TPHg TI	PHfp VOC's	MTBE		Other:				
Equipmen	t Blank I.I	 D.:	@ Time		Duplicate	I.D.:	7,10-5			

Project #	: 14	1003	- Onl	Client: KMEP						
Sampler:	Or	1		Start Date	: 10	-7-10	/ P			
Well I.D.	: Pz-	10		Well Dian		3 4		8		
Total We	ll Depth:	34.8	21	Depth to V	Water:	Pre: De	~ <i>T</i>	Post:		
Depth to	Free Prod			Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade	Flow Cell	Flow Cell Type: YSI 556					
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Start Purge Time: Flow Rate: _				Peristaltic Pump Bladder Pump New Tubing Other Pump Depth:						
Time	Temp. (°C or °F)	pH	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water 1	Removed or mL)	Depth to water	
		urell	75	0.7	no	Sand	le -		F- 57-9-10-10-10-10-10-10-10-10-10-10-10-10-10-	
-					***************************************					
								:		
				·						

Did well o	lewater?	Yes	No		Amount a	ctually e	vacuat	ed:		
Sampling	Time:				Sampling	Date:				
Sample I.D.:				Laboratory: Alpha Analytical						
Analyzed	for:	TPHg TF	PHfp VOC's	's MTBE Other:						
Equipmen	t Blank I.]	 D.:	@ Time	Duplicate I.D.:						

		LOWI	TOW ME	TT MON	HORING	DAIA	SHEEL			
Project #	: 1610	03-0~	-(Client: KMEP						
Sampler:				Start Date	: 10-	5-14				
Well I.D.	•	3		Well Dian	Well Diameter: 2 3 4 6 8					
Total We	ll Depth:	50	,20	Depth to Water: Pre: 33.23 Post: 33.37						
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	eVO	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M	lethod:	2" Grunds Dedicated	Tubing		Peristaltic l	g	Bladder Pump			
Start Purge	Time: 1'Z	215	Flow Rate: _	500 M	el form	_Pump Dep	th: <u> </u>			
Time	Temp.	pН	Cond. (mS/cm or µ&/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to water		
1218	23-1	7.21	1994	181	0.94	-79.4	1500	33.28		
1221	23,0	7.20	2038	87	0.90	-81.7	3000	33,20		
1224	23.0	7.20	2047	75	0.87	-84-3	4500	33,33		
127	22.9	7.17	2051	71	10,89	-85.1	6000	33.35		
1230	22.9	7.17	2050	70	0.83	-87.2	7500	33.37		
www.linewe										
							L. CLAMA MANAGEMENT			
Did well	dewater?	Yes ((KZ		Amount	actually e	vacuated: 7	5 C		
Sampling	Time:	1233			Sampling	g Date:	10-5-14	2		
Sample I.	D.: PL	u-3		-	Laboratory: Alpha Analytical					
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:				
Fauinmer	rt Blank I l	D ·	@ Time		Duplicate	e I D ·				

		LOW	CLOW WE	LLL MON	ITORING	J DATA	SHEET				
Project #	: 161	03-0x	1/	Client: KMEP							
Sampler:	DM.			Start Date	Start Date: 10-4-16						
Well I.D.	.: Weu	1-2			Well Diameter: 2 3 4 6 8						
Total We	ell Depth:	52.3	3	Depth to Water: Pre: 33, 60 Post: 33, 67							
Depth to	Free Produ	uct:		Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	PVe	Grade	Flow Cell	Type:		YSI 556				
Purge Meth Sampling M	lethod:	2" Grunde Dedicated	es Pump Tubing		Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: 10 7	20	Flow Rate: _	300 m/	/~n	_ Pump Dep	th: 5 0 ′				
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to water			
1023	22.5	6-29	2251	16	0.77	-39.1	900	33.63			
1026	22.4	6.91	2311	<i>i</i> 1	0,71	-41.4	1800	33.64			
1029	22-1	694	2309	12	0,68	-44.3	2700	33.65			
1032	12-7	694	2304	! (0.69	-45-1	3600	33.67			
1035	22-7	6.95	2301	10	0.67	-46.3	4500	33.67			
								7 3 5 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
Did well	dewater?	Yes ($\widehat{\mathbb{N}}$		Amount	actually e	vacuated:	1.52			
Sampling	Time:	1037			Sampling	g Date: /	0-4-16				
Sample I.	D.: W	cw-	2		Laborato	ory:	Alpha Analytical				
Analyzed	for:	TPHg T	PHfp VOC'	C's MTBE Other:							
Equipmer	nt Blank I.	D.:	@ Time	Duplicate I.D.:							

		LOW F	LOW WE	ELL MONI	(TORING	3 DATA	SHEET			
Project #	: 161	1003-	DMI	Client:			KMEP			
Sampler:	DM			Start Date	•	10-4	-16			
Well I.D.	: wcu -	-3		Well Dian	neter: 2	3 4	ン 6 8 <u> </u>			
Total We	ell Depth:	50	5,50	Depth to V	Depth to Water: Pre: 34.35 Post: 34.41					
Depth to	Free Produ	uct:		Thickness of Free Product (feet):						
Reference	ed to:	₽ C	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M	lethod:	2" Grand	Tubing		Peristaltic I New Tubin	ıg	Bladder Pump Other_			
Start Purge	Time: //09	<u> </u>	Flow Rate: _	300 ~ (/	<u>m </u>	_ Pump Dep	th: 47'			
Time	Temp.	рН	Cond. (mS/cm or µS(cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to water		
1107	23.0	7.09	2022	10	0.69	-35-1	900	34.38		
1110	21.9	7.13	2029	В	0.45	-41-3	1800	34.38		
1113	22.1	7.15	2031	. B	0,63	-51.4	2700	34.40		
1114	22-1	7-15	2034	5	0,64	-53.1	36 00	34.41		
1119	223	7-14	2035	4	0.67	-55.0	4500	34.41		
1122	22.3	7.14	2034	5	0.67	-56.7	5400	34.41		

Did well	dewater?	Yes (MD		Amount	actually e	evacuated: S	7-46		
Sampling	Time:	1125		•	Sampling	g Date:	10-4-16			
Sample I.	D.: 40	w-3			Laboratory: Alpha Analytical					
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:	See L.v.	·U		
Equipmen	nt Blank I.I	D.:	@ Time	Duplicate I.D.:						

Project #	: 161	003-1	m	Client:			KMEP				
Sampler:	Om			Start Date	: /	0-4-	14				
Well I.D.	: we	5-4		Well Dian	Well Diameter: 2 3 4 6 8						
Total We	ll Depth:	42.	60	Depth to V	Depth to Water: Pre: 36.10 Post: 36.13						
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):							
Referenc	ed to:	Eve	Grade	Flow Cell	Type:		YSI 556				
Purge Meth Sampling M		2" Grundf Dedicated	_		Peristaltic I	-	Bladder Pump Other_				
Start Purge	Time: 115	ზ	Flow Rate: _	100' R	11/20	_Pump Dep	oth: 40'				
Time	Temp.	pН	Cond. (mS/cm or µS(cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to water			
1153	22.1	7-13	2001	48	0.60	-65-(900	36.10			
1156	22.4	7.15	1993	27	0,63	-66.8	1800	36.12			
1159	114	7.16	1990	25	0,63	-67.9	V700	36.12			
1202	ırs	7-14	1986	25	0,64	-71.0	7600	36.13			
1205	ns	7.17	1985	22	0,64	-70.3	4500	36.13			

						ļ					
Did well	dewater?	Yes	(Vo)		Amount	actually e	evacuated: 4	S レ			
Sampling	Time:	12	07		Sampling	g Date:	10-4-14				
Sample I.	D.: い	N-4		Laboratory: Alpha Analytical							
Analyzed	for:	TPĤg T	PHfp VOC's	s MTBE		Other:					
Fauinmer	nt Blank I I) ·	@	Duplicate I D :							

		LUWI	LOW WE		TONING	JUALA	SHEET		
Project #	: \	le 1003-	DMI	Client:			KMEP		
Sampler:		~	1	Start Date:	•	10-5-	16		
Well I.D.	: WCW	1-5		Well Dian	neter: 2	3 4	6 8		
Total We	ell Depth:	50	2.60	Depth to V	Vater:	Pre: 3	2.23 Post:	32.25	
Depth to	Free Prod	uct:			Γhickness of Free Product (feet):				
Referenc	ed to:	RVO	Grade	Flow Cell	Туре:		YSI 556		
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	•	Bladder Pump Other_		
Start Purge	Time: 0400	>	Flow Rate: _	you m	1/min	_Pump Dep	oth: 471		
Time	Temp.	pН	Cond. (mS/cm or µS(0m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 🐿)	Depth to water	
0903	21.4	7.22	2271	89	0,81	-39.1	900	32.71	
U904	U.4	7,20	2580	36	0,90	-43.7	1800	32.21	
0909	US	7.20	2 593	31	0.77	-50,1	2700	32.22	
0912	21.5	7.M	2594	30	6,75	-50.7	3400	32.23	
0915	21.4	1.20	2995	3%	6,74	-51.3	4500	32.25	
				Manual Assaults &		All +-1			

·			~						
Did well	dewater?	Yes	No.		Amount	l actually e	evacuated: 4.	56	
Sampling	Time: 6	914			Sampling	g Date:	10-5-14		
Sample I.	D.: ω	·w-5			Laborato	ry:	Alpha Analytical		
Analyzed	for:	TPHg T	PHfp VOC'	s MTBE		Other:	See C.) 1 C	
Equipmer	nt Blank I.I	D.:	@		Duplicate	= I.D.:			

		LOW I	FLOW WE	LL MONI	ITORING	G DATA	SHEET			
Project #	: \	(dOO3 -	Onl	Client:			KMEP			
Sampler:				Start Date:	: 10	1-5-1	b			
Well I.D	.: We	い-し	1000	Well Diam	neter: 2	3 4	δ 6 8 <u> </u>	_		
Total We	ell Depth:	50.9	1	Depth to Water: Pre: 34.00 Post: 34.11						
Depth to	Free Prod	uct:		Thickness						
Referenc	ed to:	PVD	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	fethod:	2" Grundi Dedicated	Tubing	za ml	Peristaltic l New Tubin	g	Bladder Pump Other_ oth: 48/			
Start Turge	1 mile. 00				<u> </u>	_ r ump ber	T]		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml)	Depth to water		
0823	20.9	7.19	2097	39	0,87	-11.7	900	34.07		
0824	21.3	7.20	2099	17	1.22	-5-4	1800	34.08		
0819	4.3	7.22	2103	11	1.37	-7.3	2700	34.09		
0832	21.4	7.20	2109	12	1,40	-7.0	3600	34.09		
0835	21.4	7-19	2113	15	1.41	-6.1	4500	34.10		
0839	21.5	7-17	2116	13	1,40	-5.3	5400	34.11		
							Action Control of Cont			
A				***************************************						
Did well	dewater?	Yes	<i>®</i>		Amount	actually e	evacuated: 5	' '		
Sampling	Time: 08	340			Sampling	g Date:	10-5-16			
Sample I.	D.: Wo	iw-6			Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC'	C's MTBE Other:						
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		LOW H	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: 160	03 - DA	1/	Client:	,		KMEP			
Sampler:				Start Date	: 10	-5-/0	le			
Well I.D.	: Wci	J - 7		Well Dian	Well Diameter: 2 3 4 6 8					
Total We	ll Depth:	51.53		Depth to Water: Pre: 34.22 Post: 34.2と						
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVD	Grade	Flow Cell	Type:		YSI 556			
Purge Methors Sampling M	lethod:	2" Grun d Dedicated	Pubing		Peristaltic New Tubin	g	Bladder Pump Other_			
Start Purge Time: 0745 Flow Rate: 300 M/ Pump Depth: 47'										
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m))	Depth to water		
0748	21.4	7.13	2115	16	0.91	-37-1	900	34.23		
0751	21.4	7.10	2130	4	0.81	-39-3	1800	34.25		
0754	21.3	7.11	2133	5	0.84	-41.4	2700	34.27		
0157	21.3	7.10	2135	4	७.४१	-43.2	3400	34.27		
0800	21.3	7.04	2137	3	೨,೪೦	-44.7	4500	34.23		
	•		•				***************************************			
							1.000			
•		,								
Did well o	lewater?	Yes (N)	· · · · · · · · · · · · · · · · · · ·			vacaatea.	.5 L		
Sampling	Time:	0801			Sampling	Date: /	10-5-16			
Sample I.D.: Wcw-7 Laboratory: Alpha Analytical										
Analyzed	for:	TPHg TF	PHfp VOC's	s MTBE		Other:	2e (.o. c			
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	e I.D.:				

							·	
Project #	: ાહાર	103-0~1		Client:			KMEP	
Sampler:				Start Date:	: /۵	-4-14		
Well I.D.		. W - 8		Well Diam	neter: 2	3 (4	68	
Total We	ll Depth:	51.50		Depth to V	Vater:	Pre: 35.	7º Post:	35.83
Depth to	Free Produ	uct:	4.7.	Thickness				
Referenc		PAG	Grade	Flow Cell	·		YSI 556	
	lethod:		Tubing	Peristaltic Pump New Tubing Bladder Pump Other				
Start Purge	Time: 123	34	Flow Rate: _	5001	"/un	Pump Dep	th: 178	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 🐿)	Depth to water
1231	25.0	7.07	2775	/3	0.47	-112.3	1500	35.83
1242	25.5	7.10	2781	8	0.45	-110.5	36 50	35.83
1243	25,5	7.13	2784	7	0.41	-110.5	4500	35.57
1245	25.4	7.15	2787	อง	0.40	-107.9	6000	35.83
1249	25.6	7.15	2791	5	0.35	-109.0	7500	35.83
				4.				<u> </u>
Did well	dewater?	Yes	No)		Amount	actually e	vacuated: 7	2.5L
Sampling	Time:	1250			Sampling	; Date:	10-4-16	
Sample I.	D.: 1200				Laborato	ry:	Alpha Analytical	•
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:		
Eauipmer	nt Blank I.I	D.:	@ Time		Duplicate	: I.D.:		

		LOW I	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: 14	e to 03	-0~1	Client:			KMEP			
Sampler:	Ð r	٠		Start Date	•	10-4	'-16e			
Well I.D.	: Wew	-12		Well Dian	neter: 2	3 (4	> 6 8			
Total We	ell Depth:	49.6	. 1	Depth to V	Depth to Water: Pre: 34.60 Post: 34.75					
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	eet):	-		
Referenc	ed to:	Øve	Grade	Flow Cell	Type:		YSI 556			
Purge Meth Sampling M	lethod:	2" Grundi Dedicated	Tubing		Peristaltic	ıg	Bladder Pump Other			
Start Purge	Time: 4 3	35	_Flow Rate: _	Jour	1/1.	_Pump Dep	oth: "/7"			
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 161)	Depth to water		
1938	25.4	6.89	1139	14	0.73	- 44.3	1500	34.63		
1441	25.5	6.99	1261	5	0.76	-48.1	3000	34.67		
1444	55.5	6.95	1270	5	0.68	-51.4	45.00	34.69		
1447	25.4	6.98	1275	2	0.65	-52.4	6000	34.12		
1450	25.4	6.96	1278	3	0,65	-54.1	7500	.34.75		
							48.48.48.48.48.48.48.48.4			
				***************************************	A100 (MA10)					
-										
Did well	dewater?	Yes	8		Amount	actually e	vacuated: 2	.5L		
Sampling	Time:	1453			Sampling	g Date:	12-4-14			
Sample I.	D.: W	cW-1	Z		Laborato	ory:	Alpha Analytical			
Analyzed	for:	TPHg T	PHfp VOC's	s MTBE		Other:				
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate	e I.D.:				

		LOW F	LOW WE	ELL MONI	TORING	G DATA	SHEET	
Project #	: 161	004-6)~1	Client:			KMEP	
Sampler:	D~			Start Date:	10	-4-16	***************************************	
Well I.D.	: Wcv	J-13		Well Diam				
Total We	ll Depth:	(6	0.35	Depth to V	Vater:	Pre: 30		36,21
Depth to	Free Produ	uct:		Thickness	of Free Pi	roduct (fe	eet):	
Reference	ed to:	(V)	Grade	Flow Cell	Type:		YSI 556	
Purge Methor Sampling M	ethod:	2" Gra ndf Ded ic ated	Tubing		Peristaltic F New Tubin	g	Bladder Pump Other_	
Start Purge	Time: 135	J	Flow Rate: _	500 m/	/min	_Pump Dep	th: <u>55</u>	
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n	Depth to water
1353	23.7	7.07	1519	10	0.84	-31.4	1500	36.07
1354	25.1	7.09	1539	E	0.81	-30.7	3000	36.11
1359	25.6	7.11	1543	4	0.80	-27.1	4500	36.17
1402	25.9	7.13	1545	10	0.80	-30.9	6000	36.18
1405	25.9	7.15	1547	4	0,79	-33.2	7500	36.21
*								
						,		
			1000					
							1111414	
Did well o	dewater?	Yes (No		Amount a	actually e	vacuated: 7	.5L
Sampling	Time:	1407			Sampling	g Date:	10-4-16	
Sample I.	D.: ა	W-13			Laborato	ry:	Alpha Analytical	
Analyzed	for:	TPHg TI	PHfp VOC's	s MTBE		Other:		
Fauinmen	t Blank I I	n ·	@		Duplicate	1D.		

	-	LOW F	FLOW WE	ELL MON	ITORING	G DATA	SHEET			
Project #	: 1610	03 - 0) M	Client:			KMEP			
Sampler:	Dr	\		Start Date	:	10-	4-16			
Well I.D.	: Wa	١- ١4		Well Dian	neter: 2	3 4	68			
Total We	ll Depth:	58.80	3	Depth to V	epth to Water: Pre: 36,75 Post: 36.34					
Depth to	Free Produ	uct:		Thickness						
Reference	ed to:	PVC	Grade	Flow Cell	Type:		YSI 556	,*************************************		
Purge Metho Sampling M		2" Grunds Dedicated			Peristaltic I New Tubin	-	Bladder Pump			
Start Purge	Time: \37	20	Flow Rate: _	500m	1/1-1-	_Pump Dep	th: 53'			
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 📵)	Depth to water		
1323	23.9	7.20	3050	16	0.51	-99.1	1500	36.73		
1326	24.2	7.18	3059	15	0.50	-97.9	3000	36.75		
1329	24.4	7.15	3064	13	0.44	-1232	4500	34.77		
1332	24.5	7.15	3069	12	0.41	-105.2		36.80		
17,35	24.5	7.16	3071	10	0.40	-104.7	7500	36.84		
	1.									
Did well o	dewater?	Yes /	No		Amount	actually e	vacuated:	7. JL		
Sampling	Time:	1337			Sampling	g Date:	10-4-16			
Sample I.l	D.: 🗸	- سار	14		Laborato	ry:	Alpha Analytical			
Analyzed	for:	TPHg TI	PHfp VOC'	s MTBE		Other:		-		
Equipmen	t Blank I.l	D.:	@ Time		Duplicate	e I.D.:				

Title:

7.3 Monitoring and Remediation Well Protection

Revised:

January 1, 2012

Attachment 7.3-1 Well Inspection Checklist

WELL INSPECTION CHECKLIST

WELL NAME	AS- BUILT TOTAL DEPTH (TD)	ACCESS UNOBSTRUCTED? (Y/N)	WELL EASILY VISIBLE? (Y/N)	VAULT, WELL, OR CASING CLEARLY LABELED? (Y/N)	WELL, VAULT, PAD, OR CASING FREE OF VISIBLE DAMAGE, SCOUR, OR SETTLING? (Y/N)	WELL SECURED PROPERLY WITH WATER-TIGHT WELL CAP AND LOCK? (Y/N)	WELL VAULT DRY AND FREE OF DEBRIS? (Y/N)	TD CONSISTENT WITH AS-BUILT TD? (Y/N)	COMMENTS
Mer-8		7	7	M	7	ሃ	7	7	
Mw-9		7	Y	W	7	Y	ን	7	
MW-9 MW-SF-1		Y	۲	Y	У	4	Å	7	
MU-58-10 HW-58-2 MW-683		7	7	7	7	Y	γ	7	
MW-58-2		7	7	7	4	Ý	Y	<u> </u>	
MW-183		7	Y	7	γ	У	Υ	Y	
MW-5F-4 MW-5F-5 MW-5F-6		7	4	У	À	γ	۲	}	Vapor Ex System
MW-5F-5		У	٢	Y	Y	Ÿ	7	Y	
Mu-58-6		7	٢	Υ	Y	γ	4	Y	
Mw-5F-7		Y	Y	Y	Υ	Y	Υ	<u> </u>	
MU-SF-8		7	Y	Y	Ý	ን	Υ	Y	
MW-5F-4		2	٢	γ	Υ	7	Y	7	- Construction -
MV-(F-10		Y	Y	Y	Y	Υ	٦	Y	
M-15-11		7	٦	Υ	7	ነ	Y	7	
MM-18-14		7	٧	Y	Y	7	Y	Υ	
M4-57-15		4	7	Y	Y	7	Υ	٦	
Mw-58-16		7	γ	γ	γ	7	7	7	
GMW-10		Y	Y	Ÿ	Y	Ý	Y	ሃ	
GMW-10 GMW-13		7	Y	γ	Ý	Y	Y	γ	
Gnw-22		٧	4	Ż	¥	Υ	Y	У	
Gmw-23		ን	Ý	Υ	Υ	Y	7	ሃ	
4mw-28		γ	Y	7	T	γ	ን	γ	
GMW-20		Ÿ	Y	7	Y	¥	Y	7	

			~	/.	, /	
Performed by:	0~	-	Date Performed: _	(v)	/4/16	

Title:

7.3 Monitoring and Remediation Well Protection

Revised:

January 1, 2012

Attachment 7.3-1 Well Inspection Checklist

WELL INSPECTION CHECKLIST

WELL NAME	AS- BUILT TOTAL DEPTH (TD)	ACCESS UNOBSTRUCTED? (Y/N)	WELL EASILY VISIBLE? (Y/N)	VAULT, WELL, OR CASING CLEARLY LABELED? (Y/N)	WELL, VAULT, PAD, OR CASING FREE OF VISIBLE DAMAGE, SCOUR, OR SETTLING? (Y/N)	WELL SECURED PROPERLY WITH WATER-TIGHT WELL CAP AND LOCK? (Y/N)	WELL VAULT DRY AND FREE OF DEBRISP (Y/N)	TD CONSISTENT WITH AS-BUILT TD? (Y/N)	COMMENTS
WCW-1 WCW-6 WCW-7 WCW-9 WCW-1 WCW-1		7	Y	ን	N	ን	Y	Ÿ	
Wcw-6		7	٧	Y 7	Ň	ን	Υ	γ	
wei-7	,,,,	Y	Y Y		N	У	ን	7 .	
WLW-80		4		У	N	7		γ .	
W: w-9	A1-W	Y	7	٦	W,	′γ		<u> </u>	11.5.4.4.004-0905-0905-1
W2W-12		۲	Y	γ	₩	7 ,	7	7	
ال-سال		7	7	7	7	Ч	Υ	7	2/2/2004/00/00/00/00/00/00/00/00/00/00/00/00/
Wcw-12 Wcw-13 Wcw-14		Y	ን	7	Y	7	γ	7	
620W-13		7	ን	7	γ	7	Υ	Y	A AMERICAN PROPERTY OF THE PRO
Wcw-19		ሃ	۲	7	7	۲,	7	7	
Exp-1		Y	<u> </u>	Y	Y	y	У	Υ	
Exp-1 Exp-2 15xp-3 VEW-1		7	7	ሃ	7	7 Y	У	>	
15xp-3		7	ሃ	Y	Y	'	}	γ	
VEW-1		Ϋ́	ን	7	Y	Y	7	Υ	
15m-5		γ	7	4	4	ን	7	7	
rw-1		٢	۲	7	N/	γ	Ϋ	7	100000000000000000000000000000000000000
pw-2		7	7	7	·	4	Y	<u> </u>	no polts
Pw-3	L. Miller Price	7	7	7	₩	7	ን	7	no kolto
PW-3 PZ-10 12-2		Y_	Y	Ϋ	}		7	У	
12-2		7	7	<u> </u>	Y	Y	Y	у.	
12-5		7	7	<u> </u>	γ	<u>}</u>	Υ	У	
ہمں۔لا		7	У	7	7	4	7	У 7	·
[rwm		٦	7	۲.	٧	У	У	7	

Performed by:	Dr.	Date Performed:	10-4-16
---------------	-----	--------------------	---------

Title:

7.3 Monitoring and Remediation Well Protection

Revised:

January 1, 2012

Attachment 7.3-1 Well Inspection Checklist

WELL INSPECTION CHECKLIST

WELL NAME	AS- BUILT TOTAL DEPTH (TD)	ACCESS UNOBSTRUCTED? (Y/N)	WELL EASILY VISIBLE? (Y/N)	VAULT, WELL, OR CASING CLEARLY LABELED? (Y/N)	WELL, VAULT, PAD, OR CASING FREE OF VISIBLE DAMAGE, SCOUR, OR SETTLING? (Y/N)	WELL SECURED PROPERLY WITH WATER-TIGHT WELL CAP AND LOCK? (Y/N)	WELL VAULT DRY AND FREE OF DEBRIS? (Y/N)	TD CONSISTENT WITH AS-BUILT TD? (Y/N)	COMMENTS
Grun-8		N	N	7	>4N	Y	7	У	had to be uncoursed
9 m-9		7	Y	\mathcal{F}	7	7'	Y	>	
gru-37		7	٦	<u> </u>	٧	, A	Y	У	·
GMW-38		7	7	7	ን	ን	7	۴	
Gnev-39 Gnev-0-1		7	γ	7	7	7	Y	7	
Gnev-0-1		Y	Y	ν	Y	Υ	Y	1/	
Gnw-0-10		7	7	ρ	7	Ý	Υ	' 7	
how-0-11 how-oriz		ን	4	بر بر	J	7	Ý	<i>Y</i>	
4 mer-00-12		7	ን	λÚ	Y	×	Ý	4	
4mw-0-14		À	Y	N	Y	7	Y	γ	
9-0-15		7	7_	W	7	Ÿ	7	4	
4 mw-014		Y	Ч	Ŋ	ን	γ	Y	γ	
10-17		Y	7	μ	Y	γ	Ý	γ	
4mw-0-18		7	7	yJ	7	Υ	7	7	- purp 5 Fuch
4MW-079		ን	٦	W	Υ.	7	У	У	
4nu-0-20		Υ	4	N	γ	У	Y	Y	
Gre-0-23		7	ን	W	· Y	<u> </u>	7	Υ	
brw-0-3		Υ	У	h	7	۲	7	Υ	
6 mw-0-3 mw-0-4 mw-0-5 mw-0-7		Y	7	N	4	У.,.	Y	У	
low-0-5		Y	4	·ή	Υ	7	Y	γ	
4nw-07		¥	4	N	N	ን	7	· Y	-Tabs Broken
www		¥	γ	Ŋ	٧	У	7	У	
Luw-0-9		4	Y	N	γ	ĭ	4	7	

	¥	Y		7	7	1,	7		
Performed by:)/	4	Ι Υ	_	1 1	Date Performed:	10-4-16	

Title:

7.3 Monitoring and Remediation Well Protection

Revised:

January 1, 2012

Attachment 7.3-1 Well Inspection Checklist

WELL INSPECTION CHECKLIST

Site - City, County, State

WELL NAME	AS- BUILT TOTAL DEPTH (TD)	ACCESS UNOBSTRUCTED? (X/N)	WELL EASILY VISIBLE? (X/N)	VAULT, WELL, OR CASING CLEARLY LABELED? (Y/N)	WELL, VAULT, PAD, OR CASING FREE OF VISIBLE DAMAGE, SCOUR, OR SETTLING? (Y/N)	WELL SECURED PROPERLY WITH WATER-TIGHT WELL CAP AND LOCK? (Y/N)	WELL VAULT DRY AND FREE OF DEBRIS? (Y/N)	TD CONSISTENT WITH AS-BUILT TD? (X/N)	COMMENTS
Exp-9 Exp-9 WCW-L WCW-3 WCW-5 WCW-5 WM-26 HL-3	· · ·	Y	7	Y	ブ	7	Y	Y	
Exp-9		У	7	3 7 6	Y	γ	Y	Y	
12000		7	À	N	7	У У	7	<u>y</u>	
1750.4	180200	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y	M	7	7	y Y	$\frac{\lambda}{\lambda}$	
W CW-5		7	7	N	Υ	7	7	4	
GMW-26		À	4	#N	N	\ <u>\</u>	7	<u> </u>	
HL-3		Ý	7	Y	~/	7	4	7	
1 4MW-1		Υ	7	7	Y	Ý	У	_/	ro Bolts
9 mw-89	- 18104	7	7	7	7	7	"7	Ý	
P2-5		7	7	7	7	7	>	7	
MW-18(M,D)		<u>y</u>	4	У	<u>`</u>		<u> </u>	У	
Mw-21 (mj)		У	4	4	У	У.	7	У	
MV. U(M))		Y N	7	7	-	У	N N	<u>`</u> }	-No Balts
PZ-2 PZ-5		У	/O	<i>y</i> /		-X-	<i>X</i>	<u> </u>	-No Bilts
MW-0-1		<u>х</u> */		N.	У ,		<u>۶</u>	~	
MW-0-2		y	7 7	w/	7	Y Y	7	4	-labeled as "Toce. c signal"on
4nw-0-21	-	Y	Y	<i>'</i>	. 7	γ	ÿ	<i>></i>	-laster as Torre signal "or a

Performed	0		
by:	1) and	MUSSU	

Performed: 10/4

Title: 7.3 M

7.3 Monitoring and Remediation Well Protection

Revised: January 1, 2012

Attachment 7.3-1 Well Inspection Checklist

WELL INSPECTION CHECKLIST

WELL NAME	AS- BUILT TOTAL DEPTH (TD)	ACCESS UNOBSTRUCTED? (Y/N)	WELL EASILY VISIBLE? (Y/N)	VAULT, WELL, OR CASING CLEARLY LABELED? (Y/N)	WELL, VAULT, PAD, OR CASING FREE OF VISIBLE DAMAGE, SCOUR, OR SETTLING? (Y/N)	WELL SECURED PROPERLY WITH WATER-TIGHT WELL CAP AND LOCK? (Y/N)	WELL VAULT DRY AND FREE OF DEBRIS? (Y/N)	TD CONSISTENT WITH AS-BUILT TD? (Y/N)	COMMENTS
Cnw-5F-7		Y	Ч	Υ	Y	Ϋ́	γ	Y	
Gru-5F-8		7	7	Y	7	У	У	Y	
420-58-8 Gint K-3 HL-Z		7	7	Ч	7	4	Y		
H16-2		Ÿ	<u> </u>	<u> </u>	У	У	7	4	
MW-12		y	7	γ	Y	У	Y		

Performed by:)		Date Performed:	10/4/14
		,			1 1

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAI	PROJECT NAME KMEP @	Worwalk		PROJECT NUM	PROJECT NUMBER 161003-0p.)~/	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED		CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
155 ISY	renters from pine	10/4	Pr 4, 7, 10	entertisched	>	7.27	Ø~
		,	80 100 %. ORP 275mJ	98.4% 234.7mJ	Ž	23.9	DA
		(0/5	on 4, 1, 10 cond 39 worms	4.03,6.48,00.04	7	6-27	0.8
			00 100 in 0AP 235mU	99.4.5 235-3mJ	>	1.4Z	DM
		<i>nJ c</i> i	fir 4,7,12 Cnd 3900 jm	700, 7.00, 15.20 3901 M	>	7.5.7	W 0
			Portocio Off 235mu	100.31". 256.12	>	8,52	ΨΦ
·		10/1	ph 4,7,10 cm, 3100 m	ر <i>ن دا ده ، ر</i> وسها)	24.1	Wd
			00 10072 01. 1. 2. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	99.4% 234.7m	>	24.1	· \ \ 0
					·		
						,	
		******	L-VARIA LA				

APPENDIX B SEMIANNUAL EVENT LABORATORY REPORTS (CD ROM ONLY)

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 12, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331949 / 6J04035

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/04/16 15:51 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
8260B+OXY+TPHG					
QCTB-1	6J04035-01	Water	5	10/03/16 06:00	10/04/16 15:51
QCEB-1	6J04035-07	Water	5	10/03/16 12:30	10/04/16 15:51
8260B+OXYGENATES					
GMW-63	6J04035-02	Water	5	10/03/16 09:25	10/04/16 15:51
GMW-64	6J04035-03	Water	5	10/03/16 09:55	10/04/16 15:51
GMW-65	6J04035-04	Water	5	10/03/16 10:25	10/04/16 15:51
GMW-67	6J04035-05	Water	5	10/03/16 10:55	10/04/16 15:51
GMW-69	6J04035-06	Water	5	10/03/16 11:30	10/04/16 15:51
<u>Diesel Range Organics 8015M</u>					
GMW-63	6J04035-02	Water	5	10/03/16 09:25	10/04/16 15:51
GMW-64	6J04035-03	Water	5	10/03/16 09:55	10/04/16 15:51
GMW-65	6J04035-04	Water	5	10/03/16 10:25	10/04/16 15:51
GMW-67	6J04035-05	Water	5	10/03/16 10:55	10/04/16 15:51
GMW-69	6J04035-06	Water	5	10/03/16 11:30	10/04/16 15:51
Gasoline Range Organics 8015M					
GMW-63	6J04035-02	Water	5	10/03/16 09:25	10/04/16 15:51
GMW-64	6J04035-03	Water	5	10/03/16 09:55	10/04/16 15:51

A

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
GMW-65	6J04035-04	Water	5	10/03/16 10:25	10/04/16 15:51
GMW-67	6J04035-05	Water	5	10/03/16 10:55	10/04/16 15:51
GMW-69	6J04035-06	Water	5	10/03/16 11:30	10/04/16 15:51

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Method: VOCs, OXY & TPH Gasoline by GC/MS

Units: ug/L

Date Sampled: 10/03/16 10/03/16

Date Sampled.	10/03/10	10/03/10	
Date Prepared:	10/07/16	10/07/16	
Date Analyzed:	10/07/16	10/07/16	
AA ID No:	6J04035-01	6J04035-07	
Client ID No:	QCTB-1	QCEB-1	
Matrix:	Water	Water	
Dilution Factor:	1	1	MRL
8260B+OXY+TPHG (EPA 8260)	<u>B)</u>		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	< 0.50	< 0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/03/16 10/03/16 **Date Prepared:** 10/07/16 10/07/16 **Date Analyzed:** 10/07/16 10/07/16 AA ID No: 6J04035-01 6J04035-07 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor: 1 1 1 MRL

8260B+OXY+TPHG (EPA 8260B	(continued)		
1,4-Dichlorobenzene	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics	<100	<100	100
(GRO)			
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	<0.50	< 0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Units: ug/L

Date Sampled: 10/03/16 10/03/16 **Date Prepared:** 10/07/16 10/07/16 **Date Analyzed:** 10/07/16 10/07/16 AA ID No: 6J04035-01 6J04035-07 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL

8260B+OXY+TPHG (EPA 8260B)	(continued)		
Styrene	<0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	< 0.50	0.50
1,2,4-Trimethylbenzene	<0.50	< 0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

Surrogates			%REC Limits
4-Bromofluorobenzene	109%	111%	70-140
Dibromofluoromethane	123%	112%	70-140
Toluene-d8	98%	103%	70-140

Client: The Source Group, Inc. (SH)

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331949 Date Received: 10/04/16

Date Reported: 10/12/16

Method: VOCs & OXYGENATES by GC/MS				Units: ug/L	
Date Sampled:	10/03/16	10/03/16	10/03/16	10/03/16	
Date Prepared:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Analyzed:	10/07/16	10/07/16	10/07/16	10/07/16	
AA ID No:	6J04035-02	6J04035-03	6J04035-04	6J04035-05	
Client ID No:	GMW-63	GMW-64	GMW-65	GMW-67	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	4.2	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	<0.50	< 0.50	<0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	<0.50	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331949 Date Received: 10/04/16 Date Reported: 10/12/16

Units: ug/L

Date Sampled:	10/03/16	10/03/16	10/03/16	10/03/16	
Date Prepared:	10/03/16	10/03/16	10/03/16	10/03/16	
	10/07/16	10/07/16	10/07/16	10/07/16	
Date Analyzed: AA ID No:	6J04035-02				
		6J04035-03	6J04035-04	6J04035-05	
Client ID No:	GMW-63	GMW-64	GMW-65	GMW-67	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	0.96	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	1.1	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	<1.0	<1.0	1.0
Methylene Chloride	< 5.0	<5.0	<5.0	< 5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	0.93	0.50
Styrene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331949 Date Received: 10/04/16 Date Reported: 10/12/16

Units: ug/L

Date Sampled:	10/03/16	10/03/16	10/03/16	10/03/16		
Date Prepared:	10/07/16	10/07/16	10/07/16	10/07/16		
Date Analyzed:	10/07/16	10/07/16	10/07/16	10/07/16		
AA ID No:	6J04035-02	6J04035-03	6J04035-04	6J04035-05		
Client ID No:	GMW-63	GMW-64	GMW-65	GMW-67		
Matrix:	Water	Water	Water	Water		
Dilution Factor:	1	1	1	1	MRL	
8260B+OXYGENATES (EPA 8260B) (continued)						
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	<0.50	< 0.50	0.50	
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50	
Trichloroethylene (TCE)	<0.50	<0.50	<0.50	< 0.50	0.50	
Trichlorofluoromethane (R11)	<0.50	<0.50	< 0.50	< 0.50	0.50	
1,2,3-Trichloropropane	<0.50	<0.50	<0.50	< 0.50	0.50	
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	<0.50	<0.50	< 0.50	0.50	
ane (R113)	0.50	0.50	0.50	0.50	0.50	
1,3,5-Trimethylbenzene	<0.50	<0.50	<0.50	<0.50	0.50	
1,2,4-Trimethylbenzene	<0.50	<0.50	<0.50	1.4	0.50	
Vinyl chloride	<0.50	< 0.50	< 0.50	<0.50	0.50	
o-Xylene	<0.50	<0.50	<0.50	<0.50	0.50	
m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0	
<u>Surrogates</u>					%REC Limits	
4-Bromofluorobenzene	108%	110%	112%	110%	70-140	
Dibromofluoromethane	116%	117%	119%	121%	70-140	
Toluene-d8	98%	100%	100%	99%	70-140	

10

Acetone

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Units: ug/L

 Date Sampled:
 10/03/16

 Date Prepared:
 10/07/16

 Date Analyzed:
 10/07/16

 AA ID No:
 6J04035-06

 Client ID No:
 GMW-69

 Matrix:
 Water

< 50

Dilution Factor: 5 MRL

8260B+OXYGENATES (EPA 8260B)

ACEIONE	<30	10
tert-Amyl Methyl Ether (TAME)	<10	2.0
Benzene	240	0.50
Bromobenzene	<2.5	0.50
Bromochloromethane	<2.5	0.50
Bromodichloromethane	<2.5	0.50
Bromoform	<2.5	0.50
Bromomethane	<2.5	0.50
2-Butanone (MEK)	<50	10
tert-Butyl alcohol (TBA)	<50	10
sec-Butylbenzene	3.2	0.50
tert-Butylbenzene	<2.5	0.50
n-Butylbenzene	<2.5	0.50
Carbon Disulfide	<2.5	0.50
Carbon Tetrachloride	<2.5	0.50
Chlorobenzene	<2.5	0.50
Chloroethane	<2.5	0.50
Chloroform	<2.5	0.50
Chloromethane	<2.5	0.50
2-Chlorotoluene	<2.5	0.50
4-Chlorotoluene	<2.5	0.50
1,2-Dibromo-3-chloropropane	<5.0	1.0
Dibromochloromethane	<2.5	0.50
1,2-Dibromoethane (EDB)	<2.5	0.50
Dibromomethane	<2.5	0.50
1,3-Dichlorobenzene	<2.5	0.50
1,2-Dichlorobenzene	<2.5	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Units: ug/L

 Date Sampled:
 10/03/16

 Date Prepared:
 10/07/16

 Date Analyzed:
 10/07/16

 AA ID No:
 6J04035-06

 Client ID No:
 GMW-69

 Matrix:
 Water

Dilution Factor: 5 MRL

8260B+OXYGENATES (EPA 8260B) (continued) 1.4-Dichlorobenzene < 2.5 0.50 Dichlorodifluoromethane (R12) <2.5 0.50 <2.5 1,1-Dichloroethane 0.50 1,2-Dichloroethane (EDC) <2.5 0.50 1,1-Dichloroethylene <2.5 0.50 trans-1,2-Dichloroethylene <2.5 0.50 cis-1,2-Dichloroethylene < 2.5 0.50 1,2-Dichloropropane < 2.5 0.50 2,2-Dichloropropane < 2.5 0.50 1,3-Dichloropropane < 2.5 0.50 cis-1,3-Dichloropropylene <2.5 0.50 trans-1,3-Dichloropropylene <2.5 0.50 1,1-Dichloropropylene <2.5 0.50 Diisopropyl ether (DIPE) <10 2.0 Ethylbenzene 290 0.50 Ethyl-tert-Butyl Ether (ETBE) <10 2.0 Hexachlorobutadiene < 5.0 1.0 2-Hexanone (MBK) <50 10 Isopropylbenzene 28 0.50 4-Isopropyltoluene < 5.0 1.0 Methyl-tert-Butyl Ether (MTBE) <5.0 1.0 Methylene Chloride <25 5.0 4-Methyl-2-pentanone (MIBK) <50 10 Naphthalene 45 2.0 n-Propylbenzene 30 0.50 Styrene <2.5 0.50 <2.5 1,1,1,2-Tetrachloroethane 0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Units: ug/L

 Date Sampled:
 10/03/16

 Date Prepared:
 10/07/16

 Date Analyzed:
 10/07/16

 AA ID No:
 6J04035-06

 Client ID No:
 GMW-69

 Matrix:
 Water

Dilution Factor: 5 MRL

8260B+OXYGENATES (EPA 8260	B) (continued)	
1,1,2,2-Tetrachloroethane	<2.5	0.50
Tetrachloroethylene (PCE)	<2.5	0.50
Toluene	<2.5	0.50
1,2,3-Trichlorobenzene	<2.5	0.50
1,2,4-Trichlorobenzene	<2.5	0.50
1,1,1-Trichloroethane	<2.5	0.50
1,1,2-Trichloroethane	<2.5	0.50
Trichloroethylene (TCE)	<2.5	0.50
Trichlorofluoromethane (R11)	<2.5	0.50
1,2,3-Trichloropropane	<2.5	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<2.5	0.50
ane (R113)		
1,3,5-Trimethylbenzene	4.2	0.50
1,2,4-Trimethylbenzene	130	0.50
Vinyl chloride	<2.5	0.50
o-Xylene	160	0.50
m,p-Xylenes	28	1.0

<u>Surrogates</u>		<u>%REC Limits</u>
4-Bromofluorobenzene	111%	70-140
Dibromofluoromethane	116%	70-140
Toluene-d8	100%	70-140

Client: The Source Group, Inc. (SH) AA Project No: A5331949 04-NDLA-013 Date Received: 10/04/16 Project No: Project Name: DFSP Norwalk GW Sampling Date Reported: 10/12/16

Method:	Diesel Range C	Organics by GC/I	FID		Unit	s: mg/L
Date Sampled:		10/03/16	10/03/16	10/03/16	10/03/16	
Date Prepared:		10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:		10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:		6J04035-02	6J04035-03	6J04035-04	6J04035-05	
Client ID No:		GMW-63	GMW-64	GMW-65	GMW-67	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	1	MRL
Diesel Range Or	ganics 8015M	(EPA 8015M)				
Diesel Range Org Diesel	ganics as	<0.10	<0.10	<0.10	<0.10	0.10
<u>Surrogates</u> o-Terphenyl		101%	111%	108%	98%	%REC Limits 50-150

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: Diesel Range Organics by GC/FID

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

Units: mg/L

 Date Sampled:
 10/03/16

 Date Prepared:
 10/10/16

 Date Analyzed:
 10/10/16

 AA ID No:
 6J04035-06

 Client ID No:
 GMW-69

Matrix: Water

Dilution Factor: 1 MRL

Diesel Range Organics 8015M (EPA 8015M)

Diesel Range Organics as 0.21 0.10

Diesel

Surrogates %REC Limits 50.150

o-Terphenyl 75% 50-150

A

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

	3 3 ,				J
Date Sampled:	10/03/16	10/03/16	10/03/16	10/03/16	
Date Prepared:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Analyzed:	10/05/16	10/05/16	10/05/16	10/05/16	
AA ID No:	6J04035-02	6J04035-03	6J04035-04	6J04035-05	
Client ID No:	GMW-63	GMW-64	GMW-65	GMW-67	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 8	015M (EPA 8015M)			
Gasoline Range Organics (GRO)	<100	<100	<100	<100	100
<u>Surrogates</u>					%REC Limits

91%

88%

93%

96%

Method:

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Gasoline Range Organics by GC/FID Units: ug/L

 Date Sampled:
 10/03/16

 Date Prepared:
 10/05/16

 Date Analyzed:
 10/05/16

 AA ID No:
 6J04035-06

 Client ID No:
 GMW-69

 Matrix:
 Water

Dilution Factor: 5 MRL

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics 1600 100

(GRO)

Surrogates %REC Limits

a,a,a-Trifluorotoluene 98% 80-120

A

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

		Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
OCs, OXY & TPH Gasoline by G	SC/MS - Qu	ality Contr	ol							
Batch B6J0709 - EPA 5030B										
Blank (B6J0709-BLK1)				Prepare	ed & Anal	yzed: 1	0/07/16			
Acetone	<10	10	ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L							
Benzene	< 0.50	0.50	ug/L							
Bromobenzene	< 0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

	F	Reporting		Spike	Source	%REC		RPD			
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes		
VOCs, OXY & TPH Gasoline by G	VOCs, OXY & TPH Gasoline by GC/MS - Quality Control										
Batch B6J0709 - EPA 5030B											

Blank (B6J0709-BLK1) Continued	d		Prepa	ared & Analyzed: 10/07/16
1,1-Dichloroethylene	< 0.50	0.50	ug/L	
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
1,2-Dichloropropane	< 0.50	0.50	ug/L	
2,2-Dichloropropane	< 0.50	0.50	ug/L	
1,3-Dichloropropane	< 0.50	0.50	ug/L	
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
1,1-Dichloropropylene	< 0.50	0.50	ug/L	
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L	
Ethylbenzene	< 0.50	0.50	ug/L	
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L	
Gasoline Range Organics (GRO)	<100	100	ug/L	
Hexachlorobutadiene	<1.0	1.0	ug/L	
2-Hexanone (MBK)	<10	10	ug/L	
Isopropylbenzene	<0.50	0.50	ug/L	
4-Isopropyltoluene	<1.0	1.0	ug/L	
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L	
Methylene Chloride	<5.0	5.0	ug/L	
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L	
Naphthalene	<2.0	2.0	ug/L	
n-Propylbenzene	<0.50	0.50	ug/L	
Styrene	<0.50	0.50	ug/L	
1,1,1,2-Tetrachloroethane	<0.50	0.50	ug/L	
1,1,2,2-Tetrachloroethane	<0.50	0.50	ug/L	
Tetrachloroethylene (PCE)	<0.50	0.50	ug/L	
Toluene	< 0.50	0.50	ug/L	
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L	
1,2,4-Trichlorobenzene	<0.50	0.50	ug/L	
1,1,1-Trichloroethane	< 0.50	0.50	ug/L	
1,1,2-Trichloroethane	< 0.50	0.50	ug/L	

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	/MS - Q	uality Contr	ol							
Batch B6J0709 - EPA 5030B										
Blank (B6J0709-BLK1) Continued	i			Prepare	ed & Anal	yzed: 1	0/07/16			
Trichloroethylene (TCE)	<0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	<0.50	0.50	ug/L							
1,2,3-Trichloropropane	<0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L							
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	<0.50	0.50	ug/L							
Vinyl chloride	<0.50	0.50	ug/L							
o-Xylene	<0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.0		ug/L	50		110	70-140			
Surrogate: Dibromofluoromethane	57.4		ug/L	50		115	70-140			
Surrogate: Toluene-d8	51.5		ug/L	50		103	70-140			
LCS (B6J0709-BS1)			J		ed: 10/07	/16 Ana	alyzed: 10	0/08/16		
Acetone	52.1	10	ug/L	50		104	70-130			
tert-Amyl Methyl Ether (TAME)	21.9	2.0	ug/L	20		109	70-130			
Benzene	23.5	0.50	ug/L	20		117	75-125			
Bromobenzene	19.6	0.50	ug/L	20		97.8	70-130			
Bromochloromethane	21.1	0.50	ug/L	20		105	70-130			
Bromodichloromethane	22.9	0.50	ug/L	20		114	75-125			
Bromoform	16.5	0.50	ug/L	20		82.6	75-125			
Bromomethane	20.0		ug/L	20		99.8	75-125			
2-Butanone (MEK)	49.6		ug/L	50		99.2	70-130			
tert-Butyl alcohol (TBA)	114		ug/L	100		114	70-130			
sec-Butylbenzene	22.3		ug/L	20		112	70-130			
tert-Butylbenzene	23.9	0.50	ug/L	20		119	70-130			
n-Butylbenzene	23.0		ug/L	20		115	70-130			
Carbon Disulfide	44.5		ug/L	50		89.0	70-130			
Carbon Tetrachloride	23.9		ug/L	20		119	75-125			
Chlorobenzene	20.2		ug/L	20		101	75-125			
Chloroethane	23.4	0.50	ug/L	20		117	75-125			

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %RI	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J0709 - EPA 5030B LCS (B6J0709-BS1) Continued Prepared: 10/07/16 Analyzed: 10/08/16 23.3 0.50 20 116 75-125 Chloroform ug/L 19.1 0.50 20 95.6 ug/L 65-125 Chloromethane 2-Chlorotoluene 22.7 0.50 ug/L 20 113 70-130 22.8 0.50 114 4-Chlorotoluene ug/L 20 70-130 1,2-Dibromo-3-chloropropane 22.8 1.0 ug/L 20 114 70-130 20.0 0.50 100 Dibromochloromethane ug/L 20 75-125 18.5 0.50 92.4 1,2-Dibromoethane (EDB) ug/L 20 70-130 Dibromomethane 22.3 0.50 ug/L 20 112 70-130 1,3-Dichlorobenzene 106 21.2 0.50 20 70-130 ug/L 21.7 0.50 108 1,2-Dichlorobenzene ug/L 20 70-130 102 1.4-Dichlorobenzene 20.5 0.50 ug/L 20 75-125 17.4 0.50 87.0 Dichlorodifluoromethane (R12) ug/L 20 70-130 1,1-Dichloroethane 21.5 0.50 ug/L 20 108 70-125 25.1 0.50 126 1,2-Dichloroethane (EDC) 20 75-125 ug/L 1,1-Dichloroethylene 16.7 0.50 ug/L 20 83.6 70-130 17.4 0.50 87.2 trans-1,2-Dichloroethylene ug/L 20 75-125 19.5 97.4 cis-1,2-Dichloroethylene 0.50 ug/L 20 75-125 24.5 0.50 122 75-130 1,2-Dichloropropane ug/L 20 114 2,2-Dichloropropane 22.8 0.50 ug/L 20 70-130 20.4 0.50 20 102 70-130 1,3-Dichloropropane ug/L 107 cis-1,3-Dichloropropylene 21.5 0.50 ug/L 20 75-125 trans-1,3-Dichloropropylene 19.7 0.50 ug/L 20 98.6 70-130 1,1-Dichloropropylene 21.8 0.50 ug/L 20 109 70-130 21.8 2.0 109 Diisopropyl ether (DIPE) ua/L 20 70-130 21.3 0.50 107 Ethylbenzene ug/L 20 75-125 21.4 2.0 20 107 Ethyl-tert-Butyl Ether (ETBE) ug/L 70-130 Gasoline Range Organics (GRO) 500 100 100 ug/L 500 70-130 Hexachlorobutadiene 21.0 1.0 20 105 70-130 ug/L

Viorel Vasile Operations Manager

2-Hexanone (MBK)

Isopropylbenzene

4-Isopropyltoluene

ug/L

ua/L

ug/L

50

20

20

95.0

113

118

70-130

70-130

70-130

47.5

22.6

23.6

10

0.50

1.0

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Level Result %REC Limits Units **RPD Limit Notes** Analyte Result Limit VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J0709 - EPA 5030B LCS (B6J0709-BS1) Continued Prepared: 10/07/16 Analyzed: 10/08/16 Methyl-tert-Butyl Ether (MTBE) 43.7 1.0 109 75-125 ug/L 40 25.2 5.0 126 Methylene Chloride ug/L 20 75-130 4-Methyl-2-pentanone (MIBK) 47.8 10 ug/L 50 95.7 70-130 21.9 2.0 110 Naphthalene ug/L 20 70-130 n-Propylbenzene 22.6 0.50 ug/L 20 113 70-130 19.4 0.50 96.8 Styrene ug/L 20 70-130 20.3 0.50 101 1,1,1,2-Tetrachloroethane ug/L 20 70-130 1,1,2,2-Tetrachloroethane 20.2 0.50 ug/L 20 101 70-135 91.2 Tetrachloroethylene (PCE) 18.2 0.50 20 75-125 ug/L 21.2 0.50 106 Toluene ug/L 20 75-125 99.8 1.2.3-Trichlorobenzene 20.0 0.50 ug/L 20 70-130 19.5 0.50 97.3 1.2.4-Trichlorobenzene ug/L 20 70-130 1,1,1-Trichloroethane 24.6 0.50 ug/L 20 123 75-125 19.9 0.50 99.6 1.1.2-Trichloroethane 20 75-125 ug/L Trichloroethylene (TCE) 23.1 0.50 ug/L 20 116 75-125 Trichlorofluoromethane (R11) 23.7 0.50 20 118 ug/L 70-130 21.1 105 1,2,3-Trichloropropane 0.50 ug/L 20 70-130 1,1,2-Trichloro-1,2,2-trifluoroethane 17.9 0.50 89.6 ug/L 20 70-130 (R113) 22.9 0.50 20 114 70-130 1,3,5-Trimethylbenzene ug/L 1,2,4-Trimethylbenzene 22.9 0.50 ug/L 20 115 70-130 21.9 0.50 109 Vinyl chloride ug/L 20 75-125 20.6 0.50 103 75-125 o-Xylene ug/L 20 41.0 1.0 102 m,p-Xylenes 40 70-130 ug/L Surrogate: 4-Bromofluorobenzene 56.1 ug/L 50 112 70-140 54.5 Surrogate: Dibromofluoromethane ug/L 50 109 70-140 50.2 Surrogate: Toluene-d8 ug/L 50 100 70-140 Prepared: 10/07/16 Analyzed: 10/08/16 LCS Dup (B6J0709-BSD1) 10 107 Acetone 53.5 ug/L 50 70-130 2.69 30 19.8 2.0 98.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 10.0 30 23.8 0.50 119 Benzene ug/L 20 75-125 1.14 30

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

CS Dup (B6J0709-BSD1) Continued				Prepared	: 10/07/16 Ana	lyzed: 10/08/16	i
Bromobenzene	19.4	0.50	ug/L	20		70-130 0.873	30
Bromochloromethane	20.2	0.50	ug/L	20		70-130 4.17	30
Bromodichloromethane	21.5	0.50	ug/L	20		75-125 6.45	30
Bromoform	15.8	0.50	ug/L	20		75-125 4.26	30
Bromomethane	19.3	0.50	ug/L	20	96.7	75-125 3.11	30
2-Butanone (MEK)	46.4	10	ug/L	50	92.9	70-130 6.56	30
ert-Butyl alcohol (TBA)	118	10	ug/L	100	118	70-130 3.55	30
sec-Butylbenzene	22.4	0.50	ug/L	20	112	70-130 0.268	30
ert-Butylbenzene	23.7	0.50	ug/L	20	118	70-130 0.926	30
n-Butylbenzene	23.1	0.50	ug/L	20		70-130 0.347	30
Carbon Disulfide	42.8	0.50	ug/L	50	85.5	70-130 4.03	30
Carbon Tetrachloride	22.8	0.50	ug/L	20	114	75-125 4.68	30
Chlorobenzene	20.1	0.50	ug/L	20	100	75-125 0.546	30
Chloroethane	23.2	0.50	ug/L	20	116	75-125 1.03	30
Chloroform	21.5	0.50	ug/L	20	107	75-125 8.18	30
Chloromethane	18.7	0.50	ug/L	20	93.4	65-125 2.33	30
2-Chlorotoluene	22.8	0.50	ug/L	20	114	70-130 0.440	30
1-Chlorotoluene	22.6	0.50	ug/L	20	113	70-130 1.28	30
,2-Dibromo-3-chloropropane	21.5	1.0	ug/L	20	108	70-130 5.95	30
Dibromochloromethane	19.9	0.50	ug/L	20	99.6	75-125 0.451	30
,2-Dibromoethane (EDB)	19.6	0.50	ug/L	20	98.2	70-130 6.08	30
Dibromomethane	20.2	0.50	ug/L	20	101	70-130 10.1	30
,3-Dichlorobenzene	20.8	0.50	ug/L	20	104	70-130 1.90	30
,2-Dichlorobenzene	21.7	0.50	ug/L	20	108	70-130 0.0923	30
,4-Dichlorobenzene	20.5	0.50	ug/L	20	103	75-125 0.0976	30
Dichlorodifluoromethane (R12)	17.2	0.50	ug/L	20	86.1	70-130 0.982	30
,1-Dichloroethane	19.9	0.50	ug/L	20	99.6	70-125 7.63	30
,2-Dichloroethane (EDC)	23.1	0.50	ug/L	20	116	75-125 8.37	30
,1-Dichloroethylene	16.2	0.50	ug/L	20	81.1	70-130 2.98	30
rans-1,2-Dichloroethylene	16.6	0.50	ug/L	20	82.8	75-125 5.18	30
cis-1,2-Dichloroethylene	18.9	0.50	ug/L	20	94.4	75-125 3.02	30

Spike Source

Reporting

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/12/16

%REC RPD

AA Project No: A5331949

Date Received: 10/04/16

Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOCs, OXY & TPH Gasoline by GO	C/MS - Qu	ality Contr	ol						
Batch B6J0709 - EPA 5030B									
LCS Dup (B6J0709-BSD1) Conti	nued			Prepare	ed: 10/07/16 Ana	alyzed: 1	0/08/16		
1,2-Dichloropropane	22.7	0.50	ug/L	20	113	75-130	7.72	30	
2,2-Dichloropropane	20.8	0.50	ug/L	20	104	70-130	9.32	30	
1,3-Dichloropropane	19.4	0.50	ug/L	20	97.0	70-130	5.27	30	
cis-1,3-Dichloropropylene	19.3	0.50	ug/L	20	96.6	75-125	10.7	30	
trans-1,3-Dichloropropylene	19.5	0.50	ug/L	20	97.6	70-130	1.12	30	
1,1-Dichloropropylene	20.6	0.50	ug/L	20	103	70-130	5.42	30	
Diisopropyl ether (DIPE)	20.7	2.0	ug/L	20	103	70-130	5.27	30	
Ethylbenzene	21.1	0.50	ug/L	20	106	75-125	1.04	30	
Ethyl-tert-Butyl Ether (ETBE)	19.9	2.0	ug/L	20	99.7	70-130	7.25	30	
Gasoline Range Organics (GRO)	446	100	ug/L	500	89.2	70-130	11.4	30	
Hexachlorobutadiene	22.1	1.0	ug/L	20	110	70-130	4.96	30	
2-Hexanone (MBK)	47.5	10	ug/L	50	95.0	70-130	0.0210	30	
Isopropylbenzene	22.7	0.50	ug/L	20	113	70-130	0.309	30	
4-Isopropyltoluene	23.9	1.0	ug/L	20	119	70-130	1.22	30	
Methyl-tert-Butyl Ether (MTBE)	40.5	1.0	ug/L	40	101	75-125	7.63	30	
Methylene Chloride	23.6	5.0	ug/L	20	118	75-130	6.84	30	
4-Methyl-2-pentanone (MIBK)	41.3	10	ug/L	50	82.5	70-130	14.8	30	
Naphthalene	23.8	2.0	ug/L	20	119	70-130	8.35	30	
n-Propylbenzene	22.6	0.50	ug/L	20	113	70-130	0.354	30	
Styrene	19.0	0.50	ug/L	20	95.2	70-130	1.56	30	
1,1,1,2-Tetrachloroethane	19.5	0.50	ug/L	20	97.6	70-130	3.72	30	
1,1,2,2-Tetrachloroethane	20.0	0.50	ug/L	20	100	70-135	1.04	30	
Tetrachloroethylene (PCE)	18.1	0.50	ug/L	20	90.3	75-125	1.05	30	
Toluene	20.7	0.50	ug/L	20	103	75-125	2.34	30	
1,2,3-Trichlorobenzene	20.2	0.50	ug/L	20	101	70-130	1.25	30	
1,2,4-Trichlorobenzene	19.5	0.50	ug/L	20	97.4	70-130	0.154	30	
1,1,1-Trichloroethane	23.3	0.50	ug/L	20	117	75-125	5.38	30	
1,1,2-Trichloroethane	19.2	0.50	ug/L	20	96.0	75-125	3.68	30	
Trichloroethylene (TCE)	21.3	0.50	ug/L	20	106	75-125	8.29	30	
Trichlorofluoromethane (R11)	22.6	0.50	ug/L	20	113	70-130	4.58	30	
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	104	70-130	1.39	30	

Spike Source

Reporting

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/04/16
Date Reported: 10/12/16

%REC RPD

AA Project No: A5331949

Notes
QM-07

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %R	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

1-Chlorotoluene	19.9	0.50	ug/L	20	99.6	70-130	
,2-Dibromo-3-chloropropane	27.6	1.0	ug/L	20	138	70-130	QM-0
Dibromochloromethane	21.3	0.50	ug/L	20	107	70-130	
,2-Dibromoethane (EDB)	21.1	0.50	ug/L	20	105	70-130	
Dibromomethane	22.0	0.50	ug/L	20	110	70-130	
,3-Dichlorobenzene	19.5	0.50	ug/L	20	97.3	70-130	
,2-Dichlorobenzene	20.9	0.50	ug/L	20	104	70-130	
,4-Dichlorobenzene	18.6	0.50	ug/L	20	92.8	70-130	
Dichlorodifluoromethane (R12)	16.8	0.50	ug/L	20	84.1	70-130	
,1-Dichloroethane	19.3	0.50	ug/L	20	96.6	70-130	
,2-Dichloroethane (EDC)	25.1	0.50	ug/L	20	125	70-130	
,1-Dichloroethylene	16.1	0.50	ug/L	20	80.6	70-130	
rans-1,2-Dichloroethylene	17.0	0.50	ug/L	20	85.1	70-130	
is-1,2-Dichloroethylene	17.6	0.50	ug/L	20	88.0	70-130	
,2-Dichloropropane	22.9	0.50	ug/L	20	114	70-130	
2,2-Dichloropropane	21.7	0.50	ug/L	20	109	70-130	
,3-Dichloropropane	22.0	0.50	ug/L	20	110	70-130	
is-1,3-Dichloropropylene	21.6	0.50	ug/L	20	108	70-130	
rans-1,3-Dichloropropylene	22.2	0.50	ug/L	20	111	70-130	
,1-Dichloropropylene	18.5	0.50	ug/L	20	92.4	70-130	
Diisopropyl ether (DIPE)	22.6	2.0	ug/L	20	113	70-130	
Ethylbenzene	19.6	0.50	ug/L	20	98.1	70-130	
Ethyl-tert-Butyl Ether (ETBE)	21.9	2.0	ug/L	20	110	70-130	
Hexachlorobutadiene	17.9	1.0	ug/L	20	89.6	70-130	
2-Hexanone (MBK)	59.1	10	ug/L	50	118	70-130	
sopropylbenzene	19.2	0.50	ug/L	20	96.1	70-130	
1-Isopropyltoluene	20.0	1.0	ug/L	20	100	70-130	
Methyl-tert-Butyl Ether (MTBE)	47.1	1.0	ug/L	40	118	70-130	
Methylene Chloride	22.1	5.0	ug/L	20	111	70-130	
I-Methyl-2-pentanone (MIBK)	58.7	10	ug/L	50	117	70-130	
Naphthalene	23.7	2.0	ug/L	20	119	70-130	

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

Batch B6J0709 - EPA 5030B									
Matrix Spike (B6J0709-MS1) Contin	nued So	ource: 6	J04035-02 P	repar	ed & Analyzed: 1	0/07/16			
n-Propylbenzene	19.1	0.50	ug/L	20	95.7	70-130			
Styrene	18.8	0.50	ug/L	20	94.0	70-130			
1,1,1,2-Tetrachloroethane	19.7	0.50	ug/L	20	98.4	70-130			
1,1,2,2-Tetrachloroethane	23.8	0.50	ug/L	20	119	70-130			
Tetrachloroethylene (PCE)	16.4	0.50	ug/L	20	82.0	70-130			
Toluene	19.5	0.50	ug/L	20	97.4	70-130			
1,2,3-Trichlorobenzene	18.6	0.50	ug/L	20	92.8	70-130			
1,2,4-Trichlorobenzene	18.0	0.50	ug/L	20	90.2	70-130			
1,1,1-Trichloroethane	21.0	0.50	ug/L	20	105	70-130			
1,1,2-Trichloroethane	21.5	0.50	ug/L	20	108	70-130			
Trichloroethylene (TCE)	19.4	0.50	ug/L	20	96.8	70-130			
Trichlorofluoromethane (R11)	24.8	0.50	ug/L	20	124	70-130			
1,2,3-Trichloropropane	25.3	0.50	ug/L	20	127	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane	16.5	0.50	ug/L	20	82.4	70-130			
(R113)	40.6	0.50	/1	20	07.0	70 400			
1,3,5-Trimethylbenzene	19.6	0.50	ug/L	20	97.9	70-130			
1,2,4-Trimethylbenzene	20.1		ug/L	20	100	70-130			
Vinyl chloride	22.2	0.50	ug/L	20	111	70-130			
o-Xylene	18.8	0.50	ug/L	20	93.8	70-130			
m,p-Xylenes	37.8	1.0	ug/L	40	94.5	70-130			
Surrogate: 4-Bromofluorobenzene	<i>4</i> 9.8		ug/L	50	99.7	70-140			
Surrogate: Dibromofluoromethane	53.3		ug/L	50	107	70-140			
Surrogate: Toluene-d8	51.1		ug/L	50	102	70-140			
Matrix Spike Dup (B6J0709-MSD1)	So	ource: 6	J04035-02 P	repar	ed & Analyzed: 1	0/07/16			
Acetone	55.3	10	ug/L	50	111	70-130	8.70	30	
tert-Amyl Methyl Ether (TAME)	24.2	2.0	ug/L	20	121	70-130	3.15	30	
Benzene	24.2	0.50	ug/L	20	121	70-130	3.19	30	
Bromobenzene	19.5	0.50	ug/L	20	97.4	70-130	2.55	30	
Bromochloromethane	20.5	0.50	ug/L	20	103	70-130	1.64	30	
Bromodichloromethane	22.1	0.50	ug/L	20	110	70-130	1.64	30	
Bromoform	18.7	0.50	ug/L	20	93.7	70-130	0.532	30	

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Paparting	Spika Sauraa	0/ DEC	RPD
	Reporting	Spike Source	%KEC	KPU
Analyte	Result Limit Units	Level Result %R	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

Matrix Spike Dup (B6J0709-MSD1 Continued) S	ource: 6.	J04035-02	Prepare	ed & Analyzed: 10/07/16
Bromomethane	19.6	0.50	ug/L	20	97.8 70-130 14.0 30
2-Butanone (MEK)	53.8	10	ug/L	50	108 70-130 1.95 30
tert-Butyl alcohol (TBA)	153	10	ug/L	100	153 70-130 1.46 30 QM-07
sec-Butylbenzene	19.2	0.50	ug/L	20	96.2 70-130 4.24 30
tert-Butylbenzene	20.8	0.50	ug/L	20	104 70-130 5.88 30
n-Butylbenzene	20.4	0.50	ug/L	20	102 70-130 5.60 30
Carbon Disulfide	41.5	0.50	ug/L	50	83.0 70-130 2.17 30
Carbon Tetrachloride	20.4	0.50	ug/L	20	102 70-130 2.43 30
Chlorobenzene	18.8	0.50	ug/L	20	94.0 70-130 2.62 30
Chloroethane	24.8	0.50	ug/L	20	124 70-130 6.31 30
Chloroform	21.4	0.50	ug/L	20	107 70-130 1.27 30
Chloromethane	20.3	0.50	ug/L	20	101 70-130 4.79 30
2-Chlorotoluene	20.7	0.50	ug/L	20	103 70-130 4.30 30
4-Chlorotoluene	20.7	0.50	ug/L	20	104 70-130 4.08 30
1,2-Dibromo-3-chloropropane	28.7	1.0	ug/L	20	143 70-130 3.73 30 QM-07
Dibromochloromethane	21.0	0.50	ug/L	20	105 70-130 1.27 30
1,2-Dibromoethane (EDB)	20.9	0.50	ug/L	20	105 70-130 0.666 30
Dibromomethane	22.2	0.50	ug/L	20	111 70-130 1.13 30
1,3-Dichlorobenzene	19.7	0.50	ug/L	20	98.4 70-130 1.17 30
1,2-Dichlorobenzene	21.0	0.50	ug/L	20	105 70-130 0.859 30
1,4-Dichlorobenzene	19.6	0.50	ug/L	20	98.2 70-130 5.76 30
Dichlorodifluoromethane (R12)	17.6	0.50	ug/L	20	87.8 70-130 4.25 30
1,1-Dichloroethane	19.7	0.50	ug/L	20	98.4 70-130 1.85 30
1,2-Dichloroethane (EDC)	25.3	0.50	ug/L	20	126 70-130 0.873 30
1,1-Dichloroethylene	17.2	0.50	ug/L	20	86.1 70-130 6.66 30
trans-1,2-Dichloroethylene	16.5	0.50	ug/L	20	82.6 70-130 2.98 30
cis-1,2-Dichloroethylene	18.1	0.50	ug/L	20	90.7 70-130 2.97 30
1,2-Dichloropropane	23.2	0.50	ug/L	20	116 70-130 1.17 30
2,2-Dichloropropane	21.7	0.50	ug/L	20	109 70-130 0.0460 30
1,3-Dichloropropane	21.4	0.50	ug/L	20	107 70-130 2.53 30
cis-1,3-Dichloropropylene	22.2	0.50	ug/L	20	111 70-130 2.83 30

Date Received: 10/04/16

Analyte

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/12/16 Reporting Spike Source %REC **RPD** Level Result %REC Limits RPD Units Result Limit **Limit Notes**

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

Matrix Spike Dup (B6J0709-MSD1) Continued	S	ource: 6	J 04035-02 F	Prepar	red & Analyzed: 10/07/16
trans-1,3-Dichloropropylene	21.2	0.50	ug/L	20	106 70-130 4.75 30
1,1-Dichloropropylene	19.6	0.50	ug/L	20	97.8 70-130 5.73 30
Diisopropyl ether (DIPE)	22.9	2.0	ug/L	20	114 70-130 1.01 30
Ethylbenzene	19.3	0.50	ug/L	20	96.4 70-130 1.80 30
Ethyl-tert-Butyl Ether (ETBE)	23.3	2.0	ug/L	20	116 70-130 5.98 30
Hexachlorobutadiene	19.4	1.0	ug/L	20	96.8 70-130 7.78 30
2-Hexanone (MBK)	59.6	10	ug/L	50	119 70-130 0.960 30
Isopropylbenzene	20.2	0.50	ug/L	20	101 70-130 4.72 30
4-Isopropyltoluene	20.9	1.0	ug/L	20	105 70-130 4.64 30
Methyl-tert-Butyl Ether (MTBE)	47.7	1.0	ug/L	40	119 70-130 1.37 30
Methylene Chloride	23.1	5.0	ug/L	20	115 70-130 4.11 30
4-Methyl-2-pentanone (MIBK)	59.6	10	ug/L	50	119 70-130 1.49 30
Naphthalene	26.6	2.0	ug/L	20	133 70-130 11.5 30 QM-07
n-Propylbenzene	19.7	0.50	ug/L	20	98.6 70-130 2.93 30
Styrene	18.3	0.50	ug/L	20	91.4 70-130 2.91 30
1,1,1,2-Tetrachloroethane	19.4	0.50	ug/L	20	96.8 70-130 1.64 30
1,1,2,2-Tetrachloroethane	23.2	0.50	ug/L	20	116 70-130 2.55 30
Tetrachloroethylene (PCE)	16.5	0.50	ug/L	20	82.4 70-130 0.547 30
Toluene	19.7	0.50	ug/L	20	98.4 70-130 1.07 30
1,2,3-Trichlorobenzene	19.5	0.50	ug/L	20	97.6 70-130 4.99 30
1,2,4-Trichlorobenzene	19.5	0.50	ug/L	20	97.4 70-130 7.67 30
1,1,1-Trichloroethane	21.4	0.50	ug/L	20	107 70-130 2.03 30
1,1,2-Trichloroethane	21.5	0.50	ug/L	20	108 70-130 0.139 30
Trichloroethylene (TCE)	20.3	0.50	ug/L	20	101 70-130 4.49 30
Trichlorofluoromethane (R11)	24.8	0.50	ug/L	20	124 70-130 0.0403 30
1,2,3-Trichloropropane	25.2	0.50	ug/L	20	126 70-130 0.634 30
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	18.4	0.50	ug/L	20	92.2 70-130 11.3 30
1,3,5-Trimethylbenzene	20.2	0.50	ug/L	20	101 70-130 2.87 30
1,2,4-Trimethylbenzene	20.8	0.50	ug/L	20	104 70-130 3.28 30
Vinyl chloride	23.1	0.50	ug/L	20	116 70-130 3.92 30

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC	/MS - Qu	uality Contr	ol						
Batch B6J0709 - EPA 5030B		-							
Matrix Spike Dup (B6J0709-MSD	1) 5	Source: 6J0	4035-02	Prepare	ed & Analyzed: 1	0/07/16			
Continued	,		222 3 —	-1	,	- · ·			
o-Xylene	18.3	0.50	ug/L	20	91.3	70-130	2.65	30	
m,p-Xylenes	36.6	1.0	ug/L	40	91.6	70-130	3.14	30	
Surrogate: 4-Bromofluorobenzene	52.8		ug/L	50	106	70-140			
Surrogate: Dibromofluoromethane	54.1		ug/L	50	108	70-140			
Surrogate: Toluene-d8	50.1		ug/L	50	100	70-140			
VOCs & OXYGENATES by GC/MS	- Quality	Control	J						
Batch B6J0709 - EPA 5030B	~ .								
Blank (B6J0709-BLK1)				Prepare	ed & Analyzed: 1	0/07/16			
Acetone	<10	10	ug/L	•	•				
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L						
Benzene	< 0.50	0.50	ug/L						
Bromobenzene	< 0.50	0.50	ug/L						
Bromochloromethane	< 0.50	0.50	ug/L						
Bromodichloromethane	< 0.50	0.50	ug/L						
Bromoform	< 0.50	0.50	ug/L						
Bromomethane	< 0.50	0.50	ug/L						
2-Butanone (MEK)	<10	10	ug/L						
tert-Butyl alcohol (TBA)	<10	10	ug/L						
sec-Butylbenzene	< 0.50	0.50	ug/L						
tert-Butylbenzene	< 0.50	0.50	ug/L						
n-Butylbenzene	< 0.50	0.50	ug/L						
Carbon Disulfide	< 0.50	0.50	ug/L						
Carbon Tetrachloride	< 0.50	0.50	ug/L						
Chlorobenzene	< 0.50	0.50	ug/L						
Chloroethane	< 0.50	0.50	ug/L						
Chloroform	< 0.50	0.50	ug/L						
Chloromethane	< 0.50	0.50	ug/L						
2-Chlorotoluene	< 0.50	0.50	ug/L						
4-Chlorotoluene	< 0.50	0.50	ug/L						
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L						

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Analyte	F Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control								
Batch B6J0709 - EPA 5030B	,									
Blank (B6J0709-BLK1) Continue	ed			Prepare	ed & Ana	lyzed: 1	0/07/16			
Dibromochloromethane	<0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
1,2-Dichloropropane	< 0.50	0.50	ug/L							
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	<0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331949Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/12/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	Control								
Batch B6J0709 - EPA 5030B	-									
Blank (B6J0709-BLK1) Continued	t			Prepare	ed & Ana	lyzed: 1	0/07/16			
1,1,1,2-Tetrachloroethane	<0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L							
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.0		ug/L	50		110	70-140			
Surrogate: Dibromofluoromethane	57.4		ug/L	50		115	70-140			
Surrogate: Toluene-d8	51.5		ug/L	50		103	70-140			
LCS (B6J0709-BS1)			_	Prepare	ed: 10/07	/16 Ana	alyzed: 10	0/08/16		
Acetone	52.1	10	ug/L	50		104	70-130			
tert-Amyl Methyl Ether (TAME)	21.9	2.0	ug/L	20		109	70-130			
Benzene	23.5	0.50	ug/L	20		117	75-125			
Bromobenzene	19.6	0.50	ug/L	20		97.8	70-130			
Bromochloromethane	21.1	0.50	ug/L	20		105	70-130			
Bromodichloromethane	22.9	0.50	ug/L	20		114	75-125			
Bromoform	16.5	0.50	ug/L	20		82.6	75-125			
Bromomethane	20.0	0.50	ug/L	20		99.8	75-125			
2-Butanone (MEK)	49.6	10	ug/L	50		99.2	70-130			

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control Batch B6J0709 - EPA 5030B LCS (B6J0709-BS1) Continued Prepared: 10/07/16 Analyzed: 10/08/16 114 10 100 114 70-130 tert-Butyl alcohol (TBA) ug/L 22.3 0.50 20 112 sec-Butylbenzene ug/L 70-130 tert-Butylbenzene 23.9 0.50 ug/L 20 119 70-130 23.0 0.50 115 n-Butylbenzene ug/L 20 70-130 44.5 89.0 Carbon Disulfide 0.50 ug/L 50 70-130 23.9 119 Carbon Tetrachloride 0.50 ug/L 20 75-125 20.2 0.50 101 Chlorobenzene ug/L 20 75-125 Chloroethane 23.4 0.50 ug/L 20 117 75-125 23.3 116 Chloroform 0.50 20 75-125 ug/L 19.1 0.50 95.6 Chloromethane ug/L 20 65-125 22.7 113 2-Chlorotoluene 0.50 ug/L 20 70-130 22.8 0.50 114 4-Chlorotoluene ug/L 20 70-130 1,2-Dibromo-3-chloropropane 22.8 1.0 ug/L 20 114 70-130 20.0 0.50 100 Dibromochloromethane 20 75-125 ug/L 92.4 1,2-Dibromoethane (EDB) 18.5 0.50 ug/L 20 70-130 22.3 0.50 112 Dibromomethane ug/L 20 70-130 106 1,3-Dichlorobenzene 21.2 0.50 ug/L 20 70-130 21.7 0.50 108 1.2-Dichlorobenzene ua/L 20 70-130 20.5 102 1,4-Dichlorobenzene 0.50 ug/L 20 75-125 17.4 0.50 20 87.0 70-130 Dichlorodifluoromethane (R12) ug/L 21.5 108 1,1-Dichloroethane 0.50 ug/L 20 70-125 1,2-Dichloroethane (EDC) 25.1 0.50 ug/L 20 126 75-125 1,1-Dichloroethylene 16.7 0.50 ug/L 20 83.6 70-130 17.4 87.2 trans-1,2-Dichloroethylene 0.50 75-125 ua/L 20 19.5 0.50 97.4 cis-1,2-Dichloroethylene ug/L 20 75-125 24.5 0.50 20 122 1,2-Dichloropropane ug/L 75-130 22.8 114 2,2-Dichloropropane 0.50 ug/L 20 70-130

Viorel Vasile Operations Manager

1,3-Dichloropropane

1,1-Dichloropropylene

cis-1,3-Dichloropropylene

trans-1,3-Dichloropropylene

ug/L

ug/L

ua/L

ug/L

20

20

20

20

102

107

98.6

109

70-130

75-125

70-130

70-130

20.4

21.5

19.7

21.8

0.50

0.50

0.50

0.50

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

		Reporting		Spike	Source	%REC		RPD	
Analy	rte Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs & OXYGENATES by GC/MS - Quality Control Batch B6J0709 - EPA 5030B

LCS (B6J0709-BS1) Continued			F	Prepare	ed: 10/07/16 An	alyzed: 10/08/	16
Diisopropyl ether (DIPE)	21.8	2.0	ug/L	20	109	70-130	
Ethylbenzene	21.3	0.50	ug/L	20	107	75-125	
Ethyl-tert-Butyl Ether (ETBE)	21.4	2.0	ug/L	20	107	70-130	
Hexachlorobutadiene	21.0	1.0	ug/L	20	105	70-130	
2-Hexanone (MBK)	47.5	10	ug/L	50	95.0	70-130	
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130	
4-Isopropyltoluene	23.6	1.0	ug/L	20	118	70-130	
Methyl-tert-Butyl Ether (MTBE)	43.7	1.0	ug/L	40	109	75-125	
Methylene Chloride	25.2	5.0	ug/L	20	126	75-130	
4-Methyl-2-pentanone (MIBK)	47.8	10	ug/L	50	95.7	70-130	
Naphthalene	21.9	2.0	ug/L	20	110	70-130	
n-Propylbenzene	22.6	0.50	ug/L	20	113	70-130	
Styrene	19.4	0.50	ug/L	20	96.8	70-130	
1,1,1,2-Tetrachloroethane	20.3	0.50	ug/L	20	101	70-130	
1,1,2,2-Tetrachloroethane	20.2	0.50	ug/L	20	101	70-135	
Tetrachloroethylene (PCE)	18.2	0.50	ug/L	20	91.2	75-125	
Toluene	21.2	0.50	ug/L	20	106	75-125	
1,2,3-Trichlorobenzene	20.0	0.50	ug/L	20	99.8	70-130	
1,2,4-Trichlorobenzene	19.5	0.50	ug/L	20	97.3	70-130	
1,1,1-Trichloroethane	24.6	0.50	ug/L	20	123	75-125	
1,1,2-Trichloroethane	19.9	0.50	ug/L	20	99.6	75-125	
Trichloroethylene (TCE)	23.1	0.50	ug/L	20	116	75-125	
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	118	70-130	
1,2,3-Trichloropropane	21.1	0.50	ug/L	20	105	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane	17.9	0.50	ug/L	20	89.6	70-130	
(R113)			-				
1,3,5-Trimethylbenzene	22.9	0.50	ug/L	20	114	70-130	
1,2,4-Trimethylbenzene	22.9	0.50	ug/L	20	115	70-130	
Vinyl chloride	21.9	0.50	ug/L	20	109	75-125	
o-Xylene	20.6	0.50	ug/L	20	103	75-125	
m,p-Xylenes	41.0	1.0	ug/L	40	102	70-130	

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control							
Batch B6J0709 - EPA 5030B									
LCS (B6J0709-BS1) Continued				Prepare	ed: 10/07/16 Ana	alyzed: 10	0/08/16		
Surrogate: 4-Bromofluorobenzene			ug/L	50	112	70-140			
Surrogate: Dibromofluoromethane	54.5		ug/L	50	109	70-140			
Surrogate: Toluene-d8	50.2		ug/L	50	100	70-140			
LCS Dup (B6J0709-BSD1)				Prepare	ed: 10/07/16 Ana	alyzed: 10	0/08/16		
Acetone	53.5	10	ug/L	50	107	70-130	2.69	30	
tert-Amyl Methyl Ether (TAME)	19.8	2.0	ug/L	20	98.8	70-130	10.0	30	
Benzene	23.8	0.50	ug/L	20	119	75-125	1.14	30	
Bromobenzene	19.4	0.50	ug/L	20	96.9	70-130	0.873	30	
Bromochloromethane	20.2	0.50	ug/L	20	101	70-130	4.17	30	
Bromodichloromethane	21.5	0.50	ug/L	20	107	75-125	6.45	30	
Bromoform	15.8	0.50	ug/L	20	79.2	75-125	4.26	30	
Bromomethane	19.3	0.50	ug/L	20	96.7	75-125	3.11	30	
2-Butanone (MEK)	46.4	10	ug/L	50	92.9	70-130	6.56	30	
tert-Butyl alcohol (TBA)	118	10	ug/L	100	118	70-130	3.55	30	
sec-Butylbenzene	22.4	0.50	ug/L	20	112	70-130	0.268	30	
tert-Butylbenzene	23.7	0.50	ug/L	20	118	70-130	0.926	30	
n-Butylbenzene	23.1	0.50	ug/L	20	115	70-130	0.347	30	
Carbon Disulfide	42.8	0.50	ug/L	50	85.5	70-130	4.03	30	
Carbon Tetrachloride	22.8	0.50	ug/L	20	114	75-125	4.68	30	
Chlorobenzene	20.1	0.50	ug/L	20	100	75-125	0.546	30	
Chloroethane	23.2	0.50	ug/L	20	116	75-125	1.03	30	
Chloroform	21.5	0.50	ug/L	20	107	75-125	8.18	30	
Chloromethane	18.7	0.50	ug/L	20	93.4	65-125	2.33	30	
2-Chlorotoluene	22.8	0.50	ug/L	20	114	70-130	0.440	30	
4-Chlorotoluene	22.6	0.50	ug/L	20	113	70-130	1.28	30	
1,2-Dibromo-3-chloropropane	21.5	1.0	ug/L	20	108	70-130	5.95	30	
Dibromochloromethane	19.9	0.50	ug/L	20	99.6	75-125	0.451	30	
1,2-Dibromoethane (EDB)	18.6	0.50	ug/L	20	93.2	70-130	0.862	30	
Dibromomethane	20.2	0.50	ug/L	20	101	70-130	10.1	30	
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104	70-130	1.90	30	
1,2-Dichlorobenzene	21.7	0.50	ug/L	20	108	70-130	0.0923	30	

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

The Source Group, Inc. (SH) Client:

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC **RPD** Units Level Result %REC Limits RPD **Analyte** Result Limit **Limit Notes**

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B											
LCS Dup (B6J0709-BSD1) Contin	ued			Prepare	red: 10/07/16 Analyzed: 10/08/16						
1,4-Dichlorobenzene	20.5	0.50	ug/L	20	103 75-125 0.0976 30						
Dichlorodifluoromethane (R12)	17.2	0.50	ug/L	20	86.1 70-130 0.982 30						
1,1-Dichloroethane	19.9	0.50	ug/L	20	99.6 70-125 7.63 30						
1,2-Dichloroethane (EDC)	23.1	0.50	ug/L	20	116 75-125 8.37 30						
1,1-Dichloroethylene	16.2	0.50	ug/L	20	81.1 70-130 2.98 30						
trans-1,2-Dichloroethylene	16.6	0.50	ug/L	20	82.8 75-125 5.18 30						
cis-1,2-Dichloroethylene	18.9	0.50	ug/L	20	94.4 75-125 3.02 30						
1,2-Dichloropropane	22.7	0.50	ug/L	20	113 75-130 7.72 30						
2,2-Dichloropropane	20.8	0.50	ug/L	20	104 70-130 9.32 30						
1,3-Dichloropropane	19.4	0.50	ug/L	20	97.0 70-130 5.27 30						
cis-1,3-Dichloropropylene	19.3	0.50	ug/L	20	96.6 75-125 10.7 30						
trans-1,3-Dichloropropylene	19.5	0.50	ug/L	20	97.6 70-130 1.12 30						
1,1-Dichloropropylene	20.6	0.50	ug/L	20	103 70-130 5.42 30						
Diisopropyl ether (DIPE)	20.7	2.0	ug/L	20	103 70-130 5.27 30						
Ethylbenzene	21.1	0.50	ug/L	20	106 75-125 1.04 30						
Ethyl-tert-Butyl Ether (ETBE)	19.9	2.0	ug/L	20	99.7 70-130 7.25 30						
Hexachlorobutadiene	22.1	1.0	ug/L	20	110 70-130 4.96 30						
2-Hexanone (MBK)	47.5	10	ug/L	50	95.0 70-130 0.0210 30						
Isopropylbenzene	22.7	0.50	ug/L	20	113 70-130 0.309 30						
4-Isopropyltoluene	23.9	1.0	ug/L	20	119 70-130 1.22 30						
Methyl-tert-Butyl Ether (MTBE)	40.5	1.0	ug/L	40	101 75-125 7.63 30						
Methylene Chloride	23.6	5.0	ug/L	20	118 75-130 6.84 30						
4-Methyl-2-pentanone (MIBK)	41.3	10	ug/L	50	82.5 70-130 14.8 30						
Naphthalene	23.8	2.0	ug/L	20	119 70-130 8.35 30						
n-Propylbenzene	22.6	0.50	ug/L	20	113 70-130 0.354 30						
Styrene	19.0	0.50	ug/L	20	95.2 70-130 1.56 30						
1,1,1,2-Tetrachloroethane	19.5	0.50	ug/L	20	97.6 70-130 3.72 30						
1,1,2,2-Tetrachloroethane	20.0	0.50	ug/L	20	100 70-135 1.04 30						
Tetrachloroethylene (PCE)	18.1	0.50	ug/L	20	90.3 75-125 1.05 30						
Toluene	20.7	0.50	ug/L	20	103 75-125 2.34 30						
1,2,3-Trichlorobenzene	20.2	0.50	ug/L	20	101 70-130 1.25 30						

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

		Reporting			Source		%REC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	/ Control								
Batch B6J0709 - EPA 5030B	_									
LCS Dup (B6J0709-BSD1) Contin	ued			Prepare	ed: 10/07/	/16 Ana	alyzed: 1	0/08/16		
1,2,4-Trichlorobenzene	19.5	0.50	ug/L	20			70-130		30	-
1,1,1-Trichloroethane	23.3	0.50	ug/L	20		117	75-125	5.38	30	
1,1,2-Trichloroethane	19.2	0.50	ug/L	20		96.0	75-125	3.68	30	
Trichloroethylene (TCE)	21.3	0.50	ug/L	20		106	75-125	8.29	30	
Trichlorofluoromethane (R11)	22.6	0.50	ug/L	20		113	70-130	4.58	30	
1,2,3-Trichloropropane	20.8	0.50	ug/L	20		104	70-130	1.39	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	17.2	0.50	ug/L	20		86.1	70-130	3.98	30	
(R113)										
1,3,5-Trimethylbenzene	22.9	0.50	ug/L	20		115	70-130		30	
1,2,4-Trimethylbenzene	23.2	0.50	ug/L	20		116	70-130		30	
Vinyl chloride	22.1	0.50	ug/L	20		110	75-125		30	
o-Xylene	19.8	0.50	ug/L	20		99.2	75-125	4.05	30	
m,p-Xylenes	39.8	1.0	ug/L	40		99.4	70-130	2.92	30	
Surrogate: 4-Bromofluorobenzene	54.8		ug/L	50		110	70-140			
Surrogate: Dibromofluoromethane	51.2		ug/L	50		102	70-140			
Surrogate: Toluene-d8	50.8		ug/L	50		102	70-140			
Matrix Spike (B6J0709-MS1)		Source: 6J0	4035-02	Prepare	ed & Anal	yzed: 1	0/07/16			
Acetone	50.7	10	ug/L	50	<10	101	70-130			
tert-Amyl Methyl Ether (TAME)	23.4	2.0	ug/L	20	<2.0	117	70-130			
Benzene	23.4	0.50	ug/L	20	<0.50	117	70-130			
Bromobenzene	19.0	0.50	ug/L	20	<0.50		70-130			
Bromochloromethane	20.9	0.50	ug/L	20	<0.50	104	70-130			
Bromodichloromethane	21.7	0.50	ug/L	20	< 0.50	109	70-130			
Bromoform	18.8	0.50	ug/L	20	<0.50		70-130			
Bromomethane	17.0	0.50	ug/L	20	< 0.50		70-130			
2-Butanone (MEK)	54.9	10	ug/L	50	<10	110	70-130			
tert-Butyl alcohol (TBA)	151	10	ug/L	100	<10	151	70-130			QM-07
sec-Butylbenzene	18.4	0.50	ug/L	20	< 0.50		70-130			
tert-Butylbenzene	19.7	0.50	ug/L	20	< 0.50		70-130			
n-Butylbenzene	19.3	0.50	ug/L	20	< 0.50		70-130			
Carbon Disulfide	40.6	0.50	ug/L	50	< 0.50	81.3	70-130			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/04/16
Date Reported: 10/12/16

AA Project No: A5331949

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control								
Batch B6J0709 - EPA 5030B										
Matrix Spike (B6J0709-MS1) Cor	tinued S	Source: 6J0	4035-02	Prepare	ed & Anal	yzed: 1	0/07/16			
Carbon Tetrachloride	19.9	0.50	ug/L	20	<0.50	99.7	70-130			
Chlorobenzene	19.3	0.50	ug/L	20	< 0.50	96.5	70-130			
Chloroethane	23.3	0.50	ug/L	20	< 0.50	117	70-130			
Chloroform	21.1	0.50	ug/L	20	< 0.50	106	70-130			
Chloromethane	19.3	0.50	ug/L	20	< 0.50	96.7	70-130			
2-Chlorotoluene	19.8	0.50	ug/L	20	< 0.50	99.0	70-130			
4-Chlorotoluene	19.9	0.50	ug/L	20	< 0.50	99.6	70-130			
1,2-Dibromo-3-chloropropane	27.6	1.0	ug/L	20	<1.0	138	70-130			QM-07
Dibromochloromethane	21.3	0.50	ug/L	20	< 0.50	107	70-130			
1,2-Dibromoethane (EDB)	21.1	0.50	ug/L	20	< 0.50	105	70-130			
Dibromomethane	22.0	0.50	ug/L	20	< 0.50	110	70-130			
1,3-Dichlorobenzene	19.5	0.50	ug/L	20	< 0.50	97.3	70-130			
1,2-Dichlorobenzene	20.9	0.50	ug/L	20	< 0.50	104	70-130			
1,4-Dichlorobenzene	18.6	0.50	ug/L	20	< 0.50	92.8	70-130			
Dichlorodifluoromethane (R12)	16.8	0.50	ug/L	20	< 0.50	84.1	70-130			
1,1-Dichloroethane	19.3	0.50	ug/L	20	< 0.50	96.6	70-130			
1,2-Dichloroethane (EDC)	25.1	0.50	ug/L	20	< 0.50	125	70-130			
1,1-Dichloroethylene	16.1	0.50	ug/L	20	< 0.50	80.6	70-130			
trans-1,2-Dichloroethylene	17.0	0.50	ug/L	20	< 0.50	85.1	70-130			
cis-1,2-Dichloroethylene	17.6	0.50	ug/L	20	< 0.50	88.0	70-130			
1,2-Dichloropropane	22.9	0.50	ug/L	20	< 0.50	114	70-130			
2,2-Dichloropropane	21.7	0.50	ug/L	20	< 0.50	109	70-130			
1,3-Dichloropropane	22.0	0.50	ug/L	20	< 0.50	110	70-130			
cis-1,3-Dichloropropylene	21.6	0.50	ug/L	20	< 0.50	108	70-130			
trans-1,3-Dichloropropylene	22.2	0.50	ug/L	20	< 0.50	111	70-130			
1,1-Dichloropropylene	18.5	0.50	ug/L	20	< 0.50	92.4	70-130			
Diisopropyl ether (DIPE)	22.6	2.0	ug/L	20	<2.0	113	70-130			
Ethylbenzene	19.6	0.50	ug/L	20	< 0.50	98.1	70-130			
Ethyl-tert-Butyl Ether (ETBE)	21.9	2.0	ug/L	20	<2.0	110	70-130			
Hexachlorobutadiene	17.9	1.0	ug/L	20	<1.0	89.6	70-130			
2-Hexanone (MBK)	59.1	10	ug/L	50	<10	118	70-130			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/04/16
Date Reported: 10/12/16

AA Project No: A5331949

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control								
Batch B6J0709 - EPA 5030B										
Matrix Spike (B6J0709-MS1) Con	tinued S	Source: 6J0	4035-02	Prepare	ed & Analy	zed: 1	0/07/16			
Isopropylbenzene	19.2	0.50	ug/L	20	<0.50	96.1	70-130			
4-Isopropyltoluene	20.0	1.0	ug/L	20	<1.0	100	70-130			
Methyl-tert-Butyl Ether (MTBE)	47.1	1.0	ug/L	40	<1.0	118	70-130			
Methylene Chloride	22.1	5.0	ug/L	20	< 5.0	111	70-130			
4-Methyl-2-pentanone (MIBK)	58.7	10	ug/L	50	<10	117	70-130			
Naphthalene	23.7	2.0	ug/L	20	<2.0	119	70-130			
n-Propylbenzene	19.1	0.50	ug/L	20	< 0.50	95.7	70-130			
Styrene	18.8	0.50	ug/L	20	< 0.50	94.0	70-130			
1,1,1,2-Tetrachloroethane	19.7	0.50	ug/L	20	< 0.50	98.4	70-130			
1,1,2,2-Tetrachloroethane	23.8	0.50	ug/L	20	< 0.50	119	70-130			
Tetrachloroethylene (PCE)	16.4	0.50	ug/L	20	< 0.50	82.0	70-130			
Toluene	19.5	0.50	ug/L	20	< 0.50	97.4	70-130			
1,2,3-Trichlorobenzene	18.6	0.50	ug/L	20	< 0.50	92.8	70-130			
1,2,4-Trichlorobenzene	18.0	0.50	ug/L	20	< 0.50	90.2	70-130			
1,1,1-Trichloroethane	21.0	0.50	ug/L	20	< 0.50	105	70-130			
1,1,2-Trichloroethane	21.5	0.50	ug/L	20	< 0.50	108	70-130			
Trichloroethylene (TCE)	19.4	0.50	ug/L	20	< 0.50	96.8	70-130			
Trichlorofluoromethane (R11)	24.8	0.50	ug/L	20	< 0.50	124	70-130			
1,2,3-Trichloropropane	25.3	0.50	ug/L	20	< 0.50	127	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	e 16.5	0.50	ug/L	20	<0.50	82.4	70-130			
1,3,5-Trimethylbenzene	19.6	0.50	ug/L	20	< 0.50	97.9	70-130			
1,2,4-Trimethylbenzene	20.1	0.50	ug/L	20	< 0.50	100	70-130			
Vinyl chloride	22.2	0.50	ug/L	20	< 0.50	111	70-130			
o-Xylene	18.8	0.50	ug/L	20	< 0.50		70-130			
m,p-Xylenes	37.8	1.0	ug/L	40	<1.0		70-130			
Surrogate: 4-Bromofluorobenzene	49.8		ug/L	50		99.7	70-140			
Surrogate: Dibromofluoromethane	53.3		ug/L	50		107	70-140			
Surrogate: Toluene-d8	51.1		ug/L	50		102	70-140			
•		Source: 6J0	_		ed & Analy					
								8.70	30	
Matrix Spike Dup (B6J0709-MSD Acetone	1) § 55.3	Source: 6J0 10	4035-02 ug/L	Prepare 50	ed & Analy <10		0/07/16 70-130	8.70		30

Date Received: 10/04/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

Matrix Spike Dup (B6J0709-MSD1)	D1) Source: 6J04035-02 Prepared & Analyzed: 10/07/16									
Continued										
tert-Amyl Methyl Ether (TAME)	24.2	2.0	ug/L	20	<2.0	121	70-130	3.15	30	
Benzene	24.2	0.50	ug/L	20	< 0.50	121	70-130	3.19	30	
Bromobenzene	19.5	0.50	ug/L	20	< 0.50	97.4	70-130	2.55	30	
Bromochloromethane	20.5	0.50	ug/L	20	< 0.50	103	70-130	1.64	30	
Bromodichloromethane	22.1	0.50	ug/L	20	< 0.50	110	70-130	1.64	30	
Bromoform	18.7	0.50	ug/L	20	< 0.50	93.7	70-130	0.532	30	
Bromomethane	19.6	0.50	ug/L	20	< 0.50	97.8	70-130	14.0	30	
2-Butanone (MEK)	53.8	10	ug/L	50	<10	108	70-130	1.95	30	
tert-Butyl alcohol (TBA)	153	10	ug/L	100	<10	153	70-130	1.46	30	
sec-Butylbenzene	19.2	0.50	ug/L	20	< 0.50	96.2	70-130	4.24	30	
tert-Butylbenzene	20.8	0.50	ug/L	20	< 0.50	104	70-130	5.88	30	
n-Butylbenzene	20.4	0.50	ug/L	20	< 0.50	102	70-130	5.60	30	
Carbon Disulfide	41.5	0.50	ug/L	50	< 0.50	83.0	70-130	2.17	30	
Carbon Tetrachloride	20.4	0.50	ug/L	20	< 0.50	102	70-130	2.43	30	
Chlorobenzene	18.8	0.50	ug/L	20	< 0.50	94.0	70-130	2.62	30	
Chloroethane	24.8	0.50	ug/L	20	< 0.50	124	70-130	6.31	30	
Chloroform	21.4	0.50	ug/L	20	< 0.50	107	70-130	1.27	30	
Chloromethane	20.3	0.50	ug/L	20	< 0.50	101	70-130	4.79	30	
2-Chlorotoluene	20.7	0.50	ug/L	20	< 0.50	103	70-130	4.30	30	
4-Chlorotoluene	20.7	0.50	ug/L	20	< 0.50	104	70-130	4.08	30	
1,2-Dibromo-3-chloropropane	28.7	1.0	ug/L	20	<1.0	143	70-130	3.73	30	
Dibromochloromethane	21.0	0.50	ug/L	20	< 0.50	105	70-130	1.27	30	
1,2-Dibromoethane (EDB)	20.9	0.50	ug/L	20	< 0.50	105	70-130	0.666	30	
Dibromomethane	22.2	0.50	ug/L	20	< 0.50	111	70-130	1.13	30	
1,3-Dichlorobenzene	19.7	0.50	ug/L	20	< 0.50	98.4	70-130	1.17	30	
1,2-Dichlorobenzene	21.0	0.50	ug/L	20	< 0.50	105	70-130	0.859	30	
1,4-Dichlorobenzene	19.6	0.50	ug/L	20	< 0.50	98.2	70-130	5.76	30	
Dichlorodifluoromethane (R12)	17.6	0.50	ug/L	20	< 0.50	87.8	70-130	4.25	30	
1,1-Dichloroethane	19.7	0.50	ug/L	20	< 0.50	98.4	70-130	1.85	30	
1,2-Dichloroethane (EDC)	25.3	0.50	ug/L	20	< 0.50	126	70-130	0.873	30	
1,1-Dichloroethylene	17.2	0.50	ug/L	20	< 0.50	86.1	70-130	6.66	30	

Date Received: 10/04/16

Date Reported: 10/12/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %RE) Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J0709 - EPA 5030B

Matrix Spike Dup (B6J0709-MSD1) Continued	S	ource: 6	6J04035-02	Prepare	ed & Analyze	d: 10	0/07/16		
trans-1,2-Dichloroethylene	16.5	0.50	ug/L	20	<0.50 82	2.6	70-130 2.98	30	
cis-1,2-Dichloroethylene	18.1	0.50	ug/L	20	< 0.50 90).7	70-130 2.97	7 30	
1,2-Dichloropropane	23.2	0.50	ug/L	20	<0.50 1	16	70-130 1.17	7 30	
2,2-Dichloropropane	21.7	0.50	ug/L	20	< 0.50 10	09	70-130 0.046	60 30	
1,3-Dichloropropane	21.4	0.50	ug/L	20	< 0.50 10	07	70-130 2.53	3 30	
cis-1,3-Dichloropropylene	22.2	0.50	ug/L	20	<0.50 1	11	70-130 2.83	3 30	
trans-1,3-Dichloropropylene	21.2	0.50	ug/L	20	< 0.50 10	06	70-130 4.7	5 30	
1,1-Dichloropropylene	19.6	0.50	ug/L	20	< 0.50 97	7.8	70-130 5.73	3 30	
Diisopropyl ether (DIPE)	22.9	2.0	ug/L	20	<2.0 1	14	70-130 1.0°	1 30	
Ethylbenzene	19.3	0.50	ug/L	20	< 0.50 96	5.4	70-130 1.80	30	
Ethyl-tert-Butyl Ether (ETBE)	23.3	2.0	ug/L	20	<2.0 1	16	70-130 5.98	30	
Hexachlorobutadiene	19.4	1.0	ug/L	20	<1.0 96	8.6	70-130 7.78	30	
2-Hexanone (MBK)	59.6	10	ug/L	50	<10 1	19	70-130 0.96	0 30	
Isopropylbenzene	20.2	0.50	ug/L	20	< 0.50 10	01	70-130 4.72	2 30	
4-Isopropyltoluene	20.9	1.0	ug/L	20	<1.0 10	05	70-130 4.64	4 30	
Methyl-tert-Butyl Ether (MTBE)	47.7	1.0	ug/L	40	<1.0 1	19	70-130 1.37	7 30	
Methylene Chloride	23.1	5.0	ug/L	20	<5.0 1	15	70-130 4.1	1 30	
4-Methyl-2-pentanone (MIBK)	59.6	10	ug/L	50	<10 1	19	70-130 1.49	9 30	
Naphthalene	26.6	2.0	ug/L	20	<2.0 13	33	70-130 11.5	5 30	QM-07
n-Propylbenzene	19.7	0.50	ug/L	20	<0.50 98	3.6	70-130 2.93	3 30	
Styrene	18.3	0.50	ug/L	20		1.4	70-130 2.9	1 30	
1,1,1,2-Tetrachloroethane	19.4	0.50	ug/L	20	<0.50 96	8.6	70-130 1.64	4 30	
1,1,2,2-Tetrachloroethane	23.2	0.50	ug/L	20	<0.50 1	16	70-130 2.5	5 30	
Tetrachloroethylene (PCE)	16.5	0.50	ug/L	20	<0.50 82	2.4	70-130 0.54	7 30	
Toluene	19.7	0.50	ug/L	20	<0.50 98	3.4	70-130 1.07	7 30	
1,2,3-Trichlorobenzene	19.5	0.50	ug/L	20		7.6	70-130 4.99	9 30	
1,2,4-Trichlorobenzene	19.5	0.50	ug/L	20		7.4	70-130 7.67	7 30	
1,1,1-Trichloroethane	21.4	0.50	ug/L	20	<0.50 10	07	70-130 2.03	3 30	
1,1,2-Trichloroethane	21.5	0.50	ug/L	20		80	70-130 0.13	9 30	
Trichloroethylene (TCE)	20.3	0.50	ug/L	20	<0.50 10	01	70-130 4.49	9 30	
Trichlorofluoromethane (R11)	24.8	0.50	ug/L	20	<0.50 12	24	70-130 0.040	03 30	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331949
Date Received: 10/04/16
Date Reported: 10/12/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	/ Control								
Batch B6J0709 - EPA 5030B	_									
Matrix Spike Dup (B6J0709-MSD1	1) :	Source: 6J0	4035-02	Prepare	ed & Anal	yzed: 10	0/07/16			
Continued										
1,2,3-Trichloropropane	25.2	0.50	ug/L	20	< 0.50		70-130		30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	18.4	0.50	ug/L	20	<0.50	92.2	70-130	11.3	30	
1,3,5-Trimethylbenzene	20.2	0.50	ug/L	20	< 0.50		70-130	2.87	30	
1,2,4-Trimethylbenzene	20.8	0.50	ug/L	20	< 0.50		70-130	3.28	30	
Vinyl chloride	23.1	0.50	ug/L	20	< 0.50		70-130	3.92	30	
o-Xylene	18.3	0.50	ug/L	20	<0.50		70-130	2.65	30	
m,p-Xylenes	36.6	1.0	ug/L	40	<1.0		70-130	3.14	30	
Surrogate: 4-Bromofluorobenzene	52.8		ug/L	50		106	70-140			
Surrogate: Dibromofluoromethane	54.1		ug/L	50		108	70-140			
Surrogate: Toluene-d8	50.1		ug/L	50		100	70-140			
Diesel Range Organics by GC/FID - Batch B6J1020 - EPA 3510C	- Quality	y Control								
Blank (B6J1020-BLK1)				Prepare	ed & Anal	yzed: 10	0/10/16			
Diesel Range Organics as Diesel	<0.10	0.10	mg/L			-				
Surrogate: o-Terphenyl	0.0489		mg/L	0.040		122	50-150			
LCS (B6J1020-BS1)			_	Prepare	ed & Anal	yzed: 10	0/10/16			
Diesel Range Organics as Diesel	0.811	0.10	mg/L	0.80		101	75-125			
Surrogate: o-Terphenyl	0.0481		mg/L	0.040		120	50-150			
LCS Dup (B6J1020-BSD1)				Prepare	ed & Anal	yzed: 10	0/10/16			
Diesel Range Organics as Diesel	0.791	0.10	mg/L	0.80		98.8	75-125	2.51	30	
Surrogate: o-Terphenyl	0.0585		mg/L	0.040		146	50-150			
Gasoline Range Organics by GC/Fl Batch B6J0534 - EPA 5030B	ID - Qua	lity Control								
Blank (B6J0534-BLK1)				Prepare	ed & Anal	vzed: 10	0/05/16			
Gasoline Range Organics (GRO)	<100	100	ug/L	-		,				
Surrogate: a,a,a-Trifluorotoluene	44.1		ug/L	50		88.2	80-120			

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331949

Date Received: 10/04/16

Date Reported: 10/12/16

		Reporting			Source		REC		RPD	
Analyte	Result	Limit	Units	Level	Result %R	REC L	ımıts	RPD	Limit	Notes
Gasoline Range Organics by GC/F	ID - Quali	ity Control								
Batch B6J0534 - EPA 5030B										
LCS (B6J0534-BS1)				Prepare	ed & Analyze	d: 10/0)5/16			
Gasoline Range Organics (GRO)	421	100	ug/L	500	84	1.1 7 ሂ	5-125			
Surrogate: a,a,a-Trifluorotoluene	46.6		ug/L	50	93	3.1 80	0-120			
LCS Dup (B6J0534-BSD1)				Prepare	ed & Analyze	d: 10/0)5/16			
Gasoline Range Organics (GRO)	451	100	ug/L	500	90	0.2 75	5-125	6.98	30	
Surrogate: a,a,a-Trifluorotoluene	48.0		ug/L	50	95	5.9 80	0-120			

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Date Received: 10/04/16 Project Name: DFSP Norwalk GW Sampling Date Reported: 10/12/16

Special Notes

[1] = ** Exceeds upper control limit.

[2] = QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was

accepted based on acceptable LCS recovery.

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

70047093

					7	·					-	,			Britis.	<u> </u>	-y		_		1155 2.5	m.S CVL					
me: many lash.		ire: Ly Curr	\$0.5 · · · · · · · · · · · · · · · · · · ·		ne)			Special	alough the state of the state o	AACIOA								MATEGRITY	C TEMP					Received by	Received by	The formand	Received by
Sampler's Name:	90.00	sampier's signature:	P.O. No.:	Quote No.:	ANALYSIS REQUESTED (Test Name)			_	Turnaround Codes **								70		T WEET					Time &	Time	15.5/	e E
Sami	, and a second	ampier			DUESTE	_	_	_) parious			_	-						<u> </u>	_				<i>₹</i> = <i>7</i>	75 /		
		"			YSIS REC	-	_	_	Trums		-													Date 0-4-16	Date	3/1/6	Date
		1			ANAL		200	Z, uc	Sold Sold Sold Sold Sold Sold Sold Sold															9	,	1	
7		ST.C.St.					?- J		70g		X	×	×		X X				-				-				
LUM	70.7	Salk								×	メ	×	×	-	X	X							_	d by	d by		n D
1/2/		7000	28	650					No go		1	K	_	7	ž	N								Relinquished by	Relinquished by	Polinguiched by	
DEFED NOCHOLK		15300 NOWALK BICK	Norwalk	Ca 90650				dard TAT)	Sample Matrix	036)	30	§	B	Gras	<i>m</i> 5	Çe								Relindu	Relin	7	
ł		Address:	City:	State & Zip:		Æ		Jays (Stan	Time	939	925	786	104	/٥ در	1730	1230								Q			
Project Name / No.:	4.0	Site		Sta		4 = 72 Hour Rush	5 Day Rush	10 Working Days (Standard TAT)	Date	10-3-16	10-3-16	10316	91-8-01	91-6-01	10-3-16	91-8-01								0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	W.		
					odes **	(4) 	(5)	X																	ال ق		035
,	スクンスでいる	750000	7002	-1070	TAT Turnaround Codes **	Same Day Rush (A'A I.D.	6 TO4035 01	70-	9-	10°	(0-	90-	19-								For Laboratory Use	Date in 4 (16 Time 16)	TATA Days Sign:	49/6T04
Client: AP8X-S/L	Project Manager 701 Cl. S. S. Con	Flujett manager:	Phone: (-562-597-1055	Fax: 1-562-592-1020	·	1 = Same	(2) = 24 Hour Rush	(3) = 48 Hour Rush	Client I.D.	QC7B-1	GMW-63	SMU-MAR ON	Smw-11 65	GMW-67	Cimm-69	000B-1								10-1	Š	Section 1	A.A. Project No.: 75331949/6704035

Note: By relinquishing samples to American Analytics, client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 20, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331950 / 6J04036

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/04/16 15:51 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

	1 9				
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
8260B+OXY+TPHG					
QCTB-1	6J04036-01	Water	5	10/04/16 06:00	10/04/16 15:51
QCEB-1	6J04036-12	Water	5	10/04/16 14:00	10/04/16 15:51
8260B+OXYGENATES					
EXP-3	6J04036-02	Water	5	10/04/16 08:55	10/04/16 15:51
MW-17	6J04036-03	Water	5	10/04/16 09:35	10/04/16 15:51
GW-16	6J04036-04	Water	5	10/04/16 10:15	10/04/16 15:51
GMW-66R	6J04036-05	Water	5	10/04/16 10:50	10/04/16 15:51
MW-13	6J04036-06	Water	5	10/04/16 11:35	10/04/16 15:51
GMW-56	6J04036-07	Water	5	10/04/16 12:10	10/04/16 15:51
EXP-2	6J04036-08	Water	5	10/04/16 12:50	10/04/16 15:51
DUP-1	6J04036-09	Water	5	10/04/16 00:00	10/04/16 15:51
DUP-2	6J04036-10	Water	5	10/04/16 00:00	10/04/16 15:51
MW-14	6J04036-11	Water	5	10/04/16 13:35	10/04/16 15:51
Diesel Range Organics 8015M					
EXP-3	6J04036-02	Water	5	10/04/16 08:55	10/04/16 15:51
MW-17	6J04036-03	Water	5	10/04/16 09:35	10/04/16 15:51
GW-16	6J04036-04	Water	5	10/04/16 10:15	10/04/16 15:51
GMW-66R	6J04036-05	Water	5	10/04/16 10:50	10/04/16 15:51

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project No: 04-NDLA-013 Date Received: 10/04/16
Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
MW-13	6J04036-06	Water	5	10/04/16 11:35	10/04/16 15:51
GMW-56	6J04036-07	Water	5	10/04/16 12:10	10/04/16 15:51
EXP-2	6J04036-08	Water	5	10/04/16 12:50	10/04/16 15:51
DUP-1	6J04036-09	Water	5	10/04/16 00:00	10/04/16 15:51
DUP-2	6J04036-10	Water	5	10/04/16 00:00	10/04/16 15:51
MW-14	6J04036-11	Water	5	10/04/16 13:35	10/04/16 15:51
Gasoline Range Organics 8015M					
EXP-3	6J04036-02	Water	5	10/04/16 08:55	10/04/16 15:51
MW-17	6J04036-03	Water	5	10/04/16 09:35	10/04/16 15:51
GW-16	6J04036-04	Water	5	10/04/16 10:15	10/04/16 15:51
GMW-66R	6J04036-05	Water	5	10/04/16 10:50	10/04/16 15:51
MW-13	6J04036-06	Water	5	10/04/16 11:35	10/04/16 15:51
GMW-56	6J04036-07	Water	5	10/04/16 12:10	10/04/16 15:51
EXP-2	6J04036-08	Water	5	10/04/16 12:50	10/04/16 15:51
DUP-1	6J04036-09	Water	5	10/04/16 00:00	10/04/16 15:51
DUP-2	6J04036-10	Water	5	10/04/16 00:00	10/04/16 15:51
MW-14	6J04036-11	Water	5	10/04/16 13:35	10/04/16 15:51

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-01 6J04036-12 Client ID No: QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL SOUR LOVY TOUG (EDA SOUD)

8260B+OXY+TPHG (EPA 8260B	1		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	0.50

2-Chlorotoluene < 0.50 < 0.50 0.50 4-Chlorotoluene < 0.50 < 0.50 0.50 1,2-Dibromo-3-chloropropane <1.0 <1.0 1.0 Dibromochloromethane < 0.50 < 0.50 0.50 1,2-Dibromoethane (EDB) < 0.50 < 0.50 0.50 Dibromomethane < 0.50 < 0.50 0.50 1,3-Dichlorobenzene < 0.50 < 0.50 0.50 1,2-Dichlorobenzene < 0.50 < 0.50 0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-01 6J04036-12 Client ID No: QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor: 1 1 1 MRL

8260B+OXY+TPHG (EPA 8260B	3) (continued)		
1,4-Dichlorobenzene	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics	<100	<100	100
(GRO)			
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	<0.50	< 0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331950

Date Received: 10/04/16

Date Reported: 10/20/16

Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-01 6J04036-12 Client ID No: QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL

8260B+OXY+TPHG (EPA 8260B)	(continued))	
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	< 0.50	0.50
1,2,4-Trimethylbenzene	<0.50	< 0.50	0.50
Vinyl chloride	<0.50	< 0.50	0.50
o-Xylene	< 0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

<u>Surrogates</u>			%REC Limits
4-Bromofluorobenzene	111%	111%	70-140
Dibromofluoromethane	120%	129%	70-140
Toluene-d8	99%	96%	70-140

M

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-02	6J04036-03	6J04036-04	6J04036-05	
Client ID No:	EXP-3	MW-17	GW-16	GMW-66R	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	< 0.50	< 0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-02	6J04036-03	6J04036-04	6J04036-05	
Client ID No:	EXP-3	MW-17	GW-16	GMW-66R	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	60B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	<0.50	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Styrene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	<0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

Units: ug/L

AA Project No: A5331950

Date Received: 10/04/16

Date Reported: 10/20/16

metrica:	LIWITEO By GO	/1010		Onne	3. ag/L
Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-02	6J04036-03	6J04036-04	6J04036-05	
Client ID No:	EXP-3	MW-17	GW-16	GMW-66R	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	(continue	ed)			
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	<0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	<0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	< 0.50	< 0.50	0.50
ane (R113)					
1,3,5-Trimethylbenzene	< 0.50	<0.50	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	< 0.50	<0.50	<0.50	<0.50	0.50
Vinyl chloride	< 0.50	<0.50	< 0.50	<0.50	0.50
o-Xylene	< 0.50	<0.50	< 0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0
<u>Surrogates</u>					%REC Limits
4-Bromofluorobenzene	109%	108%	107%	109%	70-140
Dibromofluoromethane	126%	129%	130%	128%	70-140
Toluene-d8	98%	98%	97%	98%	70-140

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950 Date Received: 10/04/16

Date Reported: 10/20/16 **Units:** ug/L

Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-06	6J04036-07	6J04036-08	6J04036-09	
Client ID No:	MW-13	GMW-56	EXP-2	DUP-1	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromoethane (EDB)	<0.50	<0.50	< 0.50	<0.50	0.50
Dibromomethane	<0.50	<0.50	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	<0.50	<0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-06	6J04036-07	6J04036-08	6J04036-09	
Client ID No:	MW-13	GMW-56	EXP-2	DUP-1	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	(continue	ed)			
1,4-Dichlorobenzene	< 0.50	< 0.50	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	<1.0	<1.0	1.0
Methylene Chloride	< 5.0	<5.0	<5.0	< 5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Styrene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	<0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950 Date Received: 10/04/16

Date Reported: 10/20/16
Units: ug/L

Date Sampled: 10/04/16 10/04/16 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 10/10/16 10/10/16 AA ID No: 6J04036-06 6J04036-07 6J04036-08 6J04036-09 MW-13 **GMW-56** EXP-2 DUP-1 **Client ID No:** Matrix: Water Water Water Water **Dilution Factor: MRL** 1 1 1 1 8260B+OXYGENATES (EPA 8260B) (continued) 1,1,2,2-Tetrachloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Tetrachloroethylene (PCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Toluene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,3-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,4-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,1-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50

m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0
o-Xylene	<0.50	<0.50	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	< 0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	< 0.50	< 0.50	<0.50	0.50
1,3,5-Trimethylbenzene	<0.50	<0.50	<0.50	<0.50	0.50
ane (R113)	₹0.50	₹0.50	₹0.50	\0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<0.50	<0.50	<0.50	<0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50

Surrogates					%REC Limits
4-Bromofluorobenzene	109%	109%	110%	111%	70-140
Dibromofluoromethane	133%	124%	117%	121%	70-140
Toluene-d8	99%	101%	102%	99%	70-140

A

1.0

0.50

0.50

0.50

0.50

0.50

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/20/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-10 6J04036-11 DUP-2 MW-14 Client ID No: Matrix: Water Water

Dilution Factor: 1 1 1 MRL

Dilation ractor.	'	1	IVII\L
8260B+OXYGENATES (EPA 826	60B)		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	1.3	0.50
Bromobenzene	< 0.50	<0.50	0.50
Bromochloromethane	< 0.50	<0.50	0.50
Bromodichloromethane	< 0.50	<0.50	0.50
Bromoform	< 0.50	<0.50	0.50
Bromomethane	< 0.50	<0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	<0.50	0.50
tert-Butylbenzene	< 0.50	<0.50	0.50
n-Butylbenzene	< 0.50	<0.50	0.50
Carbon Disulfide	< 0.50	<0.50	0.50
Carbon Tetrachloride	< 0.50	<0.50	0.50
Chlorobenzene	< 0.50	<0.50	0.50
Chloroethane	< 0.50	<0.50	0.50
Chloroform	< 0.50	<0.50	0.50
Chloromethane	< 0.50	<0.50	0.50
2-Chlorotoluene	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	<0.50	0.50

<1.0

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

1,2-Dibromo-3-chloropropane

Dibromochloromethane

Dibromomethane

1,3-Dichlorobenzene

1,2-Dichlorobenzene

1,2-Dibromoethane (EDB)

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-10 6J04036-11 DUP-2 **Client ID No:** MW-14 Matrix: Water Water

Dilution Factor: 1 1 1 MRL

8260B+OXYGENATES (EPA 8260	B) (continu	ued)	
1,4-Dichlorobenzene	< 0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	<0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	6.3	0.50
1,1-Dichloroethylene	< 0.50	<0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	<0.50	<0.50	0.50
2,2-Dichloropropane	<0.50	<0.50	0.50
1,3-Dichloropropane	<0.50	<0.50	0.50
cis-1,3-Dichloropropylene	<0.50	<0.50	0.50
trans-1,3-Dichloropropylene	<0.50	<0.50	0.50
1,1-Dichloropropylene	<0.50	<0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	<0.50	<0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	<0.50	<0.50	0.50
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	<0.50	<0.50	0.50

MRL

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331950

Date Received: 10/04/16

Date Reported: 10/20/16

Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/10/16 10/10/16 AA ID No: 6J04036-10 6J04036-11 DUP-2 **Client ID No:** MW-14 Matrix: Water Water **Dilution Factor:** 1 1

8260B+OXYGENATES (EPA 8260	<u>)B)</u> (continue	ed)	
1,1,2,2-Tetrachloroethane	<0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	<0.50	0.50
Toluene	< 0.50	<0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	<0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	<0.50	0.50
1,1,1-Trichloroethane	< 0.50	<0.50	0.50
1,1,2-Trichloroethane	< 0.50	<0.50	0.50
Trichloroethylene (TCE)	< 0.50	<0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	<0.50	0.50
1,2,3-Trichloropropane	< 0.50	<0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	<0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

<u>Surrogates</u>			%REC Limits
4-Bromofluorobenzene	110%	110%	70-140
Dibromofluoromethane	124%	128%	70-140
Toluene-d8	99%	98%	70-140

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: Diesel Range Organics by GC/FID Units: mg/L

`	, ,				· ·
Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:	6J04036-02	6J04036-03	6J04036-04	6J04036-05	
Client ID No:	EXP-3	MW-17	GW-16	GMW-66R	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Diesel Range Organics 801	5M (EPA 8015M)				
Diesel Range Organics as Diesel	<0.10	<0.10	<0.10	<0.10	0.10
<u>Surrogates</u>					%REC Limits
o-Terphenyl	108%	102%	121%	118%	50-150

50-150

o-Terphenyl

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331950

Date Received: 10/04/16

Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Method: Diesel Range Organics by GC/FID Units: mg/L

3	,				3	
Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16		
Date Prepared:	10/10/16	10/10/16	10/10/16	10/10/16		
Date Analyzed:	10/10/16	10/10/16	10/10/16	10/11/16		
AA ID No:	6J04036-06	6J04036-07	6J04036-08	6J04036-09		
Client ID No:	MW-13	GMW-56	EXP-2	DUP-1		
Matrix:	Water	Water	Water	Water		
Dilution Factor:	1	1	1	1	MR	L
Diesel Range Organics 8015	M (EPA 8015M)					
Diesel Range Organics as Diesel	<0.10	<0.10	<0.10	<0.10	0.1	0
Surrogates					%REC Limi	ts

106%

127%

107%

86%

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/10/16 10/10/16 **Date Analyzed:** 10/11/16 10/11/16 AA ID No: 6J04036-10 6J04036-11 DUP-2 MW-14 **Client ID No:** Matrix: Water Water

Dilution Factor: 1 1 1 MRL

Diesel Range Organics 8015M (EPA 8015M)

Diesel Range Organics as <0.10 <0.10 0.10

Diesel

Surrogates %REC Limits

o-Terphenyl 92% 106% 50-150

A

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Analyzed:	10/05/16	10/05/16	10/05/16	10/05/16	
AA ID No:	6J04036-02	6J04036-03	6J04036-04	6J04036-05	
Client ID No:	EXP-3	MW-17	GW-16	GMW-66R	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 80)15M (EPA 8015M)			
Gasoline Range Organics (GRO)	<100	<100	<100	<100	100
Surrogates					%REC Limits

94%

96%

96%

93%

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16

Project Name: DFSP Norwalk GW Sampling Date Received: 10/04/16

Date Received: 10/04/16

Date Received: 10/04/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Data Campled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Sampled:	10/04/16	10/04/16	10/04/16	10/04/16	
Date Prepared:	10/05/16	10/05/16	10/05/16	10/06/16	
Date Analyzed:	10/05/16	10/05/16	10/05/16	10/06/16	
AA ID No:	6J04036-06	6J04036-07	6J04036-08	6J04036-09	
Client ID No:	MW-13	GMW-56	EXP-2	DUP-1	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 80	15M (EPA 8015M	1)			
Gasoline Range Organics (GRO)	<100	<100	<100	<100	100
Surrogates					%REC Limits

94%

95%

92%

88%

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled: 10/04/16 10/04/16 **Date Prepared:** 10/05/16 10/05/16 **Date Analyzed:** 10/05/16 10/05/16 AA ID No: 6J04036-10 6J04036-11 DUP-2 MW-14 **Client ID No:** Matrix: Water Water

Dilution Factor: 1 1 MRL

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics <100 <100

(GRO)

Surrogates %REC Limits

a,a,a-Trifluorotoluene 92% 90% 80-120

A

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950
Date Received: 10/04/16
Date Reported: 10/20/16

F	Reporting				%REC		RPD	
Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
C/MS - Qu	ality Contr	ol						
			Prepare	ed & Analyzed: 1	0/10/16			
<10	10	ug/L						
<2.0	2.0	_						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
<10	10	ug/L						
<10	10	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	ug/L						
< 0.50	0.50	•						
< 0.50	0.50	•						
< 0.50	0.50	•						
< 0.50	0.50	•						
< 0.50	0.50	_						
<1.0	1.0	_						
< 0.50	0.50	_						
< 0.50	0.50	•						
< 0.50	0.50	•						
< 0.50	0.50	_						
< 0.50	0.50	•						
< 0.50	0.50	•						
< 0.50	0.50	_						
< 0.50	0.50	_						
< 0.50	0.50	_						
	Kesult C/MS - Qu <10	<10 10 <2.0 2.0 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <10 10 <10 10 <10 10 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50 <0.50 0.50	Result Limit Units C/MS - Quality Control <10	Result Limit Units Level C/MS - Quality Control Prepare <10 10 ug/L <2.0	Result Limit Units Level Result %REC C/MS - Quality Control	Result Limit Units Level Result %REC Limits C/MS - Quality Control Prepared & Analyzed: 10/10/16 <10 10 ug/L <2.0	Nesult Limit Limit Level Result %REC Limits RPD	Result

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

	Reporting		Spike Source	%REC		RPD	
Analyte	Result Limit	Units	Level Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B				
Blank (B6J1022-BLK1) Continue	d		Prepared & Analyzed: 10/10/16	
1,1-Dichloroethylene	<0.50	0.50	ug/L	
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
1,2-Dichloropropane	< 0.50	0.50	ug/L	
2,2-Dichloropropane	< 0.50	0.50	ug/L	
1,3-Dichloropropane	< 0.50	0.50	ug/L	
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
1,1-Dichloropropylene	< 0.50	0.50	ug/L	
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L	
Ethylbenzene	< 0.50	0.50	ug/L	
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L	
Gasoline Range Organics (GRO)	<100	100	ug/L	
Hexachlorobutadiene	<1.0	1.0	ug/L	
2-Hexanone (MBK)	<10	10	ug/L	
Isopropylbenzene	< 0.50	0.50	ug/L	
4-Isopropyltoluene	<1.0	1.0	ug/L	
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L	
Methylene Chloride	<5.0	5.0	ug/L	
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L	
Naphthalene	<2.0	2.0	ug/L	
n-Propylbenzene	< 0.50	0.50	ug/L	
Styrene	< 0.50	0.50	ug/L	
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L	
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L	
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L	
Toluene	< 0.50	0.50	ug/L	
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L	
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L	
1,1,1-Trichloroethane	< 0.50	0.50	ug/L	
1,1,2-Trichloroethane	< 0.50	0.50	ug/L	

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	F Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Qu	ality Contr	ol						
Batch B6J1022 - EPA 5030B									
Blank (B6J1022-BLK1) Continued				Prepare	ed & Analyzed: 1	0/10/16			
Trichloroethylene (TCE)	< 0.50	0.50	ug/L						
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L						
1,2,3-Trichloropropane	< 0.50	0.50	ug/L						
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L						
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L						
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L						
Vinyl chloride	< 0.50	0.50	ug/L						
o-Xylene	< 0.50	0.50	ug/L						
m,p-Xylenes	<1.0	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	54.5		ug/L	50	109	70-140			
Surrogate: Toluene-d8	52.2		ug/L	50	104	70-140			
LCS (B6J1022-BS1)			J	Prepare	ed: 10/10/16 Ana	alyzed: 10	0/11/16		
Acetone	56.8	10	ug/L	50	114	70-130			
tert-Amyl Methyl Ether (TAME)	21.8	2.0	ug/L	20	109	70-130			
Benzene	22.0	0.50	ug/L	20	110	75-125			
Bromobenzene	19.4	0.50	ug/L	20	97.2	70-130			
Bromochloromethane	22.3	0.50	ug/L	20	112	70-130			
Bromodichloromethane	22.3	0.50	ug/L	20	111	75-125			
Bromoform	17.8	0.50	ug/L	20	89.2	75-125			
Bromomethane	17.8	0.50	ug/L	20	89.2	75-125			
2-Butanone (MEK)	57.5	10	ug/L	50	115	70-130			
tert-Butyl alcohol (TBA)	124	10	ug/L	100	124	70-130			
sec-Butylbenzene	20.5	0.50	ug/L	20	103	70-130			
tert-Butylbenzene	22.1	0.50	ug/L	20	110	70-130			
n-Butylbenzene	20.4	0.50	ug/L	20	102	70-130			
Carbon Disulfide	41.6	0.50	ug/L	50	83.1	70-130			
Carbon Tetrachloride	22.7	0.50	ug/L	20	113	75-125			
Chlorobenzene	19.5	0.50	ug/L	20	97.6	75-125			
Chloroethane	23.6	0.50	ug/L	20	118	75-125			

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %	REC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

LCS (B6J1022-BS1) Continued			ſ	Prenare	d: 10/10/16 An	alvzed: 10/1	1/16
Chloroform	23.6	0.50	ug/L	20	118	75-125	
Chloromethane	19.0	0.50	ug/L	20	94.9	65-125	
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130	
4-Chlorotoluene	21.1	0.50	ug/L	20	105	70-130	
1,2-Dibromo-3-chloropropane	23.7	1.0	ug/L	20	118	70-130	
Dibromochloromethane	20.6	0.50	ug/L	20	103	75-125	
1,2-Dibromoethane (EDB)	20.7	0.50	ug/L	20	103	70-130	
Dibromomethane	23.7	0.50	ug/L	20	118	70-130	
1,3-Dichlorobenzene	20.0	0.50	ug/L	20	100	70-130	
1,2-Dichlorobenzene	21.2	0.50	ug/L	20	106	70-130	
1,4-Dichlorobenzene	19.7	0.50	ug/L	20	98.4	75-125	
Dichlorodifluoromethane (R12)	19.1	0.50	ug/L	20	95.5	70-130	
1,1-Dichloroethane	22.2	0.50	ug/L	20	111	70-125	
1,2-Dichloroethane (EDC)	24.3	0.50	ug/L	20	122	75-125	
1,1-Dichloroethylene	17.0	0.50	ug/L	20	85.1	70-130	
trans-1,2-Dichloroethylene	17.3	0.50	ug/L	20	86.7	75-125	
cis-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.2	75-125	
1,2-Dichloropropane	22.8	0.50	ug/L	20	114	75-130	
2,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130	
1,3-Dichloropropane	21.2	0.50	ug/L	20	106	70-130	
cis-1,3-Dichloropropylene	22.6	0.50	ug/L	20	113	75-125	
trans-1,3-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	
1,1-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	
Diisopropyl ether (DIPE)	24.2	2.0	ug/L	20	121	70-130	
Ethylbenzene	20.2	0.50	ug/L	20	101	75-125	
Ethyl-tert-Butyl Ether (ETBE)	23.1	2.0	ug/L	20	115	70-130	
Gasoline Range Organics (GRO)	444	100	ug/L	500	88.8	70-130	
Hexachlorobutadiene	19.0	1.0	ug/L	20	95.2	70-130	
2-Hexanone (MBK)	52.9	10	ug/L	50	106	70-130	
Isopropylbenzene	21.1	0.50	ug/L	20	105	70-130	
4-Isopropyltoluene	21.3	1.0	ug/L	20	107	70-130	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC	/MS - Qı	uality Contr	ol						
Batch B6J1022 - EPA 5030B									
LCS (B6J1022-BS1) Continued				Prepare	ed: 10/10/16 Ana	alyzed: 10	0/11/16		
Methyl-tert-Butyl Ether (MTBE)	43.3	1.0	ug/L	40	108	75-125			
Methylene Chloride	26.0	5.0	ug/L	20	130	75-130			
4-Methyl-2-pentanone (MIBK)	52.3	10	ug/L	50	105	70-130			
Naphthalene	22.8	2.0	ug/L	20	114	70-130			
n-Propylbenzene	20.4	0.50	ug/L	20	102	70-130			
Styrene	19.2	0.50	ug/L	20	95.8	70-130			
1,1,1,2-Tetrachloroethane	20.8	0.50	ug/L	20	104	70-130			
1,1,2,2-Tetrachloroethane	22.3	0.50	ug/L	20	111	70-135			
Tetrachloroethylene (PCE)	16.5	0.50	ug/L	20	82.4	75-125			
Toluene	19.8	0.50	ug/L	20	98.8	75-125			
1,2,3-Trichlorobenzene	19.4	0.50	ug/L	20	97.0	70-130			
1,2,4-Trichlorobenzene	18.7	0.50	ug/L	20	93.4	70-130			
1,1,1-Trichloroethane	24.4	0.50	ug/L	20	122	75-125			
1,1,2-Trichloroethane	21.8	0.50	ug/L	20	109	75-125			
Trichloroethylene (TCE)	22.1	0.50	ug/L	20	111	75-125			
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	123	70-130			
1,2,3-Trichloropropane	21.8	0.50	ug/L	20	109	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	24.9	0.50	ug/L	20	125	70-130			
1,3,5-Trimethylbenzene	21.1	0.50	ug/L	20	105	70-130			
1,2,4-Trimethylbenzene	21.6	0.50	ug/L	20	108	70-130			
Vinyl chloride	22.7	0.50	ug/L	20	114	75-125			
o-Xylene	20.2	0.50	ug/L	20	101	75-125			
m,p-Xylenes	38.3	1.0	ug/L	40	95.8	70-130			
Surrogate: 4-Bromofluorobenzene	56.2		ug/L	50	112	70-140			
Surrogate: Dibromofluoromethane	59.3		ug/L	50	119	70-140			
Surrogate: Toluene-d8	52.5		ug/L	50	105	70-140			
Matrix Spike (B6J1022-MS1)	5	Source: 6J0	•	Prepare	ed & Analyzed: 1	0/10/16			
Acetone	60.2	10	ug/L	50	120	70-130			
tert-Amyl Methyl Ether (TAME)	19.2	2.0	ug/L	20	95.8	70-130			
Benzene	21.3	0.50	ug/L	20	106	70-130			
			_						

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting		Spike	Source	%REC		RPD	
Analyte	Result Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

Bromobenzene	19.7	0.50	ug/L	20	98.6	70-130	
Bromochloromethane	21.1	0.50	ug/L	20	105	70-130	
Bromodichloromethane	22.9	0.50	ug/L	20	114	70-130	
Bromoform	17.6	0.50	ug/L	20	88.2	70-130	
Bromomethane	18.8	0.50	ug/L	20	94.0	70-130	
2-Butanone (MEK)	57.3	10	ug/L	50	115	70-130	
tert-Butyl alcohol (TBA)	132	10	ug/L	100	132	70-130	QM-07
sec-Butylbenzene	20.9	0.50	ug/L	20	105	70-130	
tert-Butylbenzene	22.4	0.50	ug/L	20	112	70-130	
n-Butylbenzene	22.0	0.50	ug/L	20	110	70-130	
Carbon Disulfide	37.3	0.50	ug/L	50	74.6	70-130	
Carbon Tetrachloride	23.3	0.50	ug/L	20	117	70-130	
Chlorobenzene	19.6	0.50	ug/L	20	98.0	70-130	
Chloroethane	23.8	0.50	ug/L	20	119	70-130	
Chloroform	22.9	0.50	ug/L	20	115	70-130	
Chloromethane	18.5	0.50	ug/L	20	92.4	70-130	
2-Chlorotoluene	21.9	0.50	ug/L	20	109	70-130	
4-Chlorotoluene	22.0	0.50	ug/L	20	110	70-130	
1,2-Dibromo-3-chloropropane	25.2	1.0	ug/L	20	126	70-130	
Dibromochloromethane	20.7	0.50	ug/L	20	103	70-130	
1,2-Dibromoethane (EDB)	19.3	0.50	ug/L	20	96.6	70-130	
Dibromomethane	22.8	0.50	ug/L	20	114	70-130	
1,3-Dichlorobenzene	20.9	0.50	ug/L	20	104	70-130	
1,2-Dichlorobenzene	21.7	0.50	ug/L	20	109	70-130	
1,4-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130	
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130	
1,1-Dichloroethane	21.2	0.50	ug/L	20	106	70-130	
1,2-Dichloroethane (EDC)	21.6	0.50	ug/L	20	108	70-130	
1,1-Dichloroethylene	16.1	0.50	ug/L	20	80.7	70-130	
trans-1,2-Dichloroethylene	17.1	0.50	ug/L	20	85.6	70-130	
cis-1,2-Dichloroethylene	18.7	0.50	ug/L	20	93.4	70-130	

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %		D Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

1,2-Dichloropropane	22.9	0.50	ug/L	20	115	70-130	
2,2-Dichloropropane	24.5	0.50	ug/L	20	123	70-130	
1,3-Dichloropropane	20.6	0.50	ug/L	20	103	70-130	
cis-1,3-Dichloropropylene	22.0	0.50	ug/L	20	110	70-130	
trans-1,3-Dichloropropylene	20.0	0.50	ug/L	20	100	70-130	
1,1-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130	
Ethylbenzene	20.8	0.50	ug/L	20	104	70-130	
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130	
Gasoline Range Organics (GRO)	466	100	ug/L	500	93.2	70-130	
Hexachlorobutadiene	20.2	1.0	ug/L	20	101	70-130	
2-Hexanone (MBK)	57.7	10	ug/L	50	115	70-130	
Isopropylbenzene	21.7	0.50	ug/L	20	108	70-130	
4-Isopropyltoluene	22.6	1.0	ug/L	20	113	70-130	
Methyl-tert-Butyl Ether (MTBE)	41.5	1.0	ug/L	40	104	70-130	
Methylene Chloride	22.2	5.0	ug/L	20	111	70-130	
4-Methyl-2-pentanone (MIBK)	50.9	10	ug/L	50	102	70-130	
Naphthalene	23.0	2.0	ug/L	20	115	70-130	
n-Propylbenzene	21.4	0.50	ug/L	20	107	70-130	
Styrene	19.1	0.50	ug/L	20	95.6	70-130	
1,1,1,2-Tetrachloroethane	19.7	0.50	ug/L	20	98.6	70-130	
1,1,2,2-Tetrachloroethane	21.7	0.50	ug/L	20	108	70-130	
Tetrachloroethylene (PCE)	17.5	0.50	ug/L	20	87.6	70-130	
Toluene	19.2	0.50	ug/L	20	96.2	70-130	
1,2,3-Trichlorobenzene	19.0	0.50	ug/L	20	94.8	70-130	
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	95.6	70-130	
1,1,1-Trichloroethane	23.2	0.50	ug/L	20	116	70-130	
1,1,2-Trichloroethane	20.5	0.50	ug/L	20	102	70-130	
Trichloroethylene (TCE)	21.7	0.50	ug/L	20	109	70-130	
Trichlorofluoromethane (R11)	23.8	0.50	ug/L	20	119	70-130	
1,2,3-Trichloropropane	22.2	0.50	ug/L	20	111	70-130	

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1022 - EPA 5030B Matrix Spike (B6J1022-MS1) Continued Source: 6J04036-02 Prepared & Analyzed: 10/10/16 1,1,2-Trichloro-1,2,2-trifluoroethane 21.8 0.50 20 109 70-130 ug/L (R113) 1,3,5-Trimethylbenzene 22.1 0.50 ug/L 20 110 70-130 1,2,4-Trimethylbenzene 22.1 0.50 110 ug/L 20 70-130 22.4 0.50 112 Vinvl chloride ua/L 20 70-130 o-Xylene 20.1 0.50 ug/L 20 100 70-130 m,p-Xylenes 39.2 1.0 40 98.0 70-130 ug/L 54.3 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 Surrogate: Dibromofluoromethane 55.4 50 111 70-140 ug/L Surrogate: Toluene-d8 50.6 ug/L 50 101 70-140 Matrix Spike Dup (B6J1022-MSD1) **Source: 6J04036-02** Prepared & Analyzed: 10/10/16 59.9 10 120 70-130 0.599 ug/L 50 30 18.5 2.0 92.4 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 30 3.67 21.6 0.50 108 Benzene ug/L 20 70-130 1.31 30 19.6 0.50 20 98.2 70-130 0.356 30 Bromobenzene ug/L 0.50 Bromochloromethane 20.0 ug/L 20 100 70-130 4.96 30 Bromodichloromethane 22.4 0.50 112 70-130 30 ug/L 20 1.85 18.1 0.50 90.3 **Bromoform** ug/L 20 70-130 2.30 30 **Bromomethane** 20.6 0.50 ug/L 20 103 70-130 9.09 30 48.7 10 97.5 2-Butanone (MEK) 70-130 30 ug/L 50 16.1 tert-Butyl alcohol (TBA) 132 10 100 132 70-130 0.00756 30 QM-07 ug/L sec-Butylbenzene 21.6 0.50 ug/L 20 108 70-130 2.92 30 tert-Butylbenzene 22.7 0.50 20 114 70-130 1.38 30 ug/L n-Butylbenzene 22.5 0.50 ug/L 20 113 70-130 2.65 30 Carbon Disulfide 37.9 0.50 75.7 ug/L 50 70-130 1.46 30 22.9 0.50 114 Carbon Tetrachloride 20 70-130 30 ug/L 1.95 Chlorobenzene 20.0 0.50 20 99.9 70-130 30 ug/L 1.97 0.50 Chloroethane 23.0 ug/L 20 115 70-130 3.42 30 Chloroform 22.9 0.50 ug/L 20 115 70-130 0.131 30 19.4 0.50 97.0 Chloromethane ug/L 20 70-130 4.86 30 22.4 2-Chlorotoluene 0.50 ug/L 20 112 70-130 2.22 30

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %	REC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

Matrix Spike Dup (B6J1022-MSD1) Continued	S	ource: 6	J04036-02	Prepare	ed & Analyzed: 10/10/16
4-Chlorotoluene	22.7	0.50	ug/L	20	113 70-130 2.82 30
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119 70-130 5.30 30
Dibromochloromethane	20.2	0.50	ug/L	20	101 70-130 2.45 30
1,2-Dibromoethane (EDB)	19.8	0.50	ug/L	20	99.2 70-130 2.60 30
Dibromomethane	21.2	0.50	ug/L	20	106 70-130 7.24 30
1,3-Dichlorobenzene	20.9	0.50	ug/L	20	105 70-130 0.287 30
1,2-Dichlorobenzene	21.7	0.50	ug/L	20	108 70-130 0.138 30
1,4-Dichlorobenzene	20.8	0.50	ug/L	20	104 70-130 3.22 30
Dichlorodifluoromethane (R12)	18.8	0.50	ug/L	20	94.2 70-130 1.82 30
1,1-Dichloroethane	20.6	0.50	ug/L	20	103 70-130 2.83 30
1,2-Dichloroethane (EDC)	25.0	0.50	ug/L	20	125 70-130 14.4 30
1,1-Dichloroethylene	16.4	0.50	ug/L	20	81.9 70-130 1.48 30
trans-1,2-Dichloroethylene	17.7	0.50	ug/L	20	88.4 70-130 3.28 30
cis-1,2-Dichloroethylene	18.5	0.50	ug/L	20	92.6 70-130 0.968 30
1,2-Dichloropropane	22.8	0.50	ug/L	20	114 70-130 0.788 30
2,2-Dichloropropane	23.4	0.50	ug/L	20	117 70-130 4.93 30
1,3-Dichloropropane	21.4	0.50	ug/L	20	107 70-130 3.76 30
cis-1,3-Dichloropropylene	21.8	0.50	ug/L	20	109 70-130 1.14 30
trans-1,3-Dichloropropylene	21.4	0.50	ug/L	20	107 70-130 6.72 30
1,1-Dichloropropylene	20.4	0.50	ug/L	20	102 70-130 3.10 30
Diisopropyl ether (DIPE)	21.7	2.0	ug/L	20	109 70-130 2.18 30
Ethylbenzene	21.3	0.50	ug/L	20	106 70-130 2.14 30
Ethyl-tert-Butyl Ether (ETBE)	20.3	2.0	ug/L	20	102 70-130 2.38 30
Gasoline Range Organics (GRO)	544	100	ug/L	500	109 70-130 15.4 30
Hexachlorobutadiene	20.8	1.0	ug/L	20	104 70-130 3.12 30
2-Hexanone (MBK)	54.5	10	ug/L	50	109 70-130 5.77 30
Isopropylbenzene	21.9	0.50	ug/L	20	109 70-130 0.918 30
4-Isopropyltoluene	23.1	1.0	ug/L	20	115 70-130 1.97 30
Methyl-tert-Butyl Ether (MTBE)	39.7	1.0	ug/L	40	99.3 70-130 4.31 30
Methylene Chloride	22.2	5.0	ug/L	20	111 70-130 0.360 30
4-Methyl-2-pentanone (MIBK)	51.4	10	ug/L	50	103 70-130 0.899 30

Client: The Source Group, Inc. (SH)

AA Project No: A5331950 04-NDLA-013 Date Received: 10/04/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result %	REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	/MS - Q	uality Contr	ol							
Batch B6J1022 - EPA 5030B										
Matrix Spike Dup (B6J1022-MSD1	l) :	Source: 6J0	4036-02	Prepare	ed & Analyz	ed: 10	0/10/16			
Continued	•			-	-					
Naphthalene	24.7	2.0	ug/L	20	•	124	70-130	7.34	30	
n-Propylbenzene	22.0	0.50	ug/L	20	•	110	70-130	2.53	30	
Styrene	19.9	0.50	ug/L	20	9	99.4	70-130	3.85	30	
1,1,1,2-Tetrachloroethane	20.0	0.50	ug/L	20	9	99.9	70-130	1.26	30	
1,1,2,2-Tetrachloroethane	21.5	0.50	ug/L	20	•	108	70-130	0.833	30	
Tetrachloroethylene (PCE)	18.9	0.50	ug/L	20	9	94.4	70-130	7.42	30	
Toluene	20.2		ug/L	20		101	70-130	4.57	30	
1,2,3-Trichlorobenzene	20.1	0.50	ug/L	20	•	101	70-130	5.88	30	
1,2,4-Trichlorobenzene	19.9	0.50	ug/L	20	9	99.6	70-130	4.05	30	
1,1,1-Trichloroethane	23.5	0.50	ug/L	20	•	118	70-130	1.46	30	
1,1,2-Trichloroethane	20.3	0.50	ug/L	20	•	101	70-130	0.981	30	
Trichloroethylene (TCE)	22.1	0.50	ug/L	20	•	110	70-130	1.69	30	
Trichlorofluoromethane (R11)	22.4		ug/L	20		112	70-130	5.80	30	
1,2,3-Trichloropropane	20.9	0.50	ug/L	20	•	105	70-130	5.80	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.1	0.50	ug/L	20	•	115	70-130	5.66	30	
1,3,5-Trimethylbenzene	22.2	0.50	ug/L	20	•	111	70-130	0.768	30	
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	•	113	70-130	2.68	30	
Vinyl chloride	22.7	0.50	ug/L	20	•	113	70-130	1.29	30	
o-Xylene	20.3	0.50	ug/L	20	•	101	70-130	0.892	30	
m,p-Xylenes	41.1	1.0	ug/L	40	•	103	70-130	4.63	30	
Surrogate: 4-Bromofluorobenzene	53.3		ug/L	50		107	70-140			
Surrogate: Dibromofluoromethane	52.3		ug/L	50		105	70-140			
Surrogate: Toluene-d8	50.3		ug/L	50		101	70-140			
VOCs & OXYGENATES by GC/MS -	Quality	/ Control	.							
Batch B6J1022 - EPA 5030B		,								
Blank (B6J1022-BLK1)				Prepare	ed & Analyz	ed: 10	0/10/16			
Acetone	<10	10	ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0		ug/L							
Benzene	<0.50		ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	6 - Quality	Control								•
Batch B6J1022 - EPA 5030B	•									
Blank (B6J1022-BLK1) Continu	ed			Prepare	ed & Ana	lyzed: 1	0/10/16			
Bromobenzene	<0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331950Project No:04-NDLA-013Date Received: 10/04/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	I Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -										
Batch B6J1022 - EPA 5030B										
Blank (B6J1022-BLK1) Continued	t			Prepare	ed & Ana	lyzed: 1	0/10/16			
1,2-Dichloropropane	<0.50	0.50	ug/L	1						
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	<0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	<0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950
Date Received: 10/04/16
Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS - Quality Control										
Batch B6J1022 - EPA 5030B	_									
Blank (B6J1022-BLK1) Continued	Prepared & Analyzed: 10/10/16									
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	54.5		ug/L	50		109	70-140			
Surrogate: Toluene-d8	52.2		ug/L	50		104	70-140			
LCS (B6J1022-BS1)			•	Prepare	ed: 10/10/	16 Ana	alyzed: 10	0/11/16		
Acetone	56.8	10	ug/L	50		114	70-130			
tert-Amyl Methyl Ether (TAME)	21.8	2.0	ug/L	20		109	70-130			
Benzene	22.0	0.50	ug/L	20		110	75-125			
Bromobenzene	19.4	0.50	ug/L	20		97.2	70-130			
Bromochloromethane	22.3	0.50	ug/L	20		112	70-130			
Bromodichloromethane	22.3	0.50	ug/L	20		111	75-125			
Bromoform	17.8	0.50	ug/L	20		89.2	75-125			
Bromomethane	17.8	0.50	ug/L	20		89.2	75-125			
2-Butanone (MEK)	57.5	10	ug/L	50		115	70-130			
tert-Butyl alcohol (TBA)	124	10	ug/L	100		124	70-130			
sec-Butylbenzene	20.5	0.50	ug/L	20		103	70-130			
tert-Butylbenzene	22.1	0.50	ug/L	20		110	70-130			
n-Butylbenzene	20.4	0.50	ug/L	20		102	70-130			
Carbon Disulfide	41.6	0.50	ug/L	50		83.1	70-130			
Carbon Tetrachloride	22.7	0.50	ug/L	20		113	75-125			
Chlorobenzene	19.5	0.50	ug/L	20		97.6	75-125			
Chloroethane	23.6	0.50	ug/L	20		118	75-125			
Chloroform	23.6	0.50	ug/L	20		118	75-125			
Chloromethane	19.0	0.50	ug/L	20		94.9	65-125			
2-Chlorotoluene	21.6	0.50	ug/L	20		108	70-130			
4-Chlorotoluene	21.1	0.50	ug/L	20		105	70-130			
1,2-Dibromo-3-chloropropane	23.7	1.0	ug/L	20		118	70-130			

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %		D Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B							
LCS (B6J1022-BS1) Continued				Prepare	ed: 10/10/16 An	alyzed: 10/1	11/16
Dibromochloromethane	20.6	0.50	ug/L	20	103	75-125	
1,2-Dibromoethane (EDB)	20.7	0.50	ug/L	20	103	70-130	
Dibromomethane	23.7	0.50	ug/L	20	118	70-130	
1,3-Dichlorobenzene	20.0	0.50	ug/L	20	100	70-130	
1,2-Dichlorobenzene	21.2	0.50	ug/L	20	106	70-130	
1,4-Dichlorobenzene	19.7	0.50	ug/L	20	98.4	75-125	
Dichlorodifluoromethane (R12)	19.1	0.50	ug/L	20	95.5	70-130	
1,1-Dichloroethane	22.2	0.50	ug/L	20	111	70-125	
1,2-Dichloroethane (EDC)	24.3	0.50	ug/L	20	122	75-125	
1,1-Dichloroethylene	17.0	0.50	ug/L	20	85.1	70-130	
trans-1,2-Dichloroethylene	17.3	0.50	ug/L	20	86.7	75-125	
cis-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.2	75-125	
1,2-Dichloropropane	22.8	0.50	ug/L	20	114	75-130	
2,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130	
1,3-Dichloropropane	21.2	0.50	ug/L	20	106	70-130	
cis-1,3-Dichloropropylene	22.6	0.50	ug/L	20	113	75-125	
trans-1,3-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	
1,1-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	
Diisopropyl ether (DIPE)	24.2	2.0	ug/L	20	121	70-130	
Ethylbenzene	20.2	0.50	ug/L	20	101	75-125	
Ethyl-tert-Butyl Ether (ETBE)	23.1	2.0	ug/L	20	115	70-130	
Hexachlorobutadiene	19.0	1.0	ug/L	20	95.2	70-130	
2-Hexanone (MBK)	52.9	10	ug/L	50	106	70-130	
Isopropylbenzene	21.1	0.50	ug/L	20	105	70-130	
4-Isopropyltoluene	21.3	1.0	ug/L	20	107	70-130	
Methyl-tert-Butyl Ether (MTBE)	43.3	1.0	ug/L	40	108	75-125	
Methylene Chloride	26.0	5.0	ug/L	20	130	75-130	
4-Methyl-2-pentanone (MIBK)	52.3	10	ug/L	50	105	70-130	
Naphthalene	22.8	2.0	ug/L	20	114	70-130	
n-Propylbenzene	20.4	0.50	ug/L	20	102	70-130	
Styrene	19.2	0.50	ug/L	20	95.8	70-130	

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Limit Notes Analyte Result Limit VOCs & OXYGENATES by GC/MS - Quality Control Batch B6J1022 - EPA 5030B LCS (B6J1022-BS1) Continued Prepared: 10/10/16 Analyzed: 10/11/16 20.8 0.50 20 104 70-130 1,1,1,2-Tetrachloroethane ug/L 22.3 0.50 20 111 1,1,2,2-Tetrachloroethane ug/L 70-135 Tetrachloroethylene (PCE) 16.5 0.50 ug/L 20 82.4 75-125 19.8 0.50 98.8 Toluene ug/L 20 75-125 97.0 1,2,3-Trichlorobenzene 19.4 0.50 ug/L 20 70-130 18.7 93.4 0.50 1,2,4-Trichlorobenzene ug/L 20 70-130 24.4 0.50 122 1,1,1-Trichloroethane ug/L 20 75-125 1,1,2-Trichloroethane 21.8 0.50 ug/L 20 109 75-125 111 Trichloroethylene (TCE) 22.1 0.50 20 75-125 ug/L Trichlorofluoromethane (R11) 24.6 0.50 123 ug/L 20 70-130 21.8 1,2,3-Trichloropropane 0.50 ug/L 20 109 70-130 125 1,1,2-Trichloro-1,2,2-trifluoroethane 24.9 0.50 70-130 ug/L 20 (R113) 21.1 0.50 105 70-130 1,3,5-Trimethylbenzene ug/L 20 1,2,4-Trimethylbenzene 21.6 0.50 20 108 70-130 ug/L Vinyl chloride 22.7 0.50 ug/L 20 114 75-125 20.2 0.50 101 o-Xylene ug/L 20 75-125 38.3 1.0 95.8 m,p-Xylenes ug/L 40 70-130 56.2 50 Surrogate: 4-Bromofluorobenzene ug/L 112 70-140 Surrogate: Dibromofluoromethane 59.3 ug/L 50 119 70-140 Surrogate: Toluene-d8 52.5 50 ug/L 105 70-140 Matrix Spike (B6J1022-MS1) Source: 6J04036-02 Prepared & Analyzed: 10/10/16 60.2 <10 120 10 ug/L 50 70-130 Acetone < 2.0 95.8 tert-Amyl Methyl Ether (TAME) 19.2 2.0 ug/L 20 70-130 < 0.50 21.3 0.50 106 Benzene ug/L 20 70-130 19.7 0.50 < 0.50 98.6 70-130 Bromobenzene ug/L 20 Bromochloromethane 21.1 0.50 20 < 0.50 105 70-130 ug/L 22.9 < 0.50 114 Bromodichloromethane 0.50ug/L 20 70-130 <0.50 88.2 **Bromoform** 17.6 0.50 ug/L 20 70-130 < 0.50 94.0 18.8 0.50 **Bromomethane** ug/L 20 70-130 2-Butanone (MEK) 115 57.3 10 ug/L 50 <10 70-130

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Poperting	Spika Sauraa	0/ DEC	RPD
	Reporting	Spike Source	%REC	KFU
Analyte	Result Limit Units	Level Result %F	REC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

ert-Butyl alcohol (TBA)	132	10	ug/L	100	<10	132	70-130	QM-0
sec-Butylbenzene	20.9	0.50	ug/L	20	< 0.50	105	70-130	۵,۷۱ و
ert-Butylbenzene	22.4	0.50	ug/L	20	< 0.50	112	70-130	
n-Butylbenzene	22.0	0.50	ug/L	20	< 0.50	110	70-130	
Carbon Disulfide	37.3	0.50	ug/L	50	< 0.50	74.6	70-130	
Carbon Tetrachloride	23.3	0.50	ug/L	20	< 0.50	117	70-130	
Chlorobenzene	19.6	0.50	ug/L	20	< 0.50	98.0	70-130	
Chloroethane	23.8	0.50	ug/L	20	< 0.50	119	70-130	
Chloroform	22.9	0.50	ug/L	20	< 0.50	115	70-130	
Chloromethane	18.5	0.50	ug/L	20	< 0.50	92.4	70-130	
2-Chlorotoluene	21.9	0.50	ug/L	20	< 0.50	109	70-130	
-Chlorotoluene	22.0	0.50	ug/L	20	< 0.50	110	70-130	
,2-Dibromo-3-chloropropane	25.2	1.0	ug/L	20	<1.0	126	70-130	
Dibromochloromethane	20.7	0.50	ug/L	20	< 0.50	103	70-130	
,2-Dibromoethane (EDB)	19.3	0.50	ug/L	20	< 0.50	96.6	70-130	
Dibromomethane	22.8	0.50	ug/L	20	< 0.50	114	70-130	
,3-Dichlorobenzene	20.9	0.50	ug/L	20	< 0.50	104	70-130	
,2-Dichlorobenzene	21.7	0.50	ug/L	20	< 0.50	109	70-130	
,4-Dichlorobenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130	
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	< 0.50	92.6	70-130	
,1-Dichloroethane	21.2	0.50	ug/L	20	< 0.50	106	70-130	
,2-Dichloroethane (EDC)	21.6	0.50	ug/L	20	< 0.50	108	70-130	
,1-Dichloroethylene	16.1	0.50	ug/L	20	< 0.50	80.7	70-130	
rans-1,2-Dichloroethylene	17.1	0.50	ug/L	20	< 0.50	85.6	70-130	
cis-1,2-Dichloroethylene	18.7	0.50	ug/L	20	< 0.50	93.4	70-130	
,2-Dichloropropane	22.9	0.50	ug/L	20	< 0.50	115	70-130	
2,2-Dichloropropane	24.5	0.50	ug/L	20	< 0.50	123	70-130	
,3-Dichloropropane	20.6	0.50	ug/L	20	< 0.50	103	70-130	
cis-1,3-Dichloropropylene	22.0	0.50	ug/L	20	< 0.50	110	70-130	
rans-1,3-Dichloropropylene	20.0	0.50	ug/L	20	< 0.50	100	70-130	
,1-Dichloropropylene	21.0	0.50	ug/L	20	< 0.50	105	70-130	

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

The Source Group, Inc. (SH) Client:

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC **RPD** Units Level Result %REC Limits RPD **Analyte** Result Limit **Limit Notes**

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B								
Matrix Spike (B6J1022-MS1) Conti	nued So	ource: 6	J04036-02 P	repar	ed & Analy	zed: 1	0/10/16	
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	<2.0	111	70-130	
Ethylbenzene	20.8	0.50	ug/L	20	< 0.50	104	70-130	
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	<2.0	104	70-130	
Hexachlorobutadiene	20.2	1.0	ug/L	20	<1.0	101	70-130	
2-Hexanone (MBK)	57.7	10	ug/L	50	<10	115	70-130	
Isopropylbenzene	21.7	0.50	ug/L	20	< 0.50	108	70-130	
4-Isopropyltoluene	22.6	1.0	ug/L	20	<1.0	113	70-130	
Methyl-tert-Butyl Ether (MTBE)	41.5	1.0	ug/L	40	<1.0	104	70-130	
Methylene Chloride	22.2	5.0	ug/L	20	<5.0	111	70-130	
4-Methyl-2-pentanone (MIBK)	50.9	10	ug/L	50	<10	102	70-130	
Naphthalene	23.0	2.0	ug/L	20	<2.0	115	70-130	
n-Propylbenzene	21.4	0.50	ug/L	20	< 0.50	107	70-130	
Styrene	19.1	0.50	ug/L	20	< 0.50	95.6	70-130	
1,1,1,2-Tetrachloroethane	19.7	0.50	ug/L	20	< 0.50	98.6	70-130	
1,1,2,2-Tetrachloroethane	21.7	0.50	ug/L	20	< 0.50	108	70-130	
Tetrachloroethylene (PCE)	17.5	0.50	ug/L	20	< 0.50	87.6	70-130	
Toluene	19.2	0.50	ug/L	20	< 0.50	96.2	70-130	
1,2,3-Trichlorobenzene	19.0	0.50	ug/L	20	< 0.50	94.8	70-130	
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	< 0.50	95.6	70-130	
1,1,1-Trichloroethane	23.2	0.50	ug/L	20	< 0.50	116	70-130	
1,1,2-Trichloroethane	20.5	0.50	ug/L	20	< 0.50	102	70-130	
Trichloroethylene (TCE)	21.7	0.50	ug/L	20	< 0.50	109	70-130	
Trichlorofluoromethane (R11)	23.8	0.50	ug/L	20	< 0.50	119	70-130	
1,2,3-Trichloropropane	22.2	0.50	ug/L	20	< 0.50	111	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	21.8	0.50	ug/L	20	<0.50	109	70-130	
1,3,5-Trimethylbenzene	22.1	0.50	ug/L	20	< 0.50	110	70-130	
1,2,4-Trimethylbenzene	22.1	0.50	ug/L	20	< 0.50	110	70-130	
Vinyl chloride	22.4	0.50	ug/L	20	< 0.50	112	70-130	
o-Xylene	20.1	0.50	ug/L	20	< 0.50	100	70-130	
m,p-Xylenes	39.2	1.0	ug/L	40	<1.0	98.0	70-130	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950

Date Received: 10/04/16

Date Reported: 10/20/16

Project Name: DFSP Norwalk GV	Toject Name. Di 3F Norwaik GW Sampling				Date Reported: 10/20/16					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control								
Batch B6J1022 - EPA 5030B										
Matrix Spike (B6J1022-MS1) Con	tinued S	Source: 6J0	4036-02	Prepare	ed & Anal	yzed: 1	0/10/16			
Surrogate: 4-Bromofluorobenzene	54.3		ug/L	50		109	70-140			
Surrogate: Dibromofluoromethane	<i>55.4</i>		ug/L	50		111	70-140			
Surrogate: Toluene-d8	50.6		ug/L	50		101	70-140			
Matrix Spike Dup (B6J1022-MSD	1) S	Source: 6J0	4036-02	Prepare	ed & Anal	yzed: 1	0/10/16			
Acetone	59.9	10	ug/L	50	<10	120	70-130	0.599	30	
tert-Amyl Methyl Ether (TAME)	18.5	2.0	ug/L	20	<2.0	92.4	70-130	3.67	30	
Benzene	21.6	0.50	ug/L	20	< 0.50	108	70-130	1.31	30	
Bromobenzene	19.6	0.50	ug/L	20	< 0.50	98.2	70-130	0.356	30	
Bromochloromethane	20.0	0.50	ug/L	20	< 0.50	100	70-130	4.96	30	
Bromodichloromethane	22.4	0.50	ug/L	20	< 0.50	112	70-130	1.85	30	
Bromoform	18.1	0.50	ug/L	20	< 0.50	90.3	70-130	2.30	30	
Bromomethane	20.6	0.50	ug/L	20	< 0.50	103	70-130	9.09	30	
2-Butanone (MEK)	48.7	10	ug/L	50	<10	97.5	70-130	16.1	30	
tert-Butyl alcohol (TBA)	132	10	ug/L	100	<10	132	70-130	0.00756	30	QM-07
sec-Butylbenzene	21.6	0.50	ug/L	20	< 0.50	108	70-130	2.92	30	
tert-Butylbenzene	22.7	0.50	ug/L	20	< 0.50	114	70-130	1.38	30	
n-Butylbenzene	22.5	0.50	ug/L	20	< 0.50	113	70-130	2.65	30	
Carbon Disulfide	37.9	0.50	ug/L	50	< 0.50	75.7	70-130	1.46	30	
Carbon Tetrachloride	22.9	0.50	ug/L	20	< 0.50	114	70-130	1.95	30	

ug/L

20

20

20

20

20

20

20

20

20

20

20

20

< 0.50 99.9

< 0.50 115

< 0.50 97.0

< 0.50 113

<1.0 119

< 0.50 99.2

< 0.50 108

115

112

101

106

105

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

70-130 1.97

70-130 0.131

70-130 4.86

70-130 2.82

70-130 5.30

70-130 2.60

70-130 7.24

70-130 0.287

70-130 0.138

3.42

2.22

2.45

70-130

70-130

70-130

30

30

30

30

30

30

30

30

30

30

30

30

20.0

23.0

22.9

19.4

22.4

22.7

23.9

20.2

19.8

21.2

20.9

21.7

0.50

0.50

0.50

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

0.50

Viorel Vasile Operations Manager

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Dibromomethane

1,3-Dichlorobenzene

1,2-Dichlorobenzene

1,2-Dibromo-3-chloropropane

Dibromochloromethane

1,2-Dibromoethane (EDB)

Chloroethane

Chloroform

AA Project No: A5331950

Date Received: 10/04/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1022 - EPA 5030B

Matrix Spike Dup (B6J1022-MSD1) Continued	S	ource: 6	J04036-02 F	Prepare	ed & Analy	/zed: 1	0/10/16			
1,4-Dichlorobenzene	20.8	0.50	ug/L	20	<0.50	104	70-130	3.22	30	
Dichlorodifluoromethane (R12)	18.8	0.50	ug/L	20	< 0.50	94.2	70-130	1.82	30	
1,1-Dichloroethane	20.6	0.50	ug/L	20	< 0.50	103	70-130	2.83	30	
1,2-Dichloroethane (EDC)	25.0	0.50	ug/L	20	< 0.50	125	70-130	14.4	30	
1,1-Dichloroethylene	16.4	0.50	ug/L	20	< 0.50	81.9	70-130	1.48	30	
trans-1,2-Dichloroethylene	17.7	0.50	ug/L	20	< 0.50	88.4	70-130	3.28	30	
cis-1,2-Dichloroethylene	18.5	0.50	ug/L	20	< 0.50	92.6	70-130	0.968	30	
1,2-Dichloropropane	22.8	0.50	ug/L	20	< 0.50	114	70-130	0.788	30	
2,2-Dichloropropane	23.4	0.50	ug/L	20	< 0.50	117	70-130	4.93	30	
1,3-Dichloropropane	21.4	0.50	ug/L	20	< 0.50	107	70-130	3.76	30	
cis-1,3-Dichloropropylene	21.8	0.50	ug/L	20	< 0.50	109	70-130	1.14	30	
trans-1,3-Dichloropropylene	21.4	0.50	ug/L	20	< 0.50	107	70-130	6.72	30	
1,1-Dichloropropylene	20.4	0.50	ug/L	20	< 0.50	102	70-130	3.10	30	
Diisopropyl ether (DIPE)	21.7	2.0	ug/L	20	<2.0	109	70-130	2.18	30	
Ethylbenzene	21.3	0.50	ug/L	20	<0.50	106	70-130	2.14	30	
Ethyl-tert-Butyl Ether (ETBE)	20.3	2.0	ug/L	20	<2.0	102	70-130	2.38	30	
Hexachlorobutadiene	20.8	1.0	ug/L	20	<1.0	104	70-130	3.12	30	
2-Hexanone (MBK)	54.5	10	ug/L	50	<10	109	70-130	5.77	30	
Isopropylbenzene	21.9	0.50	ug/L	20	<0.50	109	70-130	0.918	30	
4-Isopropyltoluene	23.1	1.0	ug/L	20	<1.0	115	70-130	1.97	30	
Methyl-tert-Butyl Ether (MTBE)	39.7	1.0	ug/L	40	<1.0	99.3	70-130	4.31	30	
Methylene Chloride	22.2	5.0	ug/L	20	<5.0	111	70-130	0.360	30	
4-Methyl-2-pentanone (MIBK)	51.4	10	ug/L	50	<10	103	70-130	0.899	30	
Naphthalene	24.7	2.0	ug/L	20	<2.0	124	70-130	7.34	30	
n-Propylbenzene	22.0	0.50	ug/L	20	<0.50	110	70-130	2.53	30	
Styrene	19.9	0.50	ug/L	20	<0.50	99.4	70-130	3.85	30	
1,1,1,2-Tetrachloroethane	20.0	0.50	ug/L	20	< 0.50	99.9	70-130	1.26	30	
1,1,2,2-Tetrachloroethane	21.5	0.50	ug/L	20	< 0.50	108	70-130	0.833	30	
Tetrachloroethylene (PCE)	18.9	0.50	ug/L	20	< 0.50	94.4	70-130	7.42	30	
Toluene	20.2	0.50	ug/L	20	< 0.50	101	70-130	4.57	30	
1,2,3-Trichlorobenzene	20.1	0.50	ug/L	20	< 0.50	101	70-130	5.88	30	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/04/16
Date Reported: 10/20/16

AA Project No: A5331950

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Qualit	y Control								
Batch B6J1022 - EPA 5030B										
Matrix Spike Dup (B6J1022-MSD ² Continued	1)	Source: 6J0	4036-02	Prepare	ed & Anal	yzed: 1	0/10/16			
1,2,4-Trichlorobenzene	19.9		ug/L	20	<0.50	99.6	70-130	4.05	30	
1,1,1-Trichloroethane	23.5		ug/L	20	< 0.50	118	70-130	1.46	30	
1,1,2-Trichloroethane	20.3	0.50	ug/L	20	< 0.50	101	70-130	0.981	30	
Trichloroethylene (TCE)	22.1		ug/L	20	< 0.50	110	70-130	1.69	30	
Trichlorofluoromethane (R11)	22.4		ug/L	20	< 0.50		70-130	5.80	30	
1,2,3-Trichloropropane	20.9		ug/L	20	< 0.50		70-130	5.80	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)			ug/L	20	<0.50		70-130	5.66	30	
1,3,5-Trimethylbenzene	22.2		ug/L	20	< 0.50		70-130		30	
1,2,4-Trimethylbenzene	22.7		ug/L	20	< 0.50		70-130	2.68	30	
Vinyl chloride	22.7		ug/L	20	< 0.50		70-130	1.29	30	
o-Xylene	20.3		ug/L	20	< 0.50		70-130	0.892	30	
m,p-Xylenes	41.1	1.0	ug/L	40	<1.0	103	70-130	4.63	30	
Surrogate: 4-Bromofluorobenzene	53.3	1	ug/L	50		107	70-140			
Surrogate: Dibromofluoromethane	52.3	1	ug/L	50		105	70-140			
Surrogate: Toluene-d8	50.3		ug/L	50		101	70-140			
Diesel Range Organics by GC/FID	- Qualit	y Control								
Batch B6J1020 - EPA 3510C										
Blank (B6J1020-BLK1)				Prepare	ed & Anal	yzed: 1	0/10/16			
Diesel Range Organics as Diesel	<0.10	0.10	mg/L							
Surrogate: o-Terphenyl	0.0489		mg/L	0.040		122	50-150			
LCS (B6J1020-BS1)			-	Prepare	ed & Anal	yzed: 1	0/10/16			
Diesel Range Organics as Diesel	0.811	0.10	mg/L	0.80		101	75-125			
Surrogate: o-Terphenyl	0.0481		mg/L	0.040		120	50-150			
LCS Dup (B6J1020-BSD1)			_	Prepare	ed & Anal	yzed: 1	0/10/16			
Diesel Range Organics as Diesel	0.791	0.10	mg/L	0.80		98.8	75-125	2.51	30	
Surrogate: o-Terphenyl	0.0585	i	mg/L	0.040		146	50-150			

Gasoline Range Organics by GC/FID - Quality Control

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Analyte	F Result	Reporting Limit	Units	Spike Level	Source Result %	REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline Range Organics by GC/F	ID - Qual	ity Control								
Batch B6J0534 - EPA 5030B		-								
Blank (B6J0534-BLK1)				Prepare	ed & Analyze	ed: 10	0/05/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	44.1		ug/L	50	8	38.2	80-120			
LCS (B6J0534-BS1)				Prepare	ed & Analyze	ed: 10	0/05/16			
Gasoline Range Organics (GRO)	421	100	ug/L	500	8	34.1	75-125			
Surrogate: a,a,a-Trifluorotoluene	46.6		ug/L	50	9	93.1	80-120			
LCS Dup (B6J0534-BSD1)				Prepare	ed & Analyze	ed: 10	0/05/16			
Gasoline Range Organics (GRO)	451	100	ug/L	500	9	0.2	75-125	6.98	30	
Surrogate: a,a,a-Trifluorotoluene	48.0		ug/L	50	9	95.9	80-120			
Batch B6J0623 - EPA 5030B										
Blank (B6J0623-BLK1)				Prepare	ed & Analyze	ed: 10	0/06/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	47.1		ug/L	50	9	94.2	80-120			
LCS (B6J0623-BS1)				Prepare	ed & Analyze	ed: 10	0/06/16			
Gasoline Range Organics (GRO)	449	100	ug/L	500	8	39.8	75-125			
Surrogate: a,a,a-Trifluorotoluene	48.4		ug/L	50	9	96.8	80-120			
LCS Dup (B6J0623-BSD1)				Prepare	ed & Analyze	ed: 10	0/06/16			
Gasoline Range Organics (GRO)	443	100	ug/L	500	8	38.7	75-125	1.29	30	
Surrogate: a,a,a-Trifluorotoluene	47.7		ug/L	50	9	95.4	80-120			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331950 Date Received: 10/04/16 Date Reported: 10/20/16

Special Notes

[1] = QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was

accepted based on acceptable LCS recovery.

A

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

70047088

C13-1- 0001			:	, 0,00	4				- T-	N-1	
Crient: MCX - SOST	***************************************	Project Na	me / No.:	Project Name / No.: シナント Morwell	\$25 \$3	78/	***************************************	***************************************	Samplers	Sampler's Name: 70400 Wobun	1200cm
Project Manager: DAN SWENSSON	SWENSSON	Site Ad	Address:	15306 NOWAK	S Mora	JK		Sa	Sampler's Signature:	nature:	I Come
Phone: /-562-597-1055	510/		City:	NOWAK	Y71				P.(P.O. No.:	
Fax: 1- (62-597-1020	070	State	te & Zip:	CH 926 FO	P				Quot	Quote No.:	
:	TAT Turnaround Codes **	**						ANALYSIS REQUESTED (Test Name)	JESTED (Test	Name)	
u i	sh	72 Hour Rush	æ				67	1			
$\begin{pmatrix} \mathcal{L} \\ \mathcal{L} \end{pmatrix} = 24 \text{ Hou}$ $\begin{pmatrix} \mathcal{L} \\ \mathcal{L} \end{pmatrix} = 48 \text{ Hou}$	24 Hour Rush (5) = 48 Hour Rush X = 4	5 Day Rush	avs (Star	ndard TAT)			id u	\(\sigma_{\infty}\)			Special
) trail of	20	9		Sample	No.	⁷ ने हें हु	3708	108		_	/ Instructions
		, and a	2	Matrix	tio Control	Plea	se enter	Please enter the TAT Turnaround Codes	ound Codes	** below	
0078-1	6704036-01	10-4-16	009	つら	d	×					
Exp-3	70-	104-16	837	GW	Z		×				
* MW 17	3-	10-4-16	935	Çm	7	*	×				an aranamakan apara da karanga karanga karanga karanga karanga karanga da karanga da karanga karanga karanga k
Gw-16	101	10-4-16	101	Cal	£	X.	×				
GMW 66R	100	10-4-16	100	60	7	×	×				
MW 13) o-	91-4-01	1135	ひろ	7	, , , , , , , , , , , , , , , , , , ,	λ Ķ				erie de la composition della c
GMW-56	Ço,	10-4-16	1210	Gw	7	, X	X				
1-dx3 *	80 -	10-4-10	e,2)	Cro	Ł	×	X X				
DUP-1	60°	91-2-01	Ż.	ડે	7	×	×				
DUP-2	Ş	10.4-16	XXXX	C+S	λ	×	Y X			A LOVE	
W-W) ac	10-4-16	135	GW	, ₁	×	V				
QCEB-i	V ~ (2,	91-4-0/	200	20	2	×					
104	For Laboratory Use		Y	Ref	Relinquished by	by		Date	Time ググシカ		Received by
Z S C	10 + 4 G mm - 10 cm			Relin	Relinquished by	ĝ,	\	Date	Time		Received by
	TAT Noays Sign:			Relin	Relinquished by			Date	Time		Received by
A.A. Project No.: 74533	A.A. Project No.: 145331950 / 6564036					,		Ξ			

Note: By relinquishing samples to American Analytics, client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 20, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331951 / 6J06026

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/06/16 14:18 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
8260B+OXY+TPHG					
QCTB-1	6J06026-01	Water	5	10/05/16 06:00	10/06/16 14:18
QCEB-1	6J06026-15	Water	5	10/05/16 14:45	10/06/16 14:18
8260B+OXYGENATES					
GMW-40	6J06026-02	Water	5	10/05/16 08:05	10/06/16 14:18
GMW-41	6J06026-03	Water	5	10/05/16 08:40	10/06/16 14:18
GMW-20	6J06026-04	Water	5	10/05/16 09:15	10/06/16 14:18
GMW-44	6J06026-05	Water	5	10/05/16 09:50	10/06/16 14:18
DUP-3	6J06026-06	Water	5	10/05/16 00:00	10/06/16 14:18
MW-27	6J06026-07	Water	5	10/05/16 10:25	10/06/16 14:18
MW-26	6J06026-08	Water	5	10/05/16 10:55	10/06/16 14:18
MW-22 (MID)	6J06026-09	Water	5	10/05/16 11:30	10/06/16 14:18
GW-1	6J06026-10	Water	5	10/05/16 12:05	10/06/16 14:18
GW-13	6J06026-11	Water	5	10/05/16 12:50	10/06/16 14:18
GW-2	6J06026-12	Water	5	10/05/16 13:20	10/06/16 14:18
GW-3	6J06026-13	Water	5	10/05/16 13:55	10/06/16 14:18
GW-6	6J06026-14	Water	5	10/05/16 14:30	10/06/16 14:18
DUP-4	6J06026-16	Water	5	10/05/16 00:00	10/06/16 14:18

Diesel Range Organics 8015M

AA Project No: A5331951

Date Received: 10/06/16

LABORATORY ANALYSIS RESULTS

The Source Group, Inc. (SH) Client:

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW	Sampling		Date Reported: 10/20/16				
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received		
GMW-40	6J06026-02	Water	5	10/05/16 08:05	10/06/16 14:18		
GMW-41	6J06026-03	Water	5	10/05/16 08:40	10/06/16 14:18		
GMW-20	6J06026-04	Water	5	10/05/16 09:15	10/06/16 14:18		
GMW-44	6J06026-05	Water	5	10/05/16 09:50	10/06/16 14:18		
DUP-3	6J06026-06	Water	5	10/05/16 00:00	10/06/16 14:18		
MW-27	6J06026-07	Water	5	10/05/16 10:25	10/06/16 14:18		
MW-26	6J06026-08	Water	5	10/05/16 10:55	10/06/16 14:18		
MW-22 (MID)	6J06026-09	Water	5	10/05/16 11:30	10/06/16 14:18		
GW-1	6J06026-10	Water	5	10/05/16 12:05	10/06/16 14:18		
GW-13	6J06026-11	Water	5	10/05/16 12:50	10/06/16 14:18		
GW-2	6J06026-12	Water	5	10/05/16 13:20	10/06/16 14:18		
GW-3	6J06026-13	Water	5	10/05/16 13:55	10/06/16 14:18		
GW-6	6J06026-14	Water	5	10/05/16 14:30	10/06/16 14:18		
DUP-4	6J06026-16	Water	5	10/05/16 00:00	10/06/16 14:18		
Gasoline Range Organics 8015M							
GMW-40	6J06026-02	Water	5	10/05/16 08:05	10/06/16 14:18		
GMW-41	6J06026-03	Water	5	10/05/16 08:40	10/06/16 14:18		
GMW-20	6J06026-04	Water	5	10/05/16 09:15	10/06/16 14:18		
GMW-44	6J06026-05	Water	5	10/05/16 09:50	10/06/16 14:18		

Viorel Vasile Operations Manager

DUP-3

Water

5

10/05/16 00:00

10/06/16 14:18

6J06026-06

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
MW-27	6J06026-07	Water	5	10/05/16 10:25	10/06/16 14:18
MW-26	6J06026-08	Water	5	10/05/16 10:55	10/06/16 14:18
MW-22 (MID)	6J06026-09	Water	5	10/05/16 11:30	10/06/16 14:18
GW-1	6J06026-10	Water	5	10/05/16 12:05	10/06/16 14:18
GW-13	6J06026-11	Water	5	10/05/16 12:50	10/06/16 14:18
GW-2	6J06026-12	Water	5	10/05/16 13:20	10/06/16 14:18
GW-3	6J06026-13	Water	5	10/05/16 13:55	10/06/16 14:18
GW-6	6J06026-14	Water	5	10/05/16 14:30	10/06/16 14:18
DUP-4	6J06026-16	Water	5	10/05/16 00:00	10/06/16 14:18

Client: The Source Group, Inc. (SH) AA Project No: A5331951 **Project No:** 04-NDLA-013 Date Received: 10/06/16 Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16 Method:

VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/17/16 **Date Analyzed:** 10/13/16 10/17/16 AA ID No: 6J06026-01 6J06026-15 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix:

MRL **Dilution Factor:** 1 1

	•	•	
8260B+OXY+TPHG (EPA 8260B)		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	<0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	<0.50	0.50
Chloroform	< 0.50	<0.50	0.50
Chloromethane	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	<0.50	<0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/17/16 **Date Analyzed:** 10/13/16 10/17/16 AA ID No: 6J06026-01 6J06026-15 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor:11MRL

8260B+OXY+TPHG (EPA 8260E	3) (continued)		
1,4-Dichlorobenzene	< 0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics	<100	<100	100
(GRO)			
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	0.50

MRL

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/17/16 **Date Analyzed:** 10/13/16 10/17/16 AA ID No: 6J06026-01 6J06026-15 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1

8260B+OXY+TPHG (EPA 8260B)	(continued))	
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

Surrogates			%REC Limits
4-Bromofluorobenzene	111%	110%	70-140
Dibromofluoromethane	116%	130%	70-140
Toluene-d8	103%	99%	70-140

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-02	6J06026-03	6J06026-04	6J06026-05	
Client ID No:	GMW-40	GMW-41	GMW-20	GMW-44	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	<u>260B)</u>				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	< 0.50	< 0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Units: ug/L

	,				5
Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-02	6J06026-03	6J06026-04	6J06026-05	
Client ID No:	GMW-40	GMW-41	GMW-20	GMW-44	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Styrene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	<0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331951

Date Received: 10/06/16

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/20/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L **Date Sampled:** 10/05/16 10/05/16 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/13/16 10/13/16 10/13/16 **Date Analyzed:** 10/13/16 10/13/16 10/13/16 10/13/16 AA ID No: 6J06026-02 6J06026-03 6J06026-04 6J06026-05 Client ID No: GMW-40 GMW-41 **GMW-20** GMW-44 Matrix: Water Water Water Water **Dilution Factor:** 1 1 1 1 MRL 8260B+OXYGENATES (EPA 8260B) (continued) 1,1,2,2-Tetrachloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Tetrachloroethylene (PCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 < 0.50 < 0.50 Toluene < 0.50 < 0.50 0.50 1,2,3-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 < 0.50 1,2,4-Trichlorobenzene < 0.50 < 0.50 < 0.50 0.50 1,1,1-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,2-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichloroethylene (TCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichlorofluoromethane (R11) < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,3-Trichloropropane < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,2-Trichloro-1,2,2-trifluoroeth < 0.50 < 0.50 < 0.50 < 0.50 0.50 ane (R113) 1,3,5-Trimethylbenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,4-Trimethylbenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 Vinyl chloride < 0.50 < 0.50 < 0.50 < 0.50 0.50 o-Xylene < 0.50 < 0.50 < 0.50 < 0.50 0.50 m,p-Xylenes <1.0 <1.0 <1.0 <1.0 1.0 **Surrogates** %REC Limits 4-Bromofluorobenzene 109% 109% 111% 110% 70-140 Dibromofluoromethane 128% 126% 128% 70-140 124% Toluene-d8 99% 98% 101% 70-140 100%

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-06	6J06026-07	6J06026-08	6J06026-09	
Client ID No:	DUP-3	MW-27	MW-26	MW-22 (MID)	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	2.2	1.5	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.94	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.64	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-06	6J06026-07	6J06026-08	6J06026-09	
Client ID No:	DUP-3	MW-27	MW-26	MW-22 (MID)	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	(continue	ed)			
1,4-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	7.1	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	<0.50	0.50
2,2-Dichloropropane	< 0.50	<0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	<0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	<0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	<0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	<0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	<0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	<0.50	<0.50	3.5	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	3.2	3.1	1.0	4.4	1.0
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	3.8	<2.0	2.0
n-Propylbenzene	< 0.50	<0.50	2.7	<0.50	0.50
Styrene	<0.50	< 0.50	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	<0.50	< 0.50	<0.50	0.50

0.50

0.50

0.50

0.50

0.50

0.50

1.0

AA Project No: A5331951

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

Project No: 04-NDLA-013

Date Received: 10/06/16 **Project Name:** DFSP Norwalk GW Sampling Date Reported: 10/20/16 VOCs & OXYGENATES by GC/MS Method: Units: ug/L

Date Sampled: 10/05/16 10/05/16 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/13/16 10/13/16 10/13/16 **Date Analyzed:** 10/13/16 10/13/16 10/13/16 10/13/16 AA ID No: 6J06026-06 6J06026-07 6J06026-08 6J06026-09 DUP-3 MW-27 MW-26 MW-22 (MID) **Client ID No:** Matrix: Water Water Water Water **Dilution Factor: MRL** 1 1 1 1 8260B+OXYGENATES (EPA 8260B) (continued) 1,1,2,2-Tetrachloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Tetrachloroethylene (PCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Toluene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,3-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,4-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,1-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,2-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichloroethylene (TCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichlorofluoromethane (R11) < 0.50 < 0.50 < 0.50 < 0.50 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

7					
Surrogates					%REC Limits
4-Bromofluorobenzene	113%	112%	112%	110%	70-140
Dibromofluoromethane	129%	127%	124%	120%	70-140
Toluene-d8	98%	98%	99%	103%	70-140

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

ane (R113)

Vinyl chloride

m,p-Xylenes

o-Xvlene

1,1,2-Trichloro-1,2,2-trifluoroeth

AA Project No: A5331951

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/20/16

 Method:
 VOCs & OXYGENATES by GC/MS
 Units: ug/L

 Data Sampled:
 10/05/46
 10/05/46
 10/05/46

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-10	6J06026-11	6J06026-12	6J06026-13	
Client ID No:	GW-1	GW-13	GW-2	GW-3	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				_
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroform	< 0.50	<0.50	< 0.50	<0.50	0.50
Chloromethane	< 0.50	<0.50	< 0.50	<0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	<0.50	< 0.50	<0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	<0.50	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	<0.50	<0.50	< 0.50	<0.50	0.50

AA Project No: A5331951

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/06/16

Date Reported: 10/20/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/13/16	10/13/16	10/13/16	10/13/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J06026-10	6J06026-11	6J06026-12	6J06026-13	
Client ID No:	GW-1	GW-13	GW-2	GW-3	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	9.1	8.1	1.6	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	<0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Styrene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	<0.50	<0.50	< 0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331951

Date Received: 10/06/16

Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

VOCs & OXYGENATES by GC/MS Method: Units: ug/L **Date Sampled:** 10/05/16 10/05/16 10/05/16 10/05/16 **Date Prepared:** 10/13/16 10/13/16 10/13/16 10/13/16 **Date Analyzed:** 10/13/16 10/13/16 10/13/16 10/13/16 AA ID No: 6J06026-10 6J06026-11 6J06026-12 6J06026-13 GW-1 **GW-13** GW-2 GW-3 **Client ID No:** Matrix: Water Water Water Water **Dilution Factor: MRL** 1 1 1 1 8260B+OXYGENATES (EPA 8260B) (continued) 1,1,2,2-Tetrachloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Tetrachloroethylene (PCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Toluene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1.2.3-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,4-Trichlorobenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,1-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,2-Trichloroethane < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichloroethylene (TCE) < 0.50 < 0.50 < 0.50 < 0.50 0.50 Trichlorofluoromethane (R11) < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,2,3-Trichloropropane < 0.50 < 0.50 < 0.50 < 0.50 0.50 1,1,2-Trichloro-1,2,2-trifluoroeth < 0.50 < 0.50 < 0.50 < 0.50 0.50 ane (R113) 1,3,5-Trimethylbenzene < 0.50 < 0.50 0.50 < 0.50 < 0.50 1,2,4-Trimethylbenzene < 0.50 < 0.50 < 0.50 < 0.50 0.50 Vinyl chloride < 0.50 < 0.50 < 0.50 < 0.50 0.50 o-Xvlene < 0.50 < 0.50 < 0.50 < 0.50 0.50 m,p-Xylenes <1.0 <1.0 <1.0 <1.0 1.0 **%REC Limits Surrogates** 4-Bromofluorobenzene 110% 112% 115% 70-140 116% Dibromofluoromethane 70-140 121% 127% 123% 118% Toluene-d8 100% 100% 102% 70-140 102%

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J06026-14 6J06026-16 Client ID No: GW-6 DUP-4 Water Matrix: Water

Dilution Factor: 1 1 MRL

8260B+OXYGENATES (EPA 8260	<u>)B)</u>		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	<0.50	<0.50	0.50
Bromodichloromethane	<0.50	<0.50	0.50
Bromoform	<0.50	<0.50	0.50
Bromomethane	<0.50	<0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	<0.50	<0.50	0.50
tert-Butylbenzene	<0.50	<0.50	0.50
n-Butylbenzene	<0.50	<0.50	0.50
Carbon Disulfide	<0.50	<0.50	0.50
Carbon Tetrachloride	<0.50	<0.50	0.50
Chlorobenzene	<0.50	<0.50	0.50
Chloroethane	<0.50	<0.50	0.50
Chloroform	<0.50	<0.50	0.50
Chloromethane	<0.50	<0.50	0.50
2-Chlorotoluene	<0.50	<0.50	0.50
4-Chlorotoluene	<0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	1.0
Dibromochloromethane	<0.50	<0.50	0.50
1,2-Dibromoethane (EDB)	<0.50	<0.50	0.50
Dibromomethane	<0.50	<0.50	0.50
1,3-Dichlorobenzene	<0.50	<0.50	0.50
1,2-Dichlorobenzene	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH) AA Project No: A5331951 **Project No:** 04-NDLA-013 Date Received: 10/06/16 Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16 Method:

VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J06026-14 6J06026-16 Client ID No: GW-6 DUP-4 Water Matrix: Water

Dilution Factor: 1 1 MRL

8260B+OXYGENATES (EPA 8260	<u>)B)</u> (continu	ied)	
1,4-Dichlorobenzene	< 0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	<0.50	0.50
1,1-Dichloroethane	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	<0.50	0.50
1,1-Dichloroethylene	< 0.50	<0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	<0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	<0.50	0.50
1,2-Dichloropropane	< 0.50	<0.50	0.50
2,2-Dichloropropane	< 0.50	<0.50	0.50
1,3-Dichloropropane	<0.50	<0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	<0.50	0.50
trans-1,3-Dichloropropylene	<0.50	<0.50	0.50
1,1-Dichloropropylene	<0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	<0.50	<0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	1.4	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	<0.50	0.50
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J06026-14 6J06026-16 Client ID No: GW-6 DUP-4 Matrix: Water Water

Mati IX.	vvaloi	vvator	
Dilution Factor:	1	1	MRL
			_

8260B+OXYGENATES (EPA 826	<u>0B)</u> (continu	ed)	
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	<0.50	0.50
Toluene	< 0.50	<0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	<0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	<0.50	0.50
1,1,1-Trichloroethane	< 0.50	<0.50	0.50
1,1,2-Trichloroethane	< 0.50	<0.50	0.50
Trichloroethylene (TCE)	< 0.50	<0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	<0.50	0.50
1,2,3-Trichloropropane	<0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

<u>Surrogates</u>			%REC Limits
4-Bromofluorobenzene	107%	113%	70-140
Dibromofluoromethane	125%	123%	70-140
Toluene-d8	98%	100%	70-140

Client: The Source Group, Inc. (SH) AA Project No: A5331951 04-NDLA-013 Date Received: 10/06/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Method:	Diesel Range	Organics by GC/	Units : mg/L							
Date Sampled:		10/05/16	10/05/16	10/05/16	10/05/16					
Date Prepared:		10/11/16	10/11/16	10/11/16	10/11/16					
Date Analyzed:		10/11/16	10/11/16	10/11/16	10/11/16					
AA ID No:		6J06026-02	6J06026-03	6J06026-04	6J06026-05					
Client ID No:		GMW-40	GMW-41	GMW-20	GMW-44					
Matrix:		Water	Water	Water	Water					
Dilution Factor:		1	1	1	1	MRL				
Dilution Factor: 1 1 1 1 1 1 MRL Diesel Range Organics 8015M (EPA 8015M)										
Diesel Range Or Diesel	ganics as	1.1	0.33	<0.10	0.17	0.10				
Surrogates o-Terphenyl		130%	119%	89%	97%	<u>%REC Limits</u> 50-150				

50-150

o-Terphenyl

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: Diesel Range Organics by GC/FID

AA Project No: A5331951 Date Received: 10/06/16

Date Received: 10/06/16

Date Reported: 10/20/16

Units: mg/L

Metriod. Diese	r realige Organics by Och	טוו		Oilli	.s. mg/L
Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Analyzed:	10/11/16	10/11/16	10/12/16	10/12/16	
AA ID No:	6J06026-06	6J06026-07	6J06026-08	6J06026-09	
Client ID No:	DUP-3	MW-27	MW-26	MW-22 (MID)	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Diesel Range Organic	s 8015M (EPA 8015M)				
Diesel Range Organics Diesel	as 0.25	0.22	0.27	0.17	0.10
Surrogates					%REC Limits

104%

103%

96%

108%

50-150

o-Terphenyl

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331951

Date Received: 10/06/16

93%

Project No:04-NDLA-013Date Received:10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported:10/20/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Metrioa.	riesei italige C	riganics by Cor	טו ו		Onn	.s. mg/L
Date Sampled:		10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:		10/11/16	10/11/16	10/11/16	10/11/16	
Date Analyzed:		10/12/16	10/12/16	10/12/16	10/12/16	
AA ID No:		6J06026-10	6J06026-11	6J06026-12	6J06026-13	
Client ID No:		GW-1	GW-13	GW-2	GW-3	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	1	MRL
Diesel Range Org	janics 8015M	(EPA 8015M)				
Diesel Range Orga Diesel	anics as	<0.10	<0.10	<0.10	0.10	0.10
Surrogates						%REC Limits

95%

93%

106%

The Source Group, Inc. (SH) Client: AA Project No: A5331951 **Project No:** 04-NDLA-013 Date Received: 10/06/16 **Project Name:** DFSP Norwalk GW Sampling Date Reported: 10/20/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/11/16 10/11/16 **Date Analyzed:** 10/12/16 10/12/16 AA ID No: 6J06026-14 6J06026-16 Client ID No: GW-6 DUP-4 Matrix: Water Water

Dilution Factor: 1 MRL 1

Diesel Range Organics 8015M (EPA 8015M)

Diesel Range Organics as 0.14 < 0.10 0.10

Diesel

%REC Limits Surrogates

o-Terphenyl 91% 76% 50-150

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/06/16	10/06/16	10/06/16	10/06/16	
Date Analyzed:	10/06/16	10/06/16	10/06/16	10/06/16	
AA ID No:	6J06026-02	6J06026-03	6J06026-04	6J06026-05	
Client ID No:	GMW-40	GMW-41	GMW-20	GMW-44	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 80)15M (EPA 8015M)			
Gasoline Range Organics (GRO)	<100	<100	<100	<100	100
<u>Surrogates</u>					%REC Limits
a,a,a-Trifluorotoluene	93%	86%	91%	92%	80-120

AA Project No: A5331951

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project No: 04-NDLA-013 Date Received: 10/06/16
Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled:	10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:	10/06/16	10/06/16	10/06/16	10/06/16	
Date Analyzed:	10/06/16	10/06/16	10/06/16	10/06/16	
AA ID No:	6J06026-06	6J06026-07	6J06026-08	6J06026-09	
Client ID No:	DUP-3	MW-27	MW-26	MW-22 (MID)	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 8	015M (EPA 8015M)			
Gasoline Range Organics	<100	<100	170	<100	100

(GRO)	 	 		

<u>Surrogates</u>					%REC Limits
a,a,a-Trifluorotoluene	90%	92%	88%	91%	80-120

Client: The Source Group, Inc. (SH) AA Project No: A5331951 04-NDLA-013 Date Received: 10/06/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/20/16

Unite: ua/l

Method: G	Basoline Range	Organics by G	C/FID		ι	Jnits: ug/L
Date Sampled:		10/05/16	10/05/16	10/05/16	10/05/16	
Date Prepared:		10/06/16	10/06/16	10/07/16	10/07/16	
Date Analyzed:		10/06/16	10/06/16	10/07/16	10/07/16	
AA ID No:		6J06026-10	6J06026-11	6J06026-12	6J06026-13	
Client ID No:		GW-1	GW-13	GW-2	GW-3	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	1	MRL
Gasoline Range C	Organics 8015M	I (EPA 8015M)			
Gasoline Range O (GRO)	rganics	<100	<100	<100	<100	100
Surrogates						%REC Limits
a,a,a-Trifluorotolue	ene	95%	91%	90%	95%	80-120

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled: 10/05/16 10/05/16 **Date Prepared:** 10/07/16 10/07/16 **Date Analyzed:** 10/07/16 10/07/16 AA ID No: 6J06026-14 6J06026-16 Client ID No: GW-6 DUP-4 Matrix: Water Water

Dilution Factor: 1 1 MRL

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics <100 <100

(GRO)

Surrogates %REC Limits

a,a,a-Trifluorotoluene 90% 93% 80-120

A

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by G	C/MS - Qu	ality Contr	ol							
Batch B6J1323 - EPA 5030B										
Blank (B6J1323-BLK1)				Prepare	ed & Ana	lyzed: 1	0/13/16			
Acetone	<10	10	ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L							
Benzene	< 0.50	0.50	ug/L							
Bromobenzene	< 0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	<0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

Analyto	F Result	Reporting Limit	Units		Source	%REC REC Limits	PPN	RPD Limit	Notes
Analyte	Resuit	Limit	Ullita	revei	Nesuit /or	VEC FIIIIIS	KFD	LIIIIII	Mores
VOCs, OXY & TPH Gasoline by GC	ol								

Batch B6J1323 - EPA 5030B Prepared & Analyzed: 10/13/16 Blank (B6J1323-BLK1) Continued 1,1-Dichloroethylene < 0.50 0.50 ug/L trans-1,2-Dichloroethylene < 0.50 0.50 ug/L cis-1,2-Dichloroethylene < 0.50 0.50 ug/L 1,2-Dichloropropane < 0.50 0.50 ug/L < 0.50 2,2-Dichloropropane 0.50 ug/L < 0.50 0.50 1,3-Dichloropropane ug/L < 0.50 cis-1,3-Dichloropropylene 0.50 ug/L trans-1,3-Dichloropropylene < 0.50 0.50 ug/L < 0.50 0.50 1,1-Dichloropropylene ug/L Diisopropyl ether (DIPE) < 2.0 2.0 ug/L < 0.50 0.50 Ethylbenzene ug/L < 2.0 2.0 Ethyl-tert-Butyl Ether (ETBE) ug/L Gasoline Range Organics (GRO) <100 100 ug/L Hexachlorobutadiene <1.0 1.0 ug/L <10 10 2-Hexanone (MBK) ug/L Isopropylbenzene < 0.50 0.50 ug/L <1.0 1.0 4-Isopropyltoluene ug/L Methyl-tert-Butyl Ether (MTBE) <1.0 1.0 ug/L < 5.0 5.0 Methylene Chloride ug/L 4-Methyl-2-pentanone (MIBK) <10 10 ug/L < 2.0 2.0 Naphthalene ug/L ug/L n-Propylbenzene < 0.50 0.50 Styrene < 0.50 0.50 ug/L < 0.50 0.50 1,1,1,2-Tetrachloroethane ua/L < 0.50 0.50 1,1,2,2-Tetrachloroethane ug/L Tetrachloroethylene (PCE) < 0.50 0.50 ug/L < 0.50 0.50 Toluene ug/L 1,2,3-Trichlorobenzene < 0.50 0.50 ug/L < 0.50 0.50 1,2,4-Trichlorobenzene ug/L < 0.50 0.50 1.1.1-Trichloroethane ug/L < 0.50 0.50 1,1,2-Trichloroethane ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	F Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/					,,,,,,				
Batch B6J1323 - EPA 5030B		,							
Blank (B6J1323-BLK1) Continued				Prepare	ed & Analyzed: 1	0/13/16			
Trichloroethylene (TCE)	<0.50	0.50	ug/L		,				
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L						
1,2,3-Trichloropropane	< 0.50	0.50	ug/L						
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L						
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L						
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L						
Vinyl chloride	< 0.50	0.50	ug/L						
o-Xylene	< 0.50	0.50	ug/L						
m,p-Xylenes	<1.0	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	62.6		ug/L	50	125	70-140			
Surrogate: Toluene-d8	49.3		ug/L	50	98.5	70-140			
LCS (B6J1323-BS1)				Prepare	ed: 10/13/16 Ana	alyzed: 10	0/14/16		
Acetone	50.8	10	ug/L	50	102	70-130			
tert-Amyl Methyl Ether (TAME)	17.9	2.0	ug/L	20	89.6	70-130			
Benzene	23.3	0.50	ug/L	20	116	75-125			
Bromobenzene	19.6	0.50	ug/L	20	98.2	70-130			
Bromochloromethane	21.8	0.50	ug/L	20	109	70-130			
Bromodichloromethane	23.7	0.50	ug/L	20	118	75-125			
Bromoform	16.1	0.50	ug/L	20	80.3	75-125			
Bromomethane	17.9	0.50	ug/L	20	89.6	75-125			
2-Butanone (MEK)	50.8	10	ug/L	50	102	70-130			
tert-Butyl alcohol (TBA)	108	10	ug/L	100	108	70-130			
sec-Butylbenzene	21.9	0.50	ug/L	20	110	70-130			
tert-Butylbenzene	22.5	0.50	ug/L	20	112	70-130			
n-Butylbenzene	22.7	0.50	ug/L	20	113	70-130			
Carbon Disulfide	39.5	0.50	ug/L	50	78.9	70-130			
Carbon Tetrachloride	25.0	0.50	ug/L	20	125	75-125			
Chlorobenzene	20.5	0.50	ug/L	20	102	75-125			
Chloroethane	20.5	0.50	ug/L	20	102	75-125			

Date Received: 10/06/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOCs, OXY & TPH Gasoline by GO	C/MS - Qu	ality Con	trol						
Batch B6J1323 - EPA 5030B									
LCS (B6J1323-BS1) Continued				Prepare	ed: 10/13/16 Ana	alyzed: 10	0/14/16		
Chloroform	24.0	0.50	ug/L	20	120	75-125			
Chloromethane	20.6	0.50	ug/L	20	103	65-125			
2-Chlorotoluene	22.6	0.50	ug/L	20	113	70-130			
4-Chlorotoluene	22.6	0.50	ug/L	20	113	70-130			
1,2-Dibromo-3-chloropropane	21.5	1.0	ug/L	20	108	70-130			
Dibromochloromethane	20.9	0.50	ug/L	20	104	75-125			
1,2-Dibromoethane (EDB)	18.2	0.50	ug/L	20	91.0	70-130			
Dibromomethane	22.1	0.50	ug/L	20	110	70-130			
1,3-Dichlorobenzene	21.0	0.50	ug/L	20	105	70-130			
1,2-Dichlorobenzene	21.6	0.50	ug/L	20	108	70-130			
1,4-Dichlorobenzene	20.3	0.50	ug/L	20	102	75-125			
Dichlorodifluoromethane (R12)	20.8	0.50	ug/L	20	104	70-130			
1,1-Dichloroethane	21.8	0.50	ug/L	20	109	70-125			
1,2-Dichloroethane (EDC)	24.3	0.50	ug/L	20	122	75-125			
1,1-Dichloroethylene	21.6	0.50	ug/L	20	108	70-130			
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102	75-125			
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125			
1,2-Dichloropropane	24.0	0.50	ug/L	20	120	75-130			
2,2-Dichloropropane	23.8	0.50	ug/L	20	119	70-130			
1,3-Dichloropropane	18.7	0.50	ug/L	20	93.6	70-130			
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	98.9	75-125			
trans-1,3-Dichloropropylene	19.1	0.50	ug/L	20	95.4	70-130			
1,1-Dichloropropylene	22.4	0.50	ug/L	20	112	70-130			
Diisopropyl ether (DIPE)	23.0	2.0	ug/L	20	115	70-130			
Ethylbenzene	21.5	0.50	ug/L	20	108	75-125			
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130			
Gasoline Range Organics (GRO)	434	100	ug/L	500	86.8	70-130			
Hexachlorobutadiene	18.8	1.0	ug/L	20	94.2	70-130			
2-Hexanone (MBK)	47.7	10	ug/L	50	95.4	70-130			
Isopropylbenzene	22.3	0.50	ug/L	20	112	70-130			
4-Isopropyltoluene	23.1	1.0	ug/L	20	115	70-130			

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte Result Limit VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1323 - EPA 5030B LCS (B6J1323-BS1) Continued Prepared: 10/13/16 Analyzed: 10/14/16 Methyl-tert-Butyl Ether (MTBE) 39.2 1.0 97.9 75-125 ug/L 40 28.5 5.0 142 Methylene Chloride ug/L 20 75-130 4-Methyl-2-pentanone (MIBK) 44.0 10 ug/L 50 0.88 70-130 20.8 2.0 104 Naphthalene ug/L 20 70-130 113 n-Propylbenzene 22.6 0.50 ug/L 20 70-130 19.2 0.50 96.0 Styrene ug/L 20 70-130 19.0 0.50 94.8 70-130 1,1,1,2-Tetrachloroethane ug/L 20 1,1,2,2-Tetrachloroethane 18.9 0.50 ug/L 20 94.4 70-135 Tetrachloroethylene (PCE) 18.4 0.50 20 91.8 75-125 ug/L 20.7 0.50 104 Toluene ug/L 20 75-125 ug/L 93.8 1.2.3-Trichlorobenzene 18.8 0.50 20 70-130 19.1 0.50 95.6 1.2.4-Trichlorobenzene ug/L 20 70-130 1,1,1-Trichloroethane 24.0 0.50 ug/L 20 120 75-125 19.5 0.50 97.5 1.1.2-Trichloroethane 20 75-125 ug/L 113 Trichloroethylene (TCE) 22.5 0.50 ug/L 20 75-125 Trichlorofluoromethane (R11) 25.2 0.50 126 ug/L 20 70-130 17.7 88.5 1,2,3-Trichloropropane 0.50 ug/L 20 70-130 1,1,2-Trichloro-1,2,2-trifluoroethane 23.9 0.50 120 ug/L 20 70-130 (R113) 22.3 0.50 20 112 70-130 1,3,5-Trimethylbenzene ug/L 1,2,4-Trimethylbenzene 23.1 0.50 ug/L 20 116 70-130 22.8 0.50 114 Vinyl chloride ug/L 20 75-125 20.7 0.50 104 o-Xylene ug/L 20 75-125 40.8 1.0 102 40 70-130 m,p-Xylenes ug/L 55.3 Surrogate: 4-Bromofluorobenzene ug/L 50 111 70-140 54.7 Surrogate: Dibromofluoromethane ug/L 50 109 70-140 52.3 Surrogate: Toluene-d8 ug/L 50 105 70-140 Matrix Spike (B6J1323-MS1) Source: 6J06026-02 Prepared & Analyzed: 10/13/16 121 Acetone 60.5 10 ug/L 50 70-130 2.0 94.6 18.9 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130

Viorel Vasile Operations Manager

Benzene

ug/L

20

104

70-130

20.9

0.50

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %	REC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Bromobenzene	19.4	0.50	ug/L	20	97.1	70-130	
Bromochloromethane	19.0	0.50	ug/L	20	95.2	70-130	
Bromodichloromethane	22.9	0.50	ug/L	20	114	70-130	
Bromoform	17.0	0.50	ug/L	20	85.0	70-130	
Bromomethane	19.5	0.50	ug/L	20	97.6	70-130	
2-Butanone (MEK)	61.1	10	ug/L	50	122	70-130	
tert-Butyl alcohol (TBA)	118	10	ug/L	100	118	70-130	
sec-Butylbenzene	20.2	0.50	ug/L	20	101	70-130	
tert-Butylbenzene	21.3	0.50	ug/L	20	107	70-130	
n-Butylbenzene	21.6	0.50	ug/L	20	108	70-130	
Carbon Disulfide	38.4	0.50	ug/L	50	76.7	70-130	
Carbon Tetrachloride	22.1	0.50	ug/L	20	110	70-130	
Chlorobenzene	19.3	0.50	ug/L	20	96.7	70-130	
Chloroethane	22.9	0.50	ug/L	20	115	70-130	
Chloroform	22.6	0.50	ug/L	20	113	70-130	
Chloromethane	19.4	0.50	ug/L	20	97.0	70-130	
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130	
4-Chlorotoluene	21.5	0.50	ug/L	20	107	70-130	
1,2-Dibromo-3-chloropropane	26.5	1.0	ug/L	20	132	70-130	
Dibromochloromethane	21.3	0.50	ug/L	20	106	70-130	
1,2-Dibromoethane (EDB)	19.0	0.50	ug/L	20	94.9	70-130	
Dibromomethane	22.2	0.50	ug/L	20	111	70-130	
1,3-Dichlorobenzene	20.5	0.50	ug/L	20	102	70-130	
1,2-Dichlorobenzene	21.7	0.50	ug/L	20	109	70-130	
1,4-Dichlorobenzene	20.0	0.50	ug/L	20	100	70-130	
Dichlorodifluoromethane (R12)	18.9	0.50	ug/L	20	94.4	70-130	
1,1-Dichloroethane	22.7	0.50	ug/L	20	113	70-130	
1,2-Dichloroethane (EDC)	23.7	0.50	ug/L	20	119	70-130	
1,1-Dichloroethylene	23.4	0.50	ug/L	20	117	70-130	
trans-1,2-Dichloroethylene	19.0	0.50	ug/L	20	95.2	70-130	
cis-1,2-Dichloroethylene	19.6	0.50	ug/L	20	97.8	70-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Datch D00 1325 - El A 3030D						
Matrix Spike (B6J1323-MS1) Cont						
1,2-Dichloropropane	22.7	0.50	ug/L	20	114	
2,2-Dichloropropane	24.6	0.50	ug/L	20	123	
1,3-Dichloropropane	18.4	0.50	ug/L	20	91.	3 70-130
cis-1,3-Dichloropropylene	19.7	0.50	ug/L	20	98.	70-130
trans-1,3-Dichloropropylene	20.2	0.50	ug/L	20	101	70-130
1,1-Dichloropropylene	20.4	0.50	ug/L	20	102	70-130
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130
Ethylbenzene	19.6	0.50	ug/L	20	98.	2 70-130
Ethyl-tert-Butyl Ether (ETBE)	21.1	2.0	ug/L	20	106	70-130
Gasoline Range Organics (GRO)	499	100	ug/L	500	99.	3 70-130
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.	70-130
2-Hexanone (MBK)	60.3	10	ug/L	50	12′	70-130
Isopropylbenzene	21.0	0.50	ug/L	20	105	70-130
4-Isopropyltoluene	21.8	1.0	ug/L	20	109	70-130
Methyl-tert-Butyl Ether (MTBE)	42.6	1.0	ug/L	40	0.810 105	70-130
Methylene Chloride	24.7	5.0	ug/L	20	123	70-130
4-Methyl-2-pentanone (MIBK)	53.7	10	ug/L	50	107	70-130
Naphthalene	24.5	2.0	ug/L	20	122	70-130
n-Propylbenzene	21.3	0.50	ug/L	20	106	70-130
Styrene	18.7	0.50	ug/L	20	93.	
1,1,1,2-Tetrachloroethane	18.1	0.50	ug/L	20	90.	3 70-130
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20	106	70-130
Tetrachloroethylene (PCE)	16.3	0.50	ug/L	20	81.	70-130
Toluene	19.2	0.50	ug/L	20	96.	70-130
1,2,3-Trichlorobenzene	20.0	0.50	ug/L	20	99.	
1,2,4-Trichlorobenzene	19.2	0.50	ug/L	20	96.	
1,1,1-Trichloroethane	22.7	0.50	ug/L	20	113	
1,1,2-Trichloroethane	20.1	0.50	ug/L	20	100	
Trichloroethylene (TCE)	20.3	0.50	ug/L	20	102	
Trichlorofluoromethane (R11)	24.9	0.50	ug/L	20	124	
1,2,3-Trichloropropane	21.9	0.50	ug/L	20	109	70-130

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1323 - EPA 5030B Matrix Spike (B6J1323-MS1) Continued Source: 6J06026-02 Prepared & Analyzed: 10/13/16 1,1,2-Trichloro-1,2,2-trifluoroethane 23.6 0.50 20 118 70-130 ug/L (R113) 0.50 108 1,3,5-Trimethylbenzene 21.6 ug/L 20 70-130 1,2,4-Trimethylbenzene 22.4 0.50 112 ug/L 20 70-130 23.3 0.50 117 Vinvl chloride ua/L 20 70-130 o-Xylene 19.6 0.50 ug/L 20 98.2 70-130 m,p-Xylenes 38.3 1.0 40 95.8 70-130 ug/L 54.9 Surrogate: 4-Bromofluorobenzene ug/L 50 110 70-140 Surrogate: Dibromofluoromethane 51.8 50 104 70-140 ug/L Surrogate: Toluene-d8 49.0 ug/L 50 98.0 70-140 Matrix Spike Dup (B6J1323-MSD1) **Source: 6J06026-02** Prepared & Analyzed: 10/13/16 61.4 10 123 70-130 ug/L 50 1.51 30 19.2 2.0 95.9 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 30 1.36 20.9 0.50 104 Benzene ug/L 20 70-130 0.0479 30 18.8 0.50 20 94.0 70-130 30 Bromobenzene ug/L 3.30 Bromochloromethane 20.4 0.50 ug/L 20 102 70-130 6.70 30 Bromodichloromethane 21.6 0.50 108 70-130 30 ug/L 20 5.75 18.0 0.50 90.0 **Bromoform** ug/L 20 70-130 5.83 30 **Bromomethane** 18.2 0.50 ug/L 20 91.0 70-130 7.00 30 56.5 10 113 2-Butanone (MEK) 70-130 7.88 30 ug/L 50 tert-Butyl alcohol (TBA) 117 10 100 117 70-130 ug/L 1.09 30 sec-Butylbenzene 20.3 0.50 ug/L 20 102 70-130 0.493 30 tert-Butylbenzene 21.4 0.50 20 107 70-130 0.468 30 ug/L n-Butylbenzene 21.0 0.50 ug/L 20 105 70-130 2.95 30 40.7 0.50 81.4 Carbon Disulfide ug/L 50 70-130 5.92 30 21.7 0.50 108 Carbon Tetrachloride 70-130 ug/L 20 1.83 30 Chlorobenzene 19.0 0.50 20 94.8 70-130 1.93 30 ug/L 22.9 0.50 Chloroethane ug/L 20 115 70-130 0.0436 30 Chloroform 21.5 0.50 ug/L 20 107 70-130 5.22 30 20.4 0.50 102 Chloromethane ug/L 20 70-130 4.78 30 21.1 0.50 2-Chlorotoluene ug/L 20 106 70-130 2.38 30

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Poporting	Spike Source	% DEC	RPD	
	Reporting	Spike Source	%REC	KFD	
Analyte	Result Limit Units	Level Result %F	REC Limits RPD) limit N	lotes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Matrix Spike Dup (B6J1323-MSD1) Continued	S	ource: 6	J06026-02	Prepare	ed & Analy	zed: 1	0/13/16	
4-Chlorotoluene	21.0	0.50	ug/L	20		105	70-130 2.26	30
1,2-Dibromo-3-chloropropane	24.9	1.0	ug/L	20		124	70-130 6.35	30
Dibromochloromethane	20.6	0.50	ug/L	20		103	70-130 3.10	30
1,2-Dibromoethane (EDB)	19.6	0.50	ug/L	20		97.8	70-130 3.01	30
Dibromomethane	21.6	0.50	ug/L	20		108	70-130 2.60	30
1,3-Dichlorobenzene	19.8	0.50	ug/L	20		99.1	70-130 3.23	30
1,2-Dichlorobenzene	21.4	0.50	ug/L	20		107	70-130 1.30	30
1,4-Dichlorobenzene	19.8	0.50	ug/L	20		99.0	70-130 1.20	30
Dichlorodifluoromethane (R12)	18.8	0.50	ug/L	20		94.2	70-130 0.159	30
1,1-Dichloroethane	21.6	0.50	ug/L	20		108	70-130 4.70	30
1,2-Dichloroethane (EDC)	23.0	0.50	ug/L	20		115	70-130 3.04	30
1,1-Dichloroethylene	23.9	0.50	ug/L	20		120	70-130 2.50	30
trans-1,2-Dichloroethylene	19.0	0.50	ug/L	20		95.2	70-130 0.00	30
cis-1,2-Dichloroethylene	18.7	0.50	ug/L	20		93.6	70-130 4.39	30
1,2-Dichloropropane	21.3	0.50	ug/L	20		106	70-130 6.55	30
2,2-Dichloropropane	23.3	0.50	ug/L	20		116	70-130 5.43	30
1,3-Dichloropropane	19.4	0.50	ug/L	20		97.1	70-130 5.56	30
cis-1,3-Dichloropropylene	19.2	0.50	ug/L	20		96.2	70-130 2.36	30
trans-1,3-Dichloropropylene	20.6	0.50	ug/L	20		103	70-130 2.45	30
1,1-Dichloropropylene	20.6	0.50	ug/L	20		103	70-130 1.37	30
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20		110	70-130 0.318	30
Ethylbenzene	20.0	0.50	ug/L	20		99.8	70-130 1.62	30
Ethyl-tert-Butyl Ether (ETBE)	21.1	2.0	ug/L	20		105	70-130 0.237	30
Gasoline Range Organics (GRO)	446	100	ug/L	500		89.2	70-130 11.2	30
Hexachlorobutadiene	18.7	1.0	ug/L	20		93.6	70-130 0.0535	5 30
2-Hexanone (MBK)	61.4	10	ug/L	50		123	70-130 1.96	30
Isopropylbenzene	21.0	0.50	ug/L	20		105	70-130 0.143	30
4-Isopropyltoluene	21.2	1.0	ug/L	20		106	70-130 2.46	30
Methyl-tert-Butyl Ether (MTBE)	42.6	1.0	ug/L	40	0.810	105	70-130 0.0235	30
Methylene Chloride	22.9	5.0	ug/L	20		114	70-130 7.44	30
4-Methyl-2-pentanone (MIBK)	53.8	10	ug/L	50		108	70-130 0.205	30

Client: The Source Group, Inc. (SH)

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/20/16 **RPD**

AA Project No: A5331951

Date Received: 10/06/16

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Q	uality Contr	ol						
Batch B6J1323 - EPA 5030B									
Matrix Spike Dup (B6J1323-MSD1 Continued)	Source: 6J0	6026-02	Prepare	ed & Analyzed: 1	0/13/16			
Naphthalene	26.0	2.0	ug/L	20	130	70-130	5.90	30	
n-Propylbenzene	21.1	0.50	ug/L	20	106	70-130		30	
Styrene	18.2	0.50	ug/L	20	91.1	70-130	2.55	30	
1,1,1,2-Tetrachloroethane	18.0	0.50	ug/L	20	90.2	70-130	0.111	30	
1,1,2,2-Tetrachloroethane	21.4	0.50	ug/L	20	107	70-130	0.796	30	
Tetrachloroethylene (PCE)	17.2	0.50	ug/L	20	86.2	70-130	5.72	30	
Toluene	19.2	0.50	ug/L	20	96.0	70-130	0.00	30	
1,2,3-Trichlorobenzene	19.5	0.50	ug/L	20	97.7	70-130	2.23	30	
1,2,4-Trichlorobenzene	19.0	0.50	ug/L	20	95.0	70-130	1.31	30	
1,1,1-Trichloroethane	21.8	0.50	ug/L	20	109	70-130	3.82	30	
1,1,2-Trichloroethane	19.8	0.50	ug/L	20	98.8	70-130	1.71	30	
Trichloroethylene (TCE)	19.5	0.50	ug/L	20	97.5	70-130	4.07	30	
Trichlorofluoromethane (R11)	23.8	0.50	ug/L	20	119	70-130	4.44	30	
1,2,3-Trichloropropane	18.7	0.50	ug/L	20	93.4	70-130	15.8	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	22.8	0.50	ug/L	20	114	70-130	3.62	30	
1,3,5-Trimethylbenzene	21.0	0.50	ug/L	20	105	70-130	2.39	30	
1,2,4-Trimethylbenzene	21.7	0.50	ug/L	20	108	70-130	3.18	30	
Vinyl chloride	23.5	0.50	ug/L	20	118	70-130	0.726	30	
o-Xylene	19.2	0.50	ug/L	20	95.8	70-130	2.47	30	
m,p-Xylenes	37.6	1.0	ug/L	40	93.9	70-130	2.00	30	
Surrogate: 4-Bromofluorobenzene	54.0		ug/L	50	108	70-140			
Surrogate: Dibromofluoromethane	4 9.9		ug/L	50	99.8	70-140			
Surrogate: Toluene-d8	49.4		ug/L	50	98.8	70-140			
Batch B6J1723 - EPA 5030B									
Blank (B6J1723-BLK1)				Prepare	ed & Analyzed: 1	0/17/16			
Acetone	<10		ug/L						
tert-Amyl Methyl Ether (TAME)	<2.0		ug/L						
Benzene	< 0.50	0.50	ug/L						
Bromobenzene	< 0.50	0.50	ug/L						

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

	Reporting		Spike Source	%REC		RPD	
Analyte	Result Limit	Units	Level Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B				
Blank (B6J1723-BLK1) Continu			Prepared & Analyzed: 10/17/16	
Bromochloromethane	< 0.50	0.50	ug/L	
Bromodichloromethane	<0.50	0.50	ug/L	
Bromoform	<0.50	0.50	ug/L	
Bromomethane	<0.50	0.50	ug/L	
2-Butanone (MEK)	<10	10	ug/L	
tert-Butyl alcohol (TBA)	<10	10	ug/L	
sec-Butylbenzene	<0.50	0.50	ug/L	
tert-Butylbenzene	<0.50	0.50	ug/L	
n-Butylbenzene	<0.50	0.50	ug/L	
Carbon Disulfide	< 0.50	0.50	ug/L	
Carbon Tetrachloride	< 0.50	0.50	ug/L	
Chlorobenzene	<0.50	0.50	ug/L	
Chloroethane	<0.50	0.50	ug/L	
Chloroform	<0.50	0.50	ug/L	
Chloromethane	<0.50	0.50	ug/L	
2-Chlorotoluene	<0.50	0.50	ug/L	
4-Chlorotoluene	<0.50	0.50	ug/L	
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L	
Dibromochloromethane	<0.50	0.50	ug/L	
1,2-Dibromoethane (EDB)	<0.50	0.50	ug/L	
Dibromomethane	<0.50	0.50	ug/L	
1,3-Dichlorobenzene	<0.50	0.50	ug/L	
1,2-Dichlorobenzene	<0.50	0.50	ug/L	
1,4-Dichlorobenzene	<0.50	0.50	ug/L	
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L	
1,1-Dichloroethane	< 0.50	0.50	ug/L	
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L	
1,1-Dichloroethylene	< 0.50	0.50	ug/L	
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
1,2-Dichloropropane	< 0.50	0.50	ug/L	

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Qu	ality Contro	ol							
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continued	1			Prepare	ed & Anal	lyzed: 10	0/17/16			
2,2-Dichloropropane	<0.50	0.50	ug/L	<u> </u>		-				
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Gasoline Range Organics (GRO)	<100	100	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951

Date Received: 10/06/16

Date Reported: 10/20/16

1,2,4-Trimethylbenzene Vinyl chloride	<0.50 <0.50 <0.50 <0.50	0.50 0.50 0.50 0.50	ug/L	Prepare	ed & Analyzed: 1	0/17/16		
Blank (B6J1723-BLK1) Continued 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Vinyl chloride	<0.50 <0.50 <0.50	0.50	_	Prepare	ed & Analyzed: 1	0/17/16		
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Vinyl chloride	<0.50 <0.50 <0.50	0.50	_	Prepare	d & Analyzed: 1	0/17/16		
1,2,4-Trimethylbenzene Vinyl chloride	<0.50 <0.50 <0.50	0.50	_					
Vinyl chloride	<0.50 <0.50		- /-					
•	<0.50	0.50	ug/L					
o-Xvlene		0.50	ug/L					
C 7 1, 10 1 1 C		0.50	ug/L					
m,p-Xylenes	<1.0	1.0	ug/L					
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50	111	70-140		
Surrogate: Dibromofluoromethane	62.7		ug/L	50	125	70-140		
Surrogate: Toluene-d8	49.7		ug/L	50	99.5	70-140		
LCS (B6J1723-BS1)			Ü	Prepare	ed: 10/17/16 Ana	alyzed: 10)/18/16	
Acetone	47.9	10	ug/L	50	95.8	70-130		-
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20	88.4	70-130		
Benzene	22.7	0.50	ug/L	20	113	75-125		
Bromobenzene	19.0	0.50	ug/L	20	94.9	70-130		
Bromochloromethane	21.5	0.50	ug/L	20	108	70-130		
Bromodichloromethane	23.3	0.50	ug/L	20	117	75-125		
Bromoform	16.3	0.50	ug/L	20	81.3	75-125		
Bromomethane	16.5	0.50	ug/L	20	82.6	75-125		
2-Butanone (MEK)	46.0	10	ug/L	50	92.0	70-130		
tert-Butyl alcohol (TBA)	105	10	ug/L	100	105	70-130		
sec-Butylbenzene	21.5	0.50	ug/L	20	108	70-130		
tert-Butylbenzene	22.8	0.50	ug/L	20	114	70-130		
n-Butylbenzene	22.3	0.50	ug/L	20	111	70-130		
Carbon Disulfide	41.5	0.50	ug/L	50	83.1	70-130		
Carbon Tetrachloride	24.2	0.50	ug/L	20	121	75-125		
Chlorobenzene	20.3	0.50	ug/L	20	102	75-125		
Chloroethane	22.5	0.50	ug/L	20	113	75-125		
Chloroform	23.5	0.50	ug/L	20	118	75-125		
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125		
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130		
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130		
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130		

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Poperting	Spika Sauraa	0/ DEC	RPD
	Reporting	Spike Source	%REC	KPD
Analyte	Result Limit Units	Level Result %F	REC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Batch B6J1723 - EPA 5030B							
LCS (B6J1723-BS1) Continued				Prepare	d: 10/17/16 Ana	alyzed: 10/	18/16
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125	
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130	
Dibromomethane	21.8	0.50	ug/L	20	109	70-130	
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130	
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125	
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130	
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125	
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125	
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125	
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125	
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130	
2,2-Dichloropropane	24.3	0.50	ug/L	20	122	70-130	
1,3-Dichloropropane	18.6	0.50	ug/L	20	92.8	70-130	
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.9	75-125	
trans-1,3-Dichloropropylene	18.3	0.50	ug/L	20	91.4	70-130	
1,1-Dichloropropylene	23.0	0.50	ug/L	20	115	70-130	
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130	
Ethylbenzene	21.6	0.50	ug/L	20	108	75-125	
Ethyl-tert-Butyl Ether (ETBE)	20.0	2.0	ug/L	20	100	70-130	
Gasoline Range Organics (GRO)	486	100	ug/L	500	97.3	70-130	
Hexachlorobutadiene	18.9	1.0	ug/L	20	94.4	70-130	
2-Hexanone (MBK)	45.3	10	ug/L	50	90.7	70-130	
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130	
4-Isopropyltoluene	22.8	1.0	ug/L	20	114	70-130	
Methyl-tert-Butyl Ether (MTBE)	37.6	1.0	ug/L	40	94.0	75-125	
Methylene Chloride	24.9	5.0	ug/L	20	124	75-130	
4-Methyl-2-pentanone (MIBK)	43.7	10	ug/L	50	87.5	70-130	
Naphthalene	19.8	2.0	ug/L	20	99.2	70-130	
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B LCS (B6J1723-BS1) Continued Prepared: 10/17/16 Analyzed: 10/18/16 Styrene 19.4 0.50 20 96.8 70-130 ug/L 19.4 0.50 20 97.1 1,1,1,2-Tetrachloroethane ug/L 70-130 1,1,2,2-Tetrachloroethane 18.4 0.50 ug/L 20 92.2 70-135 18.7 0.50 93.6 Tetrachloroethylene (PCE) ug/L 20 75-125 Toluene 21.2 0.50 ug/L 20 106 75-125 18.3 91.7 0.50 1.2.3-Trichlorobenzene ug/L 20 70-130 18.4 0.50 91.8 1,2,4-Trichlorobenzene ug/L 20 70-130 1.1.1-Trichloroethane 24.4 0.50 20 122 75-125 ug/L 98.7 1,1,2-Trichloroethane 19.7 0.50 20 75-125 ug/L 22.0 0.50 110 Trichloroethylene (TCE) ug/L 20 75-125 24.8 124 Trichlorofluoromethane (R11) 0.50 ug/L 20 70-130 17.3 1,2,3-Trichloropropane 0.50 86.6 ug/L 20 70-130 1,1,2-Trichloro-1,2,2-trifluoroethane 24.2 0.50 ug/L 20 121 70-130 (R113) 22.1 0.50 111 1,3,5-Trimethylbenzene ug/L 20 70-130 1,2,4-Trimethylbenzene 22.8 0.50 ug/L 20 114 70-130 23.0 0.50 115 Vinyl chloride ug/L 20 75-125 21.1 0.50 105 75-125 o-Xylene ug/L 20 41.0 1.0 40 103 70-130 m,p-Xylenes ug/L 54.5 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 Surrogate: Dibromofluoromethane 54.0 50 108 70-140 ug/L 53.8 Surrogate: Toluene-d8 50 108 70-140 ug/L Source: 6J10010-02 Prepared & Analyzed: 10/17/16 Matrix Spike (B6J1723-MS1) Acetone 55.7 10 ug/L 50 111 70-130 19.0 2.0 94.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 21.2 0.50 106 20 70-130 Benzene ug/L 19.4 0.50 20 97.2 70-130 Bromobenzene ug/L 21.7 108 Bromochloromethane 0.50 ug/L 20 70-130 Bromodichloromethane 22.9 0.50 ug/L 20 114 70-130

Viorel Vasile Operations Manager

Bromoform

Bromomethane

ug/L

ug/L

20

20

90.2

84.7

70-130

70-130

18.0

16.9

0.50

0.50

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Matrix Spike (B6J1723-MS1) Cor	tinued S	ource: 6	J10010-02 F	Prepare	d & Analyzed: 1	0/17/16	
2-Butanone (MEK)	51.9	10	ug/L	50	104	70-130	
tert-Butyl alcohol (TBA)	100	10	ug/L	100	100	70-130	
sec-Butylbenzene	20.6	0.50	ug/L	20	103	70-130	
tert-Butylbenzene	22.0	0.50	ug/L	20	110	70-130	
n-Butylbenzene	22.0	0.50	ug/L	20	110	70-130	
Carbon Disulfide	45.0	0.50	ug/L	50	90.0	70-130	
Carbon Tetrachloride	22.6	0.50	ug/L	20	113	70-130	
Chlorobenzene	19.6	0.50	ug/L	20	98.1	70-130	
Chloroethane	19.2	0.50	ug/L	20	96.1	70-130	
Chloroform	22.7	0.50	ug/L	20	114	70-130	
Chloromethane	19.9	0.50	ug/L	20	99.4	70-130	
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130	
4-Chlorotoluene	21.7	0.50	ug/L	20	109	70-130	
1,2-Dibromo-3-chloropropane	24.1	1.0	ug/L	20	121	70-130	
Dibromochloromethane	20.9	0.50	ug/L	20	104	70-130	
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	96.8	70-130	
Dibromomethane	22.3	0.50	ug/L	20	111	70-130	
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130	
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	108	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130	
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130	
1,1-Dichloroethane	22.9	0.50	ug/L	20	114	70-130	
1,2-Dichloroethane (EDC)	23.8	0.50	ug/L	20	119	70-130	
1,1-Dichloroethylene	23.1	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.9	0.50	ug/L	20	99.7	70-130	
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	101	70-130	
1,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130	
2,2-Dichloropropane	24.2	0.50	ug/L	20	121	70-130	
1,3-Dichloropropane	18.9	0.50	ug/L	20	94.6	70-130	
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	99.0	70-130	
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	99.5	70-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Batch B6J1723 - EPA 5030B							
Matrix Spike (B6J1723-MS1) Conti	nued S	ource: 6	6J10010-02	Prepare	ed & Analyzed: 1	10/17/16	
1,1-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130	
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130	
Ethylbenzene	20.0	0.50	ug/L	20	100	70-130	
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130	
Gasoline Range Organics (GRO)	401	100	ug/L	500	80.2	70-130	
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.7	70-130	
2-Hexanone (MBK)	58.8	10	ug/L	50	118	70-130	
Isopropylbenzene	21.5	0.50	ug/L	20	108	70-130	
4-Isopropyltoluene	22.2	1.0	ug/L	20	111	70-130	
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	103	70-130	
Methylene Chloride	26.1	5.0	ug/L	20	11.7 72.2	70-130	
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	103	70-130	
Naphthalene	24.7	2.0	ug/L	20	123	70-130	
n-Propylbenzene	21.5	0.50	ug/L	20	108	70-130	
Styrene	18.7	0.50	ug/L	20	93.5	70-130	
1,1,1,2-Tetrachloroethane	18.3	0.50	ug/L	20	91.7	70-130	
1,1,2,2-Tetrachloroethane	21.1	0.50	ug/L	20	106	70-130	
Tetrachloroethylene (PCE)	17.1	0.50	ug/L	20	85.7	70-130	
Toluene	19.2	0.50	ug/L	20	95.8	70-130	
1,2,3-Trichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130	
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	95.6	70-130	
1,1,1-Trichloroethane	22.3	0.50	ug/L	20	112	70-130	
1,1,2-Trichloroethane	19.5	0.50	ug/L	20	97.6	70-130	
Trichloroethylene (TCE)	20.1	0.50	ug/L	20	100	70-130	
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	118	70-130	
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	104	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane	24.0	0.50	ug/L	20	120	70-130	
(R113)							
1,3,5-Trimethylbenzene	21.7	0.50	ug/L	20	109	70-130	
1,2,4-Trimethylbenzene	22.3	0.50	ug/L	20	112	70-130	
Vinyl chloride	22.7	0.50	ug/L	20	113	70-130	
o-Xylene	20.0	0.50	ug/L	20	99.8	70-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting		Spike	Source	%REC		RPD	
Analyte	Result Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

m,p-Xylenes	38.7	1.0	ug/L	40	96.8	70-130		
Surrogate: 4-Bromofluorobenzene	54.6		ug/L	50	109	70-140		
Surrogate: Dibromofluoromethane	53.1		ug/L	50	106	70-140		
Surrogate: Toluene-d8	49.0		ug/L	50	98.0	70-140		
Matrix Spike Dup (B6J1723-MSD1)	S	ource: 6	J10010-02	Prepared	l & Analyzed: 1	0/17/16		
Acetone	57.3	10	ug/L	50	115	70-130	2.76	30
tert-Amyl Methyl Ether (TAME)	19.4	2.0	ug/L	20	96.8	70-130	2.14	30
Benzene	22.3	0.50	ug/L	20	111	70-130	4.73	30
Bromobenzene	20.2	0.50	ug/L	20	101	70-130	3.93	30
Bromochloromethane	21.4	0.50	ug/L	20	107	70-130	1.58	30
Bromodichloromethane	23.6	0.50	ug/L	20	118	70-130	3.23	30
Bromoform	17.6	0.50	ug/L	20	87.8	70-130	2.70	30
Bromomethane	17.3	0.50	ug/L	20	86.4	70-130	2.04	30
2-Butanone (MEK)	58.3	10	ug/L	50	117	70-130	11.5	30
tert-Butyl alcohol (TBA)	109	10	ug/L	100	109	70-130	8.17	30
sec-Butylbenzene	21.2	0.50	ug/L	20	106	70-130	2.91	30
tert-Butylbenzene	22.5	0.50	ug/L	20	113	70-130	2.65	30
n-Butylbenzene	22.1	0.50	ug/L	20	110	70-130	0.227	30
Carbon Disulfide	40.0	0.50	ug/L	50	0.08	70-130	11.7	30
Carbon Tetrachloride	23.2	0.50	ug/L	20	116	70-130	2.93	30
Chlorobenzene	19.7	0.50	ug/L	20	98.6	70-130	0.508	30
Chloroethane	20.6	0.50	ug/L	20	103	70-130	6.93	30
Chloroform	23.2	0.50	ug/L	20	116	70-130	1.92	30
Chloromethane	21.3	0.50	ug/L	20	106	70-130	6.85	30
2-Chlorotoluene	22.9	0.50	ug/L	20	115	70-130	5.88	30
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	1.64	30
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119	70-130	1.08	30
Dibromochloromethane	21.5	0.50	ug/L	20	108	70-130	2.97	30
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101	70-130	4.35	30
Dibromomethane	23.7	0.50	ug/L	20	119	70-130	6.31	30
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104	70-130	3.27	30

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331951

Date Received: 10/06/16

Project Name: DFSP Norwalk GW Sampling Date R

Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Qu	ality Contro	ol							
Batch B6J1723 - EPA 5030B										
Matrix Spike Dup (B6J1723-MSD1	I) S	Source: 6J1	0010-02	Prepare	ed & Analy	/zed: 10	0/17/16			
Continued	-			•	•					
1,2-Dichlorobenzene	22.4	0.50	ug/L	20		112	70-130	3.92	30	
1,4-Dichlorobenzene	20.6	0.50	ug/L	20		103	70-130	3.36	30	
Dichlorodifluoromethane (R12)	19.0	0.50	ug/L	20		95.2	70-130	2.71	30	
1,1-Dichloroethane	23.3	0.50	ug/L	20		116	70-130	1.78	30	
1,2-Dichloroethane (EDC)	24.2	0.50	ug/L	20		121	70-130	1.67	30	
1,1-Dichloroethylene	23.8	0.50	ug/L	20		119	70-130	3.11	30	
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20		102	70-130	1.79	30	
cis-1,2-Dichloroethylene	20.4	0.50	ug/L	20		102	70-130	1.03	30	
1,2-Dichloropropane	23.8	0.50	ug/L	20		119	70-130	7.49	30	
2,2-Dichloropropane	23.9	0.50	ug/L	20		120	70-130	1.25	30	
1,3-Dichloropropane	19.3	0.50	ug/L	20		96.6	70-130	1.99	30	
cis-1,3-Dichloropropylene	20.3	0.50	ug/L	20		102	70-130	2.69	30	
trans-1,3-Dichloropropylene	20.3	0.50	ug/L	20		101	70-130	1.79	30	
1,1-Dichloropropylene	21.9	0.50	ug/L	20		110	70-130	7.48	30	
Diisopropyl ether (DIPE)	23.4	2.0	ug/L	20		117	70-130	5.00	30	
Ethylbenzene	20.4	0.50	ug/L	20		102	70-130	1.73	30	
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20		108	70-130	3.91	30	
Gasoline Range Organics (GRO)	446	100	ug/L	500		89.2	70-130	10.6	30	
Hexachlorobutadiene	19.8	1.0	ug/L	20		99.0	70-130	5.50	30	
2-Hexanone (MBK)	56.2	10	ug/L	50		112	70-130	4.54	30	
Isopropylbenzene	22.2	0.50	ug/L	20		111	70-130	3.06	30	
4-Isopropyltoluene	22.3	1.0	ug/L	20		112	70-130	0.539	30	
Methyl-tert-Butyl Ether (MTBE)	43.6	1.0	ug/L	40		109	70-130	5.59	30	
Methylene Chloride	27.2	5.0	ug/L	20	11.7	77.7	70-130	4.12	30	
4-Methyl-2-pentanone (MIBK)	53.0	10	ug/L	50		106	70-130	3.04	30	
Naphthalene	25.7	2.0	ug/L	20		129	70-130	4.05	30	
n-Propylbenzene	22.2	0.50	ug/L	20		111	70-130	3.02	30	
Styrene	18.8	0.50	ug/L	20		94.2	70-130		30	
1,1,1,2-Tetrachloroethane	18.5	0.50	ug/L	20		92.5	70-130		30	
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20		106	70-130		30	
T (11 (DOT)			J				_			

Tetrachloroethylene (PCE)

Viorel Vasile Operations Manager ug/L

20

91.3 70-130 6.33

30

18.3

0.50

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331951

Date Received: 10/06/16

Project Name: DFSP Norwalk GW Sampling

	Reporting		Spike	Source	%REC		RPD	
Analyte	Result Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Matrix Spike Dup (B6J1723-MSD1) Continued	S	ource: 6	J10010-02 F	Prepare	red & Analyzed: 10/17/16
Toluene	20.1	0.50	ug/L	20	100 70-130 4.79 30
1,2,3-Trichlorobenzene	20.8	0.50	ug/L	20	104 70-130 4.23 30
1,2,4-Trichlorobenzene	20.0	0.50	ug/L	20	100 70-130 4.70 30
1,1,1-Trichloroethane	23.8	0.50	ug/L	20	119 70-130 6.33 30
1,1,2-Trichloroethane	20.7	0.50	ug/L	20	103 70-130 5.67 30
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104 70-130 3.33 30
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	123 70-130 3.89 30
1,2,3-Trichloropropane	19.9	0.50	ug/L	20	99.6 70-130 4.56 30
1,1,2-Trichloro-1,2,2-trifluoroethane	23.7	0.50	ug/L	20	119 70-130 1.34 30
(R113)					
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	109 70-130 0.413 30
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	114 70-130 1.77 30
Vinyl chloride	23.7	0.50	ug/L	20	119 70-130 4.48 30
o-Xylene	20.3	0.50	ug/L	20	101 70-130 1.54 30
m,p-Xylenes	38.6	1.0	ug/L	40	96.5 70-130 0.284 30
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50	111 70-140
Surrogate: Dibromofluoromethane	52.8		ug/L	50	106 70-140
Surrogate: Toluene-d8	48.8		ug/L	50	97.6 70-140

VOCs & OXYGENATES by GC/MS - Quality Control

< 0.50

<10

0.50

10

Batch B6J1323 - EPA 5030B Blank (B6J1323-BLK1)

Blank (B6J1323-BLK1)			Prepared & Analyzed: 10/13/16
Acetone	<10	10	ug/L
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L
Benzene	< 0.50	0.50	ug/L
Bromobenzene	< 0.50	0.50	ug/L
Bromochloromethane	< 0.50	0.50	ug/L
Bromodichloromethane	< 0.50	0.50	ug/L
Bromoform	< 0.50	0.50	ug/L

ug/L

ug/L

A

Viorel Vasile Operations Manager

Bromomethane 2-Butanone (MEK)

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	G - Quality	Control				_				
Batch B6J1323 - EPA 5030B										
Blank (B6J1323-BLK1) Continue	ed			Prepare	ed & Ana	lyzed: 10	0/13/16			
tert-Butyl alcohol (TBA)	<10	10	ug/L	•						
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
1,2-Dichloropropane	< 0.50	0.50	ug/L							
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	Control								
Batch B6J1323 - EPA 5030B	_									
Blank (B6J1323-BLK1) Continued	d			Prepare	ed & Ana	lyzed: 1	0/13/16			
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L	-						
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	< 5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane		0.50	ug/L							
(R113)			3							
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Level Result %REC Limits Units **RPD** Limit Notes Analyte Result Limit **VOCs & OXYGENATES by GC/MS - Quality Control** Batch B6J1323 - EPA 5030B Prepared & Analyzed: 10/13/16 Blank (B6J1323-BLK1) Continued Surrogate: 4-Bromofluorobenzene 55.4 50 111 70-140 ug/L 62.6 50 Surrogate: Dibromofluoromethane ug/L 125 70-140 Surrogate: Toluene-d8 49.3 ug/L 50 98.5 70-140 LCS (B6J1323-BS1) Prepared: 10/13/16 Analyzed: 10/14/16 50.8 10 102 Acetone ug/L 50 70-130 17.9 2.0 20 89.6 70-130 tert-Amyl Methyl Ether (TAME) ug/L 23.3 0.50 20 116 75-125 Benzene ug/L 19.6 98.2 Bromobenzene 0.50 ug/L 20 70-130 Bromochloromethane 21.8 0.50 ug/L 20 109 70-130 118 Bromodichloromethane 23.7 0.50 ug/L 20 75-125 Bromoform 16.1 0.50 ug/L 20 80.3 75-125 17.9 0.50 20 89.6 Bromomethane ug/L 75-125 50.8 10 102 2-Butanone (MEK) 50 70-130 ug/L tert-Butyl alcohol (TBA) 108 10 ug/L 100 108 70-130 sec-Butylbenzene 21.9 0.50 110 ug/L 20 70-130 22.5 ug/L 112 tert-Butylbenzene 0.50 20 70-130 22.7 113 n-Butylbenzene 0.50 ug/L 20 70-130 Carbon Disulfide 39.5 0.50 78.9 ug/L 50 70-130 Carbon Tetrachloride 25.0 0.50 ua/L 20 125 75-125 102 Chlorobenzene 20.5 0.50 ug/L 20 75-125 20.5 0.50 102 Chloroethane ug/L 20 75-125 24.0 ug/L 120 Chloroform 0.50 20 75-125 20.6 103 0.50 Chloromethane ua/L 20 65-125 2-Chlorotoluene 22.6 0.50 ug/L 20 113 70-130 22.6 0.50 20 113 4-Chlorotoluene ug/L 70-130 21.5 1.0 108 1,2-Dibromo-3-chloropropane ug/L 20 70-130 Dibromochloromethane 20.9 0.50 ug/L 20 104 75-125 18.2 91.0 1,2-Dibromoethane (EDB) 0.50 ug/L 20 70-130 22.1 0.50 20 110 Dibromomethane ua/L 70-130 1,3-Dichlorobenzene 21.0 0.50 ug/L 20 105 70-130 21.6 0.50 20 108 1,2-Dichlorobenzene ug/L 70-130

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting		Spike Source	%REC	RPD	
Analyte	Result Limit	Units	Level Result %REC	Limits	RPD Limit	Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Batch B6J1323 - EPA 5030B								
LCS (B6J1323-BS1) Continued				Prepare	ed: 10/13/16 An	alyzed: 10)/14/16	
1,4-Dichlorobenzene	20.3	0.50	ug/L	20	102	75-125		
Dichlorodifluoromethane (R12)	20.8	0.50	ug/L	20	104	70-130		
1,1-Dichloroethane	21.8	0.50	ug/L	20	109	70-125		
1,2-Dichloroethane (EDC)	24.3	0.50	ug/L	20	122	75-125		
1,1-Dichloroethylene	21.6	0.50	ug/L	20	108	70-130		
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102	75-125		
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125		
1,2-Dichloropropane	24.0	0.50	ug/L	20	120	75-130		
2,2-Dichloropropane	23.8	0.50	ug/L	20	119	70-130		
1,3-Dichloropropane	18.7	0.50	ug/L	20	93.6	70-130		
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	98.9	75-125		
trans-1,3-Dichloropropylene	19.1	0.50	ug/L	20	95.4	70-130		
1,1-Dichloropropylene	22.4	0.50	ug/L	20	112	70-130		
Diisopropyl ether (DIPE)	23.0	2.0	ug/L	20	115	70-130		
Ethylbenzene	21.5	0.50	ug/L	20	108	75-125		
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130		
Hexachlorobutadiene	18.8	1.0	ug/L	20	94.2	70-130		
2-Hexanone (MBK)	47.7	10	ug/L	50	95.4	70-130		
Isopropylbenzene	22.3	0.50	ug/L	20	112	70-130		
4-Isopropyltoluene	23.1	1.0	ug/L	20	115	70-130		
Methyl-tert-Butyl Ether (MTBE)	39.2	1.0	ug/L	40	97.9	75-125		
Methylene Chloride	28.5	5.0	ug/L	20	142	75-130		**
4-Methyl-2-pentanone (MIBK)	44.0	10	ug/L	50	88.0	70-130		
Naphthalene	20.8	2.0	ug/L	20	104	70-130		
n-Propylbenzene	22.6	0.50	ug/L	20	113	70-130		
Styrene	19.2	0.50	ug/L	20	96.0	70-130		
1,1,1,2-Tetrachloroethane	19.0	0.50	ug/L	20	94.8	70-130		
1,1,2,2-Tetrachloroethane	18.9	0.50	ug/L	20	94.4	70-135		
Tetrachloroethylene (PCE)	18.4	0.50	ug/L	20	91.8	75-125		
Toluene	20.7	0.50	ug/L	20	104	75-125		
1,2,3-Trichlorobenzene	18.8	0.50	ug/L	20	93.8	70-130		
1,2,0-1110110100001120110	10.0	0.50	ug/L	20	33.0	10-130		

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte	Result	Limit	Units		Result	%RFC	Limits	RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS -			00		AUGUIL	, 51.12		•		110103
Batch B6J1323 - EPA 5030B	Quality	Control								
				Droporo	ed: 10/13/	16 And	alvzod: 10	7/1/1/16		
LCS (B6J1323-BS1) Continued	19.1	0.50	/1		a. 10/13/	95.6		J/ 1 4 / 10		
1,2,4-Trichlorobenzene			ug/L	20			70-130			
1,1,1-Trichloroethane	24.0	0.50	ug/L	20		120	75-125			
1,1,2-Trichloroethane	19.5	0.50	ug/L	20		97.5	75-125			
Trichloroethylene (TCE)	22.5	0.50	ug/L	20		113	75-125			
Trichlorofluoromethane (R11)	25.2	0.50	ug/L	20		126	70-130			
1,2,3-Trichloropropane	17.7	0.50	ug/L	20		88.5	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.9	0.50	ug/L	20		120	70-130			
1,3,5-Trimethylbenzene	22.3	0.50	ug/L	20		112	70-130			
1,2,4-Trimethylbenzene	23.1	0.50	ug/L	20		116	70-130			
Vinyl chloride	22.8	0.50	ug/L	20		114	75-125			
o-Xylene	20.7	0.50	ug/L	20		104	75-125			
m,p-Xylenes	40.8	1.0	ug/L	40		102	70-130			
Surrogate: 4-Bromofluorobenzene	55.3		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	<i>54.7</i>		ug/L	50		109	70-140			
Surrogate: Toluene-d8	52.3		ug/L	50		105	70-140			
Matrix Spike (B6J1323-MS1)	S	Source: 6J0	06026-02	Prepare	ed & Analy	/zed: 1	0/13/16			
Acetone	60.5	10	ug/L	50	<10	121	70-130			
tert-Amyl Methyl Ether (TAME)	18.9	2.0	ug/L	20	<2.0	94.6	70-130			
Benzene	20.9	0.50	ug/L	20	< 0.50	104	70-130			
Bromobenzene	19.4	0.50	ug/L	20	< 0.50	97.1	70-130			
Bromochloromethane	19.0	0.50	ug/L	20	< 0.50	95.2	70-130			
Bromodichloromethane	22.9	0.50	ug/L	20	< 0.50	114	70-130			
Bromoform	17.0	0.50	ug/L	20	< 0.50	85.0	70-130			
Bromomethane	19.5	0.50	ug/L	20	< 0.50	97.6	70-130			
2-Butanone (MEK)	61.1	10	ug/L	50	<10	122	70-130			
tert-Butyl alcohol (TBA)	118	10	ug/L	100	<10	118	70-130			
sec-Butylbenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130			
tert-Butylbenzene	21.3	0.50	ug/L	20	< 0.50	107	70-130			
n-Butylbenzene	21.6	0.50	ug/L	20	< 0.50	108	70-130			
Carbon Disulfide	38.4	0.50	ug/L	50	<0.50	76.7	70-130			

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Carbon Tetrachloride	22.1	0.50	ug/L	20	<0.50	110	70-130	
Chlorobenzene	19.3	0.50	ug/L	20	< 0.50	96.7	70-130	
Chloroethane	22.9	0.50	ug/L	20	< 0.50	115	70-130	
Chloroform	22.6	0.50	ug/L	20	< 0.50	113	70-130	
Chloromethane	19.4	0.50	ug/L	20	< 0.50	97.0	70-130	
2-Chlorotoluene	21.6	0.50	ug/L	20	< 0.50	108	70-130	
1-Chlorotoluene	21.5	0.50	ug/L	20	< 0.50	107	70-130	
1,2-Dibromo-3-chloropropane	26.5	1.0	ug/L	20	<1.0	132	70-130	
Dibromochloromethane	21.3	0.50	ug/L	20	< 0.50	106	70-130	
,2-Dibromoethane (EDB)	19.0	0.50	ug/L	20	< 0.50	94.9	70-130	
Dibromomethane	22.2	0.50	ug/L	20	< 0.50	111	70-130	
,3-Dichlorobenzene	20.5	0.50	ug/L	20	< 0.50	102	70-130	
,2-Dichlorobenzene	21.7	0.50	ug/L	20	< 0.50	109	70-130	
,4-Dichlorobenzene	20.0	0.50	ug/L	20	< 0.50	100	70-130	
Dichlorodifluoromethane (R12)	18.9	0.50	ug/L	20	< 0.50	94.4	70-130	
,1-Dichloroethane	22.7	0.50	ug/L	20	< 0.50	113	70-130	
,2-Dichloroethane (EDC)	23.7	0.50	ug/L	20	< 0.50	119	70-130	
,1-Dichloroethylene	23.4	0.50	ug/L	20	< 0.50	117	70-130	
rans-1,2-Dichloroethylene	19.0	0.50	ug/L	20	< 0.50	95.2	70-130	
cis-1,2-Dichloroethylene	19.6	0.50	ug/L	20	< 0.50	97.8	70-130	
,2-Dichloropropane	22.7	0.50	ug/L	20	< 0.50	114	70-130	
2,2-Dichloropropane	24.6	0.50	ug/L	20	< 0.50	123	70-130	
,3-Dichloropropane	18.4	0.50	ug/L	20	< 0.50	91.8	70-130	
cis-1,3-Dichloropropylene	19.7	0.50	ug/L	20	< 0.50	98.4	70-130	
rans-1,3-Dichloropropylene	20.2	0.50	ug/L	20	< 0.50	101	70-130	
,1-Dichloropropylene	20.4	0.50	ug/L	20	< 0.50	102	70-130	
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	<2.0	110	70-130	
Ethylbenzene	19.6	0.50	ug/L	20	< 0.50	98.2	70-130	
Ethyl-tert-Butyl Ether (ETBE)	21.1	2.0	ug/L	20	<2.0	106	70-130	
-lexachlorobutadiene	18.7	1.0	ug/L	20	<1.0	93.5	70-130	
2-Hexanone (MBK)	60.3	10	ug/L	50	<10	121	70-130	

The Source Group, Inc. (SH) Client:

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/20/16

AA Project No: A5331951

Date Received: 10/06/16

•							-			
Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -			J5			, 3 1.20				.10100
Batch B6J1323 - EPA 5030B	,									
Matrix Spike (B6J1323-MS1) Con	tinued S	Source: 6J0	6026-02	Prepare	ed & Anal	yzed: 10	0/13/16			
Isopropylbenzene	21.0	0.50	ug/L	20	<0.50		70-130			
4-Isopropyltoluene	21.8	1.0	ug/L	20	<1.0	109	70-130			
Methyl-tert-Butyl Ether (MTBE)	42.6	1.0	ug/L	40	0.810	105	70-130			
Methylene Chloride	24.7	5.0	ug/L	20	< 5.0	123	70-130			
4-Methyl-2-pentanone (MIBK)	53.7	10	ug/L	50	<10	107	70-130			
Naphthalene	24.5	2.0	ug/L	20	<2.0	122	70-130			
n-Propylbenzene	21.3	0.50	ug/L	20	< 0.50	106	70-130			
Styrene	18.7	0.50	ug/L	20	< 0.50	93.4	70-130			
1,1,1,2-Tetrachloroethane	18.1	0.50	ug/L	20	< 0.50	90.3	70-130			
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20	< 0.50	106	70-130			
Tetrachloroethylene (PCE)	16.3	0.50	ug/L	20	< 0.50	81.4	70-130			
Toluene	19.2	0.50	ug/L	20	< 0.50	96.0	70-130			
1,2,3-Trichlorobenzene	20.0	0.50	ug/L	20	< 0.50	99.9	70-130			
1,2,4-Trichlorobenzene	19.2	0.50	ug/L	20	< 0.50	96.2	70-130			
1,1,1-Trichloroethane	22.7	0.50	ug/L	20	< 0.50	113	70-130			
1,1,2-Trichloroethane	20.1	0.50	ug/L	20	<0.50	100	70-130			
Trichloroethylene (TCE)	20.3	0.50	ug/L	20	< 0.50	102	70-130			
Trichlorofluoromethane (R11)	24.9	0.50	ug/L	20	< 0.50		70-130			
1,2,3-Trichloropropane	21.9	0.50	ug/L	20	< 0.50		70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane	23.6	0.50	ug/L	20	< 0.50	118	70-130			

< 0.50 108

< 0.50 112

< 0.50 117

< 0.50 98.2

<1.0 95.8

<10 123

110

104

98.0

70-130

70-130

70-130

70-130

70-130

70-140

70-140

70-140

70-130

1.51

30

20

20

20

20

40

50

50

50

Source: 6J06026-02 Prepared & Analyzed: 10/13/16

50

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

0.50

0.50

0.50

0.50

1.0

10

21.6

22.4

23.3

19.6

38.3

54.9

51.8

49.0

61.4

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Matrix Spike Dup (B6J1323-MSD1)

Viorel Vasile Operations Manager

(R113)

Vinyl chloride

m,p-Xylenes

o-Xylene

Acetone

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

	Reporting	3	Spike Source	%REC		RPD	
Analyte	Result Limit	Units	Level Result %RE0	Limits	RPD	Limit	Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Matrix Spike Dup (B6J1323-MSD1)	Source: 6J06026-02 Prepared & Analyzed: 10/13/16							
Continued								
tert-Amyl Methyl Ether (TAME)	19.2	2.0	ug/L	20	<2.0	95.9	70-130 1.36	30
Benzene	20.9	0.50	ug/L	20	< 0.50	104	70-130 0.0479	30
Bromobenzene	18.8	0.50	ug/L	20	<0.50	94.0	70-130 3.30	30
Bromochloromethane	20.4	0.50	ug/L	20	<0.50	102	70-130 6.70	30
Bromodichloromethane	21.6	0.50	ug/L	20	< 0.50	108	70-130 5.75	30
Bromoform	18.0	0.50	ug/L	20	< 0.50	90.0	70-130 5.83	30
Bromomethane	18.2	0.50	ug/L	20	< 0.50	91.0	70-130 7.00	30
2-Butanone (MEK)	56.5	10	ug/L	50	<10	113	70-130 7.88	30
tert-Butyl alcohol (TBA)	117	10	ug/L	100	<10	117	70-130 1.09	30
sec-Butylbenzene	20.3	0.50	ug/L	20	< 0.50	102	70-130 0.493	30
tert-Butylbenzene	21.4	0.50	ug/L	20	< 0.50	107	70-130 0.468	30
n-Butylbenzene	21.0	0.50	ug/L	20	< 0.50	105	70-130 2.95	30
Carbon Disulfide	40.7	0.50	ug/L	50	< 0.50	81.4	70-130 5.92	30
Carbon Tetrachloride	21.7	0.50	ug/L	20	< 0.50	108	70-130 1.83	30
Chlorobenzene	19.0	0.50	ug/L	20	< 0.50	94.8	70-130 1.93	30
Chloroethane	22.9	0.50	ug/L	20	< 0.50	115	70-130 0.0436	30
Chloroform	21.5	0.50	ug/L	20	< 0.50	107	70-130 5.22	30
Chloromethane	20.4	0.50	ug/L	20	< 0.50	102	70-130 4.78	30
2-Chlorotoluene	21.1	0.50	ug/L	20	< 0.50	106	70-130 2.38	30
4-Chlorotoluene	21.0	0.50	ug/L	20	< 0.50	105	70-130 2.26	30
1,2-Dibromo-3-chloropropane	24.9	1.0	ug/L	20	<1.0	124	70-130 6.35	30
Dibromochloromethane	20.6	0.50	ug/L	20	< 0.50	103	70-130 3.10	30
1,2-Dibromoethane (EDB)	19.6	0.50	ug/L	20	< 0.50	97.8	70-130 3.01	30
Dibromomethane	21.6	0.50	ug/L	20	< 0.50	108	70-130 2.60	30
1,3-Dichlorobenzene	19.8	0.50	ug/L	20	< 0.50	99.1	70-130 3.23	30
1,2-Dichlorobenzene	21.4	0.50	ug/L	20	< 0.50	107	70-130 1.30	30
1,4-Dichlorobenzene	19.8	0.50	ug/L	20	< 0.50	99.0	70-130 1.20	30
Dichlorodifluoromethane (R12)	18.8	0.50	ug/L	20	< 0.50	94.2	70-130 0.159	30
1,1-Dichloroethane	21.6	0.50	ug/L	20	< 0.50	108	70-130 4.70	30
1,2-Dichloroethane (EDC)	23.0	0.50	ug/L	20	< 0.50	115	70-130 3.04	30
1,1-Dichloroethylene	23.9	0.50	ug/L	20	<0.50	120	70-130 2.50	30

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %	REC Limits RPI	D Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1323 - EPA 5030B

Matrix Spike Dup (B6J1323-MSD1) Continued	S	ource: 6.	J 06026-02 F	Prepare	ed & Analyzed:	10/13/16	
trans-1,2-Dichloroethylene	19.0	0.50	ug/L	20	<0.50 95.2	70-130 0.00	30
cis-1,2-Dichloroethylene	18.7	0.50	ug/L	20	<0.50 93.6	70-130 4.39	30
1,2-Dichloropropane	21.3	0.50	ug/L	20	<0.50 106	70-130 6.55	30
2,2-Dichloropropane	23.3	0.50	ug/L	20	<0.50 116	70-130 5.43	30
1,3-Dichloropropane	19.4	0.50	ug/L	20	<0.50 97.1	70-130 5.56	30
cis-1,3-Dichloropropylene	19.2	0.50	ug/L	20	<0.50 96.2	70-130 2.36	30
trans-1,3-Dichloropropylene	20.6	0.50	ug/L	20	<0.50 103	70-130 2.45	30
1,1-Dichloropropylene	20.6	0.50	ug/L	20	< 0.50 103	70-130 1.37	30
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	<2.0 110	70-130 0.318	30
Ethylbenzene	20.0	0.50	ug/L	20	<0.50 99.8	70-130 1.62	30
Ethyl-tert-Butyl Ether (ETBE)	21.1	2.0	ug/L	20	<2.0 105	70-130 0.237	30
Hexachlorobutadiene	18.7	1.0	ug/L	20	<1.0 93.6	70-130 0.0535	30
2-Hexanone (MBK)	61.4	10	ug/L	50	<10 123	70-130 1.96	30
Isopropylbenzene	21.0	0.50	ug/L	20	<0.50 105	70-130 0.143	30
4-Isopropyltoluene	21.2	1.0	ug/L	20	<1.0 106	70-130 2.46	30
Methyl-tert-Butyl Ether (MTBE)	42.6	1.0	ug/L	40	0.810 105	70-130 0.0235	30
Methylene Chloride	22.9	5.0	ug/L	20	<5.0 114	70-130 7.44	30
4-Methyl-2-pentanone (MIBK)	53.8	10	ug/L	50	<10 108	70-130 0.205	30
Naphthalene	26.0	2.0	ug/L	20	<2.0 130	70-130 5.90	30
n-Propylbenzene	21.1	0.50	ug/L	20	<0.50 106	70-130 0.566	30
Styrene	18.2	0.50	ug/L	20	<0.50 91.1	70-130 2.55	30
1,1,1,2-Tetrachloroethane	18.0	0.50	ug/L	20	<0.50 90.2	70-130 0.111	30
1,1,2,2-Tetrachloroethane	21.4	0.50	ug/L	20	<0.50 107	70-130 0.796	30
Tetrachloroethylene (PCE)	17.2	0.50	ug/L	20	<0.50 86.2	70-130 5.72	30
Toluene	19.2	0.50	ug/L	20	<0.50 96.0	70-130 0.00	30
1,2,3-Trichlorobenzene	19.5	0.50	ug/L	20	< 0.50 97.7	70-130 2.23	30
1,2,4-Trichlorobenzene	19.0	0.50	ug/L	20	<0.50 95.0	70-130 1.31	30
1,1,1-Trichloroethane	21.8	0.50	ug/L	20	<0.50 109	70-130 3.82	30
1,1,2-Trichloroethane	19.8	0.50	ug/L	20	<0.50 98.8	70-130 1.71	30
Trichloroethylene (TCE)	19.5	0.50	ug/L	20	<0.50 97.5	70-130 4.07	30
Trichlorofluoromethane (R11)	23.8	0.50	ug/L	20	<0.50 119	70-130 4.44	30

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	y Control								
Batch B6J1323 - EPA 5030B										
Matrix Spike Dup (B6J1323-MSD1	1)	Source: 6J0	6026-02	Prepare	ed & Analy	zed: 1	0/13/16			
Continued	•			•	•	•				
1,2,3-Trichloropropane	18.7	0.50	ug/L	20	<0.50	93.4	70-130	15.8	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	22.8	0.50	ug/L	20	<0.50	114	70-130	3.62	30	
1,3,5-Trimethylbenzene	21.0		ug/L	20	< 0.50	105	70-130	2.39	30	
1,2,4-Trimethylbenzene	21.7		ug/L	20	< 0.50	108	70-130	3.18	30	
Vinyl chloride	23.5		ug/L	20	< 0.50	118	70-130		30	
o-Xylene	19.2		ug/L	20	< 0.50		70-130	2.47	30	
m,p-Xylenes	37.6	1.0	ug/L	40	<1.0	93.9	70-130	2.00	30	
Surrogate: 4-Bromofluorobenzene	54.0		ug/L	50		108	70-140			
Surrogate: Dibromofluoromethane	4 9.9		ug/L	50		99.8	70-140			
Surrogate: Toluene-d8	49.4		ug/L	50		98.8	70-140			
Batch B6J1723 - EPA 5030B			_							
Blank (B6J1723-BLK1)				Prepare	ed & Analy	yzed: 1	0/17/16			
Acetone	<10		ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0		ug/L							
Benzene	<0.50		ug/L							
Bromobenzene	< 0.50		ug/L							
Bromochloromethane	< 0.50		ug/L							
Bromodichloromethane	< 0.50		ug/L							
Bromoform	< 0.50		ug/L							
Bromomethane	<0.50		ug/L							
2-Butanone (MEK)	<10		ug/L							
tert-Butyl alcohol (TBA)	<10		ug/L							
sec-Butylbenzene	<0.50		ug/L							
tert-Butylbenzene	<0.50		ug/L							
n-Butylbenzene	<0.50		ug/L							
Carbon Disulfide	<0.50		ug/L							
Carbon Tetrachloride	<0.50		ug/L							
Chlorobenzene	< 0.50		ug/L							
Chloroethane	<0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	F Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS									<u> </u>	
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continue	ed			Prepare	ed & Ana	lvzed: 10	0/17/16			
Chloroform	<0.50	0.50	ug/L			.,	, 			
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
1,2-Dichloropropane	< 0.50	0.50	ug/L							
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331951Project No:04-NDLA-013Date Received: 10/06/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/20/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	Control								
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continued	ı			Prepare	ed & Anal	yzed: 1	0/17/16			
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.50	0.50	ug/L							
(R113)										
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	62.7		ug/L	50		125	70-140			
Surrogate: Toluene-d8	49.7		ug/L	50		99.5	70-140			
LCS (B6J1723-BS1)			Ü	Prepare	ed: 10/17	/16 Ana	alyzed: 10	0/18/16		
Acetone	47.9	10	ug/L	50		95.8	70-130			
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20		88.4	70-130			
Benzene	22.7	0.50	ug/L	20		113	75-125			
Bromobenzene	19.0	0.50	ug/L	20		94.9	70-130			
Benzene	22.7	0.50	ug/L	20		113	75-125			

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %F	REC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B	•						
LCS (B6J1723-BS1) Continued			I	Prepare	d: 10/17/16 Ana	alyzed: 10/18	/16
Bromochloromethane	21.5	0.50	ug/L	20	108	70-130	
Bromodichloromethane	23.3	0.50	ug/L	20	117	75-125	
Bromoform	16.3	0.50	ug/L	20	81.3	75-125	
Bromomethane	16.5	0.50	ug/L	20	82.6	75-125	
2-Butanone (MEK)	46.0	10	ug/L	50	92.0	70-130	
tert-Butyl alcohol (TBA)	105	10	ug/L	100	105	70-130	
sec-Butylbenzene	21.5	0.50	ug/L	20	108	70-130	
tert-Butylbenzene	22.8	0.50	ug/L	20	114	70-130	
n-Butylbenzene	22.3	0.50	ug/L	20	111	70-130	
Carbon Disulfide	41.5	0.50	ug/L	50	83.1	70-130	
Carbon Tetrachloride	24.2	0.50	ug/L	20	121	75-125	
Chlorobenzene	20.3	0.50	ug/L	20	102	75-125	
Chloroethane	22.5	0.50	ug/L	20	113	75-125	
Chloroform	23.5	0.50	ug/L	20	118	75-125	
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125	
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130	
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130	
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125	
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130	
Dibromomethane	21.8	0.50	ug/L	20	109	70-130	
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130	
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125	
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130	
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125	
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125	
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125	
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125	
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting		Spike	Source	%REC		RPD	
Analyte	Result Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs & OXYGENATES by GC/MS - Quality Control Batch B6J1723 - EPA 5030B Prepared: 10/17/16 Analyzed: 10/18/16 LCS (B6J1723-BS1) Continued 2,2-Dichloropropane 24.3 0.50 20 122 70-130 ug/L 18.6 0.50 20 92.8 1,3-Dichloropropane ug/L 70-130 93.9 cis-1,3-Dichloropropylene 18.8 0.50 ug/L 20 75-125 trans-1,3-Dichloropropylene 18.3 0.50 91.4 ug/L 20 70-130 1,1-Dichloropropylene 23.0 0.50 ug/L 20 115 70-130 22.0 2.0 110 Diisopropyl ether (DIPE) ug/L 20 70-130 21.6 0.50 108 Ethylbenzene ug/L 20 75-125 Ethyl-tert-Butyl Ether (ETBE) 20.0 2.0 ug/L 20 100 70-130 94.4 Hexachlorobutadiene 18.9 1.0 20 70-130 ug/L 45.3 10 90.7 2-Hexanone (MBK) ug/L 50 70-130 22.6 113 Isopropylbenzene 0.50 ug/L 20 70-130 22.8 1.0 114 4-Isopropyltoluene ug/L 20 70-130 Methyl-tert-Butyl Ether (MTBE) 37.6 1.0 ug/L 40 94.0 75-125 24.9 5.0 124 Methylene Chloride 20 75-130 ug/L 43.7 10 87.5 4-Methyl-2-pentanone (MIBK) ug/L 50 70-130 Naphthalene 19.8 2.0 20 99.2 ug/L 70-130 22.2 n-Propylbenzene 0.50 ug/L 20 111 70-130 19.4 0.50 96.8 Styrene ua/L 20 70-130 97.1 1,1,1,2-Tetrachloroethane 19.4 0.50 ug/L 20 70-130 18.4 0.50 20 92.2 70-135 1,1,2,2-Tetrachloroethane ug/L 93.6 Tetrachloroethylene (PCE) 18.7 0.50 ug/L 20 75-125 Toluene 21.2 0.50 ug/L 20 106 75-125 1,2,3-Trichlorobenzene 18.3 0.50 ug/L 20 91.7 70-130 18.4 91.8 0.50 70-130 1.2.4-Trichlorobenzene ua/L 20 24.4 0.50 122 1,1,1-Trichloroethane ug/L 20 75-125

19.7

22.0

24.8

17.3

24.2

22.1

0.50

0.50

0.50

0.50

0.50

0.50

1,1,2-Trichloroethane

Trichloroethylene (TCE)

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

(R113)

Trichlorofluoromethane (R11)

1,1,2-Trichloro-1,2,2-trifluoroethane

Viorel Vasile Operations Manager 20

20

20

20

20

20

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

98.7

110

124

86.6

121

111

75-125

75-125

70-130

70-130

70-130

70-130

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
- Quality	Control							
			Prepare	ed: 10/17/16 Ana	alyzed: 10	0/18/16		
22.8	0.50	ug/L	20	114	70-130			
23.0	0.50	•	20	115	75-125			
21.1	0.50	ug/L	20	105	75-125			
41.0	1.0	ug/L	40	103	70-130			
54.5		ug/L	50	109	70-140			
54.0		ug/L	50	108	70-140			
53.8		ug/L	50	108	70-140			
S	ource: 6J1	0010-02	Prepare	ed & Analyzed: 1	0/17/16			
55.7	10	ug/L	50	111	70-130			
19.0	2.0	ug/L	20	94.8	70-130			
21.2	0.50	ug/L	20	106	70-130			
19.4	0.50	ug/L	20	97.2	70-130			
21.7	0.50	ug/L	20	108	70-130			
22.9	0.50	ug/L	20	114	70-130			
18.0	0.50	ug/L	20	90.2	70-130			
16.9	0.50	ug/L	20	84.7	70-130			
51.9	10	ug/L	50	104	70-130			
100	10	ug/L	100	100	70-130			
20.6	0.50	ug/L	20	103	70-130			
22.0	0.50	ug/L	20	110	70-130			
22.0	0.50	ug/L	20	110	70-130			
45.0	0.50	ug/L	50	90.0	70-130			
22.6	0.50	ug/L	20	113	70-130			
19.6	0.50	ug/L	20	98.1	70-130			
19.2	0.50	ug/L	20	96.1	70-130			
22.7	0.50	ug/L	20	114	70-130			
19.9	0.50	ug/L	20	99.4	70-130			
21.6	0.50	ug/L	20	108	70-130			
21.7	0.50	ug/L	20	109	70-130			
24.1	1.0	•	20	121	70-130			
20.9	0.50	ug/L	20	104	70-130			
	22.8 23.0 21.1 41.0 54.5 54.0 53.8 55.7 19.0 21.2 19.4 21.7 22.9 18.0 16.9 51.9 100 20.6 22.0 45.0 22.6 19.6 19.2 22.7 19.9 21.6 21.7 24.1	22.8 0.50 23.0 0.50 21.1 0.50 41.0 1.0 54.5 54.0 53.8 Source: 6J1 55.7 10 19.0 2.0 21.2 0.50 19.4 0.50 21.7 0.50 22.9 0.50 18.0 0.50 16.9 0.50 51.9 10 100 10 20.6 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.0 0.50 22.1 0.50 22.2 0.50 22.3 0.50 22.4 0.50 22.5 0.50 22.6 0.50 22.7 0.50	- Quality Control 22.8	Prepare 22.8 0.50 ug/L 20 23.0 0.50 ug/L 20 21.1 0.50 ug/L 20 41.0 1.0 ug/L 40 54.5 ug/L 50 53.8 ug/L 50 Source: 6J10010-02 Prepare 55.7 10 ug/L 20 21.2 0.50 ug/L 20 21.7 0.50 ug/L 20 22.9 0.50 ug/L 20 21.8 0.50 ug/L 20 21.9 0.50 ug/L 20 21.0 0.50 ug/L 20 22.9 0.50 ug/L 20 21.0 0.50 ug/L 20 22.9 0.50 ug/L 20 23.9 0.50 ug/L 20 24.0 0.50 ug/L 20 25.0 0.50 ug/L 20 26.0 0.50 ug/L 20 27.0 0.50 ug/L 20 28.0 0.50 ug/L 20 29.0 0.50 ug/L 20 29.0 0.50 ug/L 20 20.0 0.50 ug/L 20 20.0 0.50 ug/L 20 21.0 0.50 ug/L 20 22.0 0.50 ug/L 20 22.0 0.50 ug/L 20 22.0 0.50 ug/L 20 23.0 0.50 ug/L 20 24.0 0.50 ug/L 20 25.0 0.50 ug/L 20 26.0 0.50 ug/L 20 27.0 0.50 ug/L 20 28.0 0.50 ug/L 20 29.0 0.50 ug/L 20	Prepared: 10/17/16 And 22.8 0.50 ug/L 20 114 23.0 0.50 ug/L 20 115 21.1 0.50 ug/L 20 105 41.0 1.0 ug/L 50 109 54.0 ug/L 50 108 53.8 ug/L 50 108 53.8 ug/L 50 108 55.7 10 ug/L 20 94.8 21.2 0.50 ug/L 20 94.8 21.2 0.50 ug/L 20 106 19.4 0.50 ug/L 20 97.2 21.7 0.50 ug/L 20 108 22.9 0.50 ug/L 20 108 22.9 0.50 ug/L 20 90.2 16.9 0.50 ug/L 20 90.2 16.9 0.50 ug/L 20 104 100 10 ug/L 100 100 20.6 0.50 ug/L 20 100 22.0 0.50 ug/L 20 104 100 100 20.6 0.50 ug/L 20 100 22.0 0.50 ug/L 20 103 22.0 0.50 ug/L 20 103 22.0 0.50 ug/L 20 103 22.0 0.50 ug/L 20 103 22.0 0.50 ug/L 20 103 22.0 0.50 ug/L 20 110 45.0 0.50 ug/L 20 110 45.0 0.50 ug/L 20 110 22.0 0.50 ug/L 20 110 19.6 0.50 ug/L 20 90.1 19.6 0.50 ug/L 20 90.1 19.6 0.50 ug/L 20 90.1 19.9 0.50 ug/L 20 90.1 19.9 0.50 ug/L 20 90.1 19.9 0.50 ug/L 20 90.1 19.9 0.50 ug/L 20 90.1 19.9 0.50 ug/L 20 90.4 21.6 0.50 ug/L 20 108 21.7 0.50 ug/L 20 108 21.7 0.50 ug/L 20 109 24.1 1.0	Prepared: 10/17/16 Analyzed: 10 22.8 0.50	Prepared: 10/17/16 Analyzed: 10/18/16 22.8 0.50 ug/L 20 114 70-130 23.0 0.50 ug/L 20 105 75-125 21.1 0.50 ug/L 20 105 75-125 41.0 1.0 ug/L 40 103 70-130 54.5 ug/L 50 109 70-140 54.0 ug/L 50 108 70-140 53.8 ug/L 50 108 70-140 53.8 ug/L 50 111 70-130 Source: 6J10010-02 Prepared & Analyzed: 10/17/16 55.7 10 ug/L 50 111 70-130 19.0 2.0 ug/L 20 94.8 70-130 21.2 0.50 ug/L 20 106 70-130 21.2 0.50 ug/L 20 106 70-130 22.9 0.50 ug/L 20 108 70-130 22.9 0.50 ug/L 20 108 70-130 18.0 0.50 ug/L 20 144 70-130 18.0 0.50 ug/L 20 90.2 70-130 16.9 0.50 ug/L 20 90.2 70-130 16.9 0.50 ug/L 20 84.7 70-130 51.9 10 ug/L 50 104 70-130 100 10 ug/L 50 104 70-130 20.6 0.50 ug/L 20 103 70-130 20.6 0.50 ug/L 20 107-130 22.0 0.50 ug/L 20 103 70-130 22.0 0.50 ug/L 20 103 70-130 22.0 0.50 ug/L 20 110 70-130 22.0 0.50 ug/L 20 113 70-130 19.6 0.50 ug/L 20 98.1 70-130 19.2 0.50 ug/L 20 99.4 70-130 19.9 0.50 ug/L 20 99.4 70-130 21.6 0.50 ug/L 20 99.4 70-130 21.7 0.50 ug/L 20 108 70-130 21.7 0.50 ug/L 20 109 70-130 21.7 0.50 ug/L 20 109 70-130 21.7 0.50 ug/L 20 109 70-130	Prepared: 10/17/16 Analyzed: 10/18/16 22.8 0.50 ug/L 20 114 70-130 23.0 0.50 ug/L 20 115 75-125 21.1 0.50 ug/L 20 105 75-125 41.0 1.0 ug/L 40 103 70-130 54.5 ug/L 50 109 70-140 54.0 ug/L 50 108 70-140 53.8 ug/L 50 108 70-140 53.8 ug/L 50 111 70-130 55.7 10 ug/L 50 111 70-130 19.0 2.0 ug/L 20 94.8 70-130 21.2 0.50 ug/L 20 106 70-130 21.2 0.50 ug/L 20 106 70-130 21.7 0.50 ug/L 20 108 70-130 22.9 0.50 ug/L 20 108 70-130 21.0 0.50 ug/L 20 108 70-130 21.1 0.50 ug/L 20 108 70-130 21.2 0.50 ug/L 20 108 70-130 21.3 0.50 ug/L 20 108 70-130 21.4 0.50 ug/L 20 108 70-130 21.5 0.50 ug/L 20 108 70-130 21.6 0.50 ug/L 20 104 70-130 100 10 ug/L 50 104 70-130 100 10 ug/L 50 104 70-130 20.6 0.50 ug/L 20 103 70-130 20.6 0.50 ug/L 20 110 70-130 20.6 0.50 ug/L 20 113 70-130 20.6 0.50 ug/L 20 114 70-130 19.6 0.50 ug/L 20 98.1 70-130 19.9 0.50 ug/L 20 114 70-130 19.9 0.50 ug/L 20 114 70-130 21.6 0.50 ug/L 20 114 70-130 19.9 0.50 ug/L 20 114 70-130 21.6 0.50 ug/L 20 114 70-130 21.7 0.50 ug/L 20 108 70-130 21.8 0.50 ug/L 20 114 70-130 21.9 0.50 ug/L 20 109 70-130 21.7 0.50 ug/L 20 109 70-130 21.7 0.50 ug/L 20 109 70-130 21.7 0.50 ug/L 20 109 70-130

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Donortina	Cnika Cauraa	0/ DEC	RPD
	Reporting	Spike Source	%REC	KPU
Analyte	Result Limit Units	Level Result %RE	C Limits RPD) Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Batch B6J1723 - EPA 5030B							
Matrix Spike (B6J1723-MS1) Cor	ntinued So	ource: 6	J10010-02 F	repare	ed & Analyzed: 1	0/17/16	
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	96.8	70-130	
Dibromomethane	22.3	0.50	ug/L	20	111	70-130	
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130	
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	108	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130	
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130	
1,1-Dichloroethane	22.9	0.50	ug/L	20	114	70-130	
1,2-Dichloroethane (EDC)	23.8	0.50	ug/L	20	119	70-130	
1,1-Dichloroethylene	23.1	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.9	0.50	ug/L	20	99.7	70-130	
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	101	70-130	
1,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130	
2,2-Dichloropropane	24.2	0.50	ug/L	20	121	70-130	
1,3-Dichloropropane	18.9	0.50	ug/L	20	94.6	70-130	
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	99.0	70-130	
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	99.5	70-130	
1,1-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130	
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130	
Ethylbenzene	20.0	0.50	ug/L	20	100	70-130	
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130	
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.7	70-130	
2-Hexanone (MBK)	58.8	10	ug/L	50	118	70-130	
Isopropylbenzene	21.5	0.50	ug/L	20	108	70-130	
4-Isopropyltoluene	22.2	1.0	ug/L	20	111	70-130	
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	103	70-130	
Methylene Chloride	26.1	5.0	ug/L	20	11.7 72.2	70-130	
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	103	70-130	
Naphthalene	24.7	2.0	ug/L	20	123	70-130	
n-Propylbenzene	21.5	0.50	ug/L	20	108	70-130	
Styrene	18.7	0.50	ug/L	20	93.5	70-130	
1,1,1,2-Tetrachloroethane	18.3	0.50	ug/L	20	91.7	70-130	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Datch D00 1725 - El A 0000D									
Matrix Spike (B6J1723-MS1) Conti	nued S	ource: 6	J10010-02	Prepare	ed & Analyzed: 1	0/17/16			
1,1,2,2-Tetrachloroethane	21.1	0.50	ug/L	20	106	70-130			
Tetrachloroethylene (PCE)	17.1	0.50	ug/L	20	85.7	70-130			
Toluene	19.2	0.50	ug/L	20	95.8	70-130			
1,2,3-Trichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130			
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	95.6	70-130			
1,1,1-Trichloroethane	22.3	0.50	ug/L	20	112	70-130			
1,1,2-Trichloroethane	19.5	0.50	ug/L	20	97.6	70-130			
Trichloroethylene (TCE)	20.1	0.50	ug/L	20	100	70-130			
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	118	70-130			
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	24.0	0.50	ug/L	20	120	70-130			
1,3,5-Trimethylbenzene	21.7	0.50	ug/L	20	109	70-130			
1,2,4-Trimethylbenzene	22.3	0.50	ug/L	20	112	70-130			
Vinyl chloride	22.7	0.50	ug/L	20	113	70-130			
o-Xylene	20.0	0.50	ug/L	20	99.8	70-130			
m,p-Xylenes	38.7	1.0	ug/L	40	96.8	70-130			
Surrogate: 4-Bromofluorobenzene	54.6		ug/L	50	109	70-140			
Surrogate: Dibromofluoromethane	53.1		ug/L	50	106	70-140			
Surrogate: Toluene-d8	49.0		ug/L	50	98.0	70-140			
Matrix Spike Dup (B6J1723-MSD1)	S	ource: 6	-	Prepare	ed & Analyzed: 1	0/17/16			
Acetone	57.3	10	ug/L	50	115	70-130	2.76	30	
tert-Amyl Methyl Ether (TAME)	19.4	2.0	ug/L	20	96.8	70-130	2.14	30	
Benzene	22.3	0.50	ug/L	20	111	70-130	4.73	30	
Bromobenzene	20.2	0.50	ug/L	20	101	70-130	3.93	30	
Bromochloromethane	21.4	0.50	ug/L	20	107	70-130	1.58	30	
Bromodichloromethane	23.6	0.50	ug/L	20	118	70-130	3.23	30	
Bromoform	17.6	0.50	ug/L	20	87.8	70-130	2.70	30	
Bromomethane	17.3	0.50	ug/L	20	86.4	70-130	2.04	30	
					447		44 -	00	
2-Butanone (MEK)	58.3	10	ug/L	50	117	70-130	11.5	30	

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	•	REC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Matrix Spike Dup (B6J1723-MSD1) Continued	S	ource: 6J	10010-02	Prepare	d & Analyzed: 10/17/16
sec-Butylbenzene	21.2	0.50	ug/L	20	106 70-130 2.91 30
ert-Butylbenzene	22.5	0.50	ug/L	20	113 70-130 2.65 30
n-Butylbenzene	22.1	0.50	ug/L	20	110 70-130 0.227 30
Carbon Disulfide	40.0	0.50	ug/L	50	80.0 70-130 11.7 30
Carbon Tetrachloride	23.2	0.50	ug/L	20	116 70-130 2.93 30
Chlorobenzene	19.7	0.50	ug/L	20	98.6 70-130 0.508 30
Chloroethane	20.6	0.50	ug/L	20	103 70-130 6.93 30
Chloroform	23.2	0.50	ug/L	20	116 70-130 1.92 30
Chloromethane	21.3	0.50	ug/L	20	106 70-130 6.85 30
2-Chlorotoluene	22.9	0.50	ug/L	20	115 70-130 5.88 30
1-Chlorotoluene	22.1	0.50	ug/L	20	110 70-130 1.64 30
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119 70-130 1.08 30
Dibromochloromethane	21.5	0.50	ug/L	20	108 70-130 2.97 30
,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101 70-130 4.35 30
Dibromomethane	23.7	0.50	ug/L	20	119 70-130 6.31 30
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104 70-130 3.27 30
J,2-Dichlorobenzene	22.4	0.50	ug/L	20	112 70-130 3.92 30
,4-Dichlorobenzene	20.6	0.50	ug/L	20	103 70-130 3.36 30
Dichlorodifluoromethane (R12)	19.0	0.50	ug/L	20	95.2 70-130 2.71 30
I,1-Dichloroethane	23.3	0.50	ug/L	20	116 70-130 1.78 30
1,2-Dichloroethane (EDC)	24.2	0.50	ug/L	20	121 70-130 1.67 30
I,1-Dichloroethylene	23.8	0.50	ug/L	20	119 70-130 3.11 30
rans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102 70-130 1.79 30
cis-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102 70-130 1.03 30
1,2-Dichloropropane	23.8	0.50	ug/L	20	119 70-130 7.49 30
2,2-Dichloropropane	23.9	0.50	ug/L	20	120 70-130 1.25 30
I,3-Dichloropropane	19.3	0.50	ug/L	20	96.6 70-130 1.99 30
cis-1,3-Dichloropropylene	20.3	0.50	ug/L	20	102 70-130 2.69 30
rans-1,3-Dichloropropylene	20.3	0.50	ug/L	20	101 70-130 1.79 30
I,1-Dichloropropylene	21.9	0.50	ug/L	20	110 70-130 7.48 30
Diisopropyl ether (DIPE)	23.4	2.0	ug/L	20	117 70-130 5.00 30

Date Received: 10/06/16

Date Reported: 10/20/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Matrix Spike Dup (B6J1723-MSD1) Continued	5	Source: 6J	110010-02	Prepare	d & Analyzed: 10/17/16
Ethylbenzene	20.4	0.50	ug/L	20	102 70-130 1.73 30
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	108 70-130 3.91 30
Hexachlorobutadiene	19.8	1.0	ug/L	20	99.0 70-130 5.50 30
2-Hexanone (MBK)	56.2	10	ug/L	50	112 70-130 4.54 30
Isopropylbenzene	22.2	0.50	ug/L	20	111 70-130 3.06 30
4-Isopropyltoluene	22.3	1.0	ug/L	20	112 70-130 0.539 30
Methyl-tert-Butyl Ether (MTBE)	43.6	1.0	ug/L	40	109 70-130 5.59 30
Methylene Chloride	27.2	5.0	ug/L	20	11.7 77.7 70-130 4.12 30
4-Methyl-2-pentanone (MIBK)	53.0	10	ug/L	50	106 70-130 3.04 30
Naphthalene	25.7	2.0	ug/L	20	129 70-130 4.05 30
n-Propylbenzene	22.2	0.50	ug/L	20	111 70-130 3.02 30
Styrene	18.8	0.50	ug/L	20	94.2 70-130 0.746 30
1,1,1,2-Tetrachloroethane	18.5	0.50	ug/L	20	92.5 70-130 0.869 30
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20	106 70-130 0.801 30
Tetrachloroethylene (PCE)	18.3	0.50	ug/L	20	91.3 70-130 6.33 30
Toluene	20.1	0.50	ug/L	20	100 70-130 4.79 30
1,2,3-Trichlorobenzene	20.8	0.50	ug/L	20	104 70-130 4.23 30
1,2,4-Trichlorobenzene	20.0	0.50	ug/L	20	100 70-130 4.70 30
1,1,1-Trichloroethane	23.8	0.50	ug/L	20	119 70-130 6.33 30
1,1,2-Trichloroethane	20.7	0.50	ug/L	20	103 70-130 5.67 30
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104 70-130 3.33 30
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	123 70-130 3.89 30
1,2,3-Trichloropropane	19.9	0.50	ug/L	20	99.6 70-130 4.56 30
1,1,2-Trichloro-1,2,2-trifluoroethane	23.7	0.50	ug/L	20	119 70-130 1.34 30
(R113)					
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	109 70-130 0.413 30
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	114 70-130 1.77 30
Vinyl chloride	23.7	0.50	ug/L	20	119 70-130 4.48 30
o-Xylene	20.3	0.50	ug/L	20	101 70-130 1.54 30
m,p-Xylenes	38.6	1.0	ug/L	40	96.5 70-130 0.284 30

Client: The Source Group, Inc. (SH) AA Project No: A5331951 04-NDLA-013 Date Received: 10/06/16 **Project No:** Date Reported: 10/20/16

Project Name: DFSP Norwalk GW Sampling

Analyte	Result	Reporting Limit	Units		Source Result	%RFC	%REC	RPD	RPD Limit	Notes
•			311113		Rooult	,uiteO				.10103
VOCs & OXYGENATES by GC/MS - Batch B6J1723 - EPA 5030B	- Quality	CONTROL								
Matrix Spike Dup (B6J1723-MSD	1) (Source: 6J1	∩ ∩1∩_∩2	Dropara	ad & Anal	vzed: 1	0/17/16			
Continued	')	ouice. 00 i	0010-02	Tropare	o & Allai	yzeu. I	0/17/10			
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	52.8		ug/L	50		106	70-140			
Surrogate: Toluene-d8	48.8		ug/L	50		97.6	70-140			
Diesel Range Organics by GC/FID	- Quality	/ Control								
Batch B6J1119 - EPA 3510C										
Blank (B6J1119-BLK1)				Prepare	ed & Anal	yzed: 1	0/11/16			
Diesel Range Organics as Diesel	<0.10	0.10	mg/L							
Surrogate: o-Terphenyl	0.0400		mg/L	0.040		99.9	50-150			
LCS (B6J1119-BS1)				Prepare	ed & Anal	yzed: 1	0/11/16			
Diesel Range Organics as Diesel	0.872	0.10	mg/L	0.80		109	75-125			
Surrogate: o-Terphenyl	0.0427		mg/L	0.040		107	50-150			
LCS Dup (B6J1119-BSD1)				Prepare	ed & Anal	yzed: 1	0/11/16			
Diesel Range Organics as Diesel	0.742	0.10	mg/L	0.80		92.7	75-125	16.2	30	
Surrogate: o-Terphenyl	0.0427		mg/L	0.040		107	50-150			
Gasoline Range Organics by GC/F	ID - Qua	lity Control								
Batch B6J0623 - EPA 5030B										
Blank (B6J0623-BLK1)				Prepare	ed & Anal	yzed: 1	0/06/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	47.1		ug/L	50		94.2	80-120			
LCS (B6J0623-BS1)				Prepare	ed & Anal	yzed: 1	0/06/16			
Gasoline Range Organics (GRO)	449	100	ug/L	500		89.8	75-125			
Surrogate: a,a,a-Trifluorotoluene	48.4		ug/L	50		96.8	80-120			
LCS Dup (B6J0623-BSD1)				Prepare	ed & Anal	yzed: 1	0/06/16			
Gasoline Range Organics (GRO)	443	100	ug/L	500		88.7	75-125	1.29	30	
Surrogate: a,a,a-Trifluorotoluene Batch B6J0710 - EPA 5030B	47.7		ug/L	50		95.4	80-120			
Blank (B6J0710-BLK1)				Prepare	ed & Anal	yzed: 1	0/07/16			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951
Date Received: 10/06/16
Date Reported: 10/20/16

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline Range Organics by GC/FI	D - Qua	lity Contro	I							
Batch B6J0710 - EPA 5030B										
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	45.2		ug/L	50		90.5	80-120			
LCS (B6J0710-BS1)			_	Prepare	ed & Analy	zed: 1	0/07/16			
Gasoline Range Organics (GRO)	434	100	ug/L	500		86.8	75-125			
Surrogate: a,a,a-Trifluorotoluene	46.7		ug/L	50		93.5	80-120			
LCS Dup (B6J0710-BSD1)				Prepare	ed & Analy	zed: 1	0/07/16			
Gasoline Range Organics (GRO)	473	100	ug/L	500		94.6	75-125	8.62	30	
Surrogate: a,a,a-Trifluorotoluene	47.3		ug/L	50		94.6	80-120			
Matrix Spike (B6J0710-MS1)	5	Source: 6J0	06026-12	Prepare	ed & Analy	zed: 1	0/07/16			
Gasoline Range Organics (GRO)	453	100	ug/L	500	<100	90.7	70-130			
Surrogate: a,a,a-Trifluorotoluene	49.8		ug/L	50		99.7	80-120			
Matrix Spike Dup (B6J0710-MSD1	1) 5	Source: 6J0	06026-12	Prepare	ed & Analy	zed: 1	0/07/16			
Gasoline Range Organics (GRO)	451	100	ug/L	500	<100	90.3	70-130	0.418	30	
Surrogate: a,a,a-Trifluorotoluene	48.8		ug/L	50		97.5	80-120			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331951 Date Received: 10/06/16 Date Reported: 10/20/16

Special Notes

[1] = ** : Exceeds upper control limit

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

100 000 000	
1 成分级 3	
34.56	
1	34
- V	
0.00	la
100	ത്
On.	V270
0.500	
0.0163.5	(Y)
I In	distribute and
4.0	Account
ര	() I
10 (No. 1) 11	· washin
	F
	υ
100000	. ന
1 0 1	- A
_).4.7 Page
State of the state	Mental of the second
4.35	()
100 10 0 10	-040M
	Spinoners of
1 2	<u></u>
1.0	No.
A 4200 C	The same
6.5344	8 ~
18.50	
30.000000	
3	
2012/04/19	
20, 40, 50, 50, 50	
200 000000 30	

																			-				- C. Sep. 19				₩		
ame: Davis Whr	ture:	No.:	No.:	ame)			Special		Mojag			******	- And description of the second second second second second second second second second second second second s		rapreriente granes es en proprietas en en banda de la presenta de la producta de de des consentas de la producta del la producta de la produc					SAWFLE INTEGRITY 60					Bécéived by	JAN/	Received by.	Received hy	for now in
Sampler's Name:	Sampler's Signature:	P.O. No.:	Quote No.:	STED (Test N		_	_		una codes				- Contraction of the contraction												Time	アンドラ	Time	17./0 Time	2
Project Name I No.: DFSP Norwalk 1911-NDIA-031	San			ANALYSIS REQUESTED (Test Name)					e l'Ai fuffiaitound Codes Delow				NACONAL DESCRIPTION OF THE PROPERTY OF THE PRO		derichmentermonaceanspronaceastate						Monther of the second s				Date	92901	Date	ع ا د	Lak
11-NI	Yud			ex.	; 	H	74 /G	3	=	}	 	<u>\</u>	L K	<u>ل</u>	X	×	×	>	K	×	X	×	À		凶				/
0	123				<u> </u>		-1/(900	25	riedse enter tile	3		<u>_</u>	¥	×	<u>V</u>	×	<u>لا</u>	×	k	ふ	×	K	Z.		Z		/ •	\downarrow	
Jalk) rule				·	_	-/2				×1.	X	X	×	>	X	×	K	X	ダ	Х	X	₹	X	X	799	ed by))
loca	SAC	1K	222					No. o, o	Cont	10	43	4	4	4	4	4	4	7	4	4	4	Ž	7	N	Relinduish	S	Relinquished by	Relinquished by	5
DESP A	15306 Norwalk Bluck	Norwalk	Ca YORIT			٠	dard TAT)	Sample	0.00	3 -	3	CE	Car	3	Chi	OE	00	30	3	3	30	Gw	S	a	Relir)—— /	Relir	/ Rall	}
ime / No.:	Site Address:	City:	State & Zip:		sh		Days (Star	å	907	2 6	300	\$ \$ 	ا 10ء	26	T.H.A.K.	3002	1055	ct //	1200	1250	<i>37 /</i>	/32	230	27.0	<u>. </u>				w.
Project Na	Site		Š	*	72 Hour Rush	5 Day Rush	10 Working Days (Standard TAT)	Date	11 1/	27 70 27	07. Ç07	10 1/16	10 5 16	んかん	10:516	10 546	9/-2-01	9/-101	4-5-01	91-5-01	10-7-16	10-5-16	10-5-61	31-1-01	10-5-16		1		
				odes *	(4)	 	 ⋉	() () () () () () () () () ()	- A - A - A - A - A - A - A - A - A - A	; ;		ر د د	-04	-05	90-	ا لی			-(c	-11	-12	- 13	14	151	19		2		2
, and a	MAN SWENSSON	-862-877-1051	-582-597-1040	TAT Turnaround Codes **	Same Day Rush (24 Hour Rush (ır Rush			70, 980,90	_		et e	-41		***		448		,	1	ļ	estro.		For Laboratory Use		Course 1	WALL DEVE STEEL AND THE	1951 /6716021
Client: ARX-SS.	Project Manager: 1941	Phone: 1-562-	Fax: /-582-5		11	(2) = 24 Hou	(3) = 48 Hour Rush	Client I.D.	1 (1. mbc.) (1)		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0 mm - 20	By- MA	D0P-3	MW.27	85.20	MW-22 CMM))-no	Sh 43	SW.2	8.00	9-M3	1-8220	4		Date of		A.A. Project No.: 7553 / 951

Note: By relinquishing samples to American Analytics, client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 21, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331953 / 6J10010

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/10/16 13:29 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received		
8260B+OXY+TPHG							
QCTB-1	6J10010-01	Water	5	10/07/16 06:00	10/10/16 13:29		
QCEB-1	6J10010-13	Water	5	10/07/16 13:30	10/10/16 13:29		
8260B+OXYGENATES							
GW-8	6J10010-02	Water	5	10/07/16 08:20	10/10/16 13:29		
GMW-6	6J10010-03	Water	5	10/07/16 09:00	10/10/16 13:29		
GMW-47	6J10010-04	Water	5	10/07/16 09:35	10/10/16 13:29		
DUP-5	6J10010-05	Water	5	10/07/16 00:00	10/10/16 13:29		
GMW-57	6J10010-06	Water	5	10/07/16 10:10	10/10/16 13:29		
GMW-60	6J10010-07	Water	5	10/07/16 10:40	10/10/16 13:29		
GMW-61	6J10010-08	Water	5	10/07/16 11:10	10/10/16 13:29		
MW-16	6J10010-09	Water	5	10/07/16 12:20	10/10/16 13:29		
EXP-1	6J10010-10	Water	5	10/07/16 11:45	10/10/16 13:29		
MW-29	6J10010-11	Water	5	10/07/16 12:55	10/10/16 13:29		
DUP-6	6J10010-12	Water	5	10/07/16 00:00	10/10/16 13:29		
Diesel Range Organics 8015M							
GW-8	6J10010-02	Water	5	10/07/16 08:20	10/10/16 13:29		
GMW-6	6J10010-03	Water	5	10/07/16 09:00	10/10/16 13:29		
GMW-47	6J10010-04	Water	5	10/07/16 09:35	10/10/16 13:29		

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953 Date Received: 10/10/16 Date Reported: 10/21/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
DUP-5	6J10010-05	Water	5	10/07/16 00:00	10/10/16 13:29
GMW-57	6J10010-06	Water	5	10/07/16 10:10	10/10/16 13:29
GMW-60	6J10010-07	Water	5	10/07/16 10:40	10/10/16 13:29
GMW-61	6J10010-08	Water	5	10/07/16 11:10	10/10/16 13:29
MW-16	6J10010-09	Water	5	10/07/16 12:20	10/10/16 13:29
EXP-1	6J10010-10	Water	5	10/07/16 11:45	10/10/16 13:29
MW-29	6J10010-11	Water	5	10/07/16 12:55	10/10/16 13:29
DUP-6	6J10010-12	Water	5	10/07/16 00:00	10/10/16 13:29
Gasoline Range Organics 8015M					
GW-8	6J10010-02	Water	5	10/07/16 08:20	10/10/16 13:29
GMW-6	6J10010-03	Water	5	10/07/16 09:00	10/10/16 13:29
GMW-47	6J10010-04	Water	5	10/07/16 09:35	10/10/16 13:29
DUP-5	6J10010-05	Water	5	10/07/16 00:00	10/10/16 13:29
GMW-57	6J10010-06	Water	5	10/07/16 10:10	10/10/16 13:29
GMW-60	6J10010-07	Water	5	10/07/16 10:40	10/10/16 13:29
GMW-61	6J10010-08	Water	5	10/07/16 11:10	10/10/16 13:29
MW-16	6J10010-09	Water	5	10/07/16 12:20	10/10/16 13:29
EXP-1	6J10010-10	Water	5	10/07/16 11:45	10/10/16 13:29
MW-29	6J10010-11	Water	5	10/07/16 12:55	10/10/16 13:29
DUP-6	6J10010-12	Water	5	10/07/16 00:00	10/10/16 13:29

MRL

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled: 10/07/16 10/07/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10010-01 6J10010-13 Client ID No: QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1

8260B+OXY+TPHG (EPA 8260B)		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	<0.50	<0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/07/16 10/07/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10010-01 6J10010-13 Client ID No: QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor: 1 1 1 MRL

8260B+OXY+TPHG (EPA 8260E	3) (continued)		
1,4-Dichlorobenzene	< 0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	<0.50	0.50
1,1-Dichloroethane	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	<0.50	0.50
1,1-Dichloroethylene	< 0.50	<0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	<0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	<0.50	0.50
1,2-Dichloropropane	< 0.50	<0.50	0.50
2,2-Dichloropropane	< 0.50	<0.50	0.50
1,3-Dichloropropane	< 0.50	<0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	<0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	<0.50	0.50
1,1-Dichloropropylene	< 0.50	<0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	<0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics (GRO)	<100	<100	100
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	< 0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	<0.50	0.50

MRL

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled: 10/07/16 10/07/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10010-01 6J10010-13 QCEB-1 **Client ID No:** QCTB-1 Water Water Matrix: **Dilution Factor:** 1 1

8260B+OXY+TPHG (EPA 8260B)	(continued)		
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

<u>Surrogates</u>			%REC Limits
4-Bromofluorobenzene	110%	112%	70-140
Dibromofluoromethane	128%	121%	70-140
Toluene-d8	99%	100%	70-140

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331953 Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-02	6J10010-03	6J10010-04	6J10010-05	
Client ID No:	GW-8	GMW-6	GMW-47	DUP-5	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	120	140	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	0.50

0.50

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331953
Date Received: 10/10/16

Date Reported: 10/21/16 Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-02	6J10010-03	6J10010-04	6J10010-05	
Client ID No:	GW-8	GMW-6	GMW-47	DUP-5	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	<0.50	<0.50	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.67	0.72	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	4.9	5.1	1.0
Methylene Chloride	<5.0	<5.0	<5.0	< 5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Styrene	<0.50	< 0.50	< 0.50	< 0.50	0.50

1,1,1,2-Tetrachloroethane

Viorel Vasile Operations Manager < 0.50

< 0.50

< 0.50

< 0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953 Date Received: 10/10/16

Date Reported: 10/21/16

Method: VOCs & OXYG	ENATES by GC	/MS	Units: ug/L							
Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16						
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16						
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16						
AA ID No:	6J10010-02	6J10010-03	6J10010-04	6J10010-05						
Client ID No:	GW-8	GMW-6	GMW-47	DUP-5						
Matrix:	Water	Water	Water	Water						
Dilution Factor:	1	1	1	1	MRL					
8260B+OXYGENATES (EPA 8260B) (continued)										
1,1,2,2-Tetrachloroethane	<0.50	<0.50	<0.50	< 0.50	0.50					
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,1,2-Trichloro-1,2,2-trifluoroeth ane (R113)	<0.50	<0.50	<0.50	<0.50	0.50					
1,3,5-Trimethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
1,2,4-Trimethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
Vinyl chloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
o-Xylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50					
m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0					
<u>Surrogates</u>					%REC Limits					
4-Bromofluorobenzene	108%	109%	108%	111%	70-140					
Dibromofluoromethane	115%	123%	125%	124%	70-140					
Toluene-d8	105%	100%	97%	100%	70-140					

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331953 Date Received: 10/10/16 Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-06	6J10010-07	6J10010-08	6J10010-09	
Client ID No:	GMW-57	GMW-60	GMW-61	MW-16	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	31	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
2-Butanone (MEK)	<10	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	<0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	<0.50	0.50
Chloromethane	2.8	< 0.50	< 0.50	<0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	<0.50	< 0.50	<0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,2-Dichlorobenzene	<0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331953 Date Received: 10/10/16 Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-06	6J10010-07	6J10010-08	6J10010-09	
Client ID No:	GMW-57	GMW-60	GMW-61	MW-16	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			_
1,4-Dichlorobenzene	<0.50	<0.50	<0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	0.64	< 0.50	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	<0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	<0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<10	10
Isopropylbenzene	1.7	0.85	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	1.4	<1.0	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	0.51	< 0.50	< 0.50	<0.50	0.50
Styrene	< 0.50	<0.50	<0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	<0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/10/16

Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-06	6J10010-07	6J10010-08	6J10010-09	
Client ID No:	GMW-57	GMW-60	GMW-61	MW-16	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	60B) (continue	ed)			
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	<0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth ane (R113)	<0.50	<0.50	<0.50	<0.50	0.50
1,3,5-Trimethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,4-Trimethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Vinyl chloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50
o-Xylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0
<u>Surrogates</u>					%REC Limits
4-Bromofluorobenzene	111%	108%	110%	109%	70-140
Dibromofluoromethane	124%	126%	126%	126%	70-140
Toluene-d8	98%	101%	98%	99%	70-140

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

	-			_	
Date Sampled:	10/07/16	10/07/16	10/07/16		
Date Prepared:	10/17/16	10/17/16	10/17/16		
Date Analyzed:	10/17/16	10/17/16	10/17/16		
AA ID No:	6J10010-10	6J10010-11	6J10010-12		
Client ID No:	EXP-1	MW-29	DUP-6		
Matrix:	Water	Water	Water		
Dilution Factor:	1	1	1		MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<10	<10		10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0		2.0
Benzene	< 0.50	< 0.50	< 0.50		0.50
Bromobenzene	< 0.50	< 0.50	< 0.50		0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50		0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50		0.50
Bromoform	< 0.50	< 0.50	< 0.50		0.50
Bromomethane	< 0.50	< 0.50	< 0.50		0.50
2-Butanone (MEK)	<10	<10	<10		10
tert-Butyl alcohol (TBA)	<10	<10	<10		10
sec-Butylbenzene	< 0.50	< 0.50	< 0.50		0.50
tert-Butylbenzene	< 0.50	< 0.50	< 0.50		0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50		0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50		0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50		0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50		0.50
Chloroethane	< 0.50	< 0.50	< 0.50		0.50
Chloroform	< 0.50	< 0.50	< 0.50		0.50
Chloromethane	< 0.50	< 0.50	< 0.50		0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50		0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50		0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0		1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50		0.50
1,2-Dibromoethane (EDB)	<0.50	< 0.50	< 0.50		0.50
Dibromomethane	< 0.50	< 0.50	< 0.50		0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50		0.50
1,2-Dichlorobenzene	< 0.50	< 0.50	< 0.50		0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled:	10/07/16	10/07/16	10/07/16	
Date Prepared:	10/17/16	10/17/16	10/17/16	
Date Analyzed:	10/17/16	10/17/16	10/17/16	
AA ID No:	6J10010-10	6J10010-11	6J10010-12	
Client ID No:	EXP-1	MW-29	DUP-6	
Matrix:	Water	Water	Water	
Dilution Factor:	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)		
1,4-Dichlorobenzene	< 0.50	<0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	10
Isopropylbenzene	< 0.50	< 0.50	< 0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	1.7	<1.0	<1.0	1.0
Methylene Chloride	< 5.0	<5.0	< 5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	10
Naphthalene	<2.0	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	< 0.50	0.50
Styrene	< 0.50	<0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH) AA Project No: A5331953 04-NDLA-013 Date Received: 10/10/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16

Method: VOCs & OXYG	ENATES by GC	c/MS		Units: ug/L						
Date Sampled:	10/07/16	10/07/16	10/07/16							
Date Prepared:	10/17/16	10/17/16	10/17/16							
Date Analyzed:	10/17/16	10/17/16	10/17/16							
AA ID No:	6J10010-10	6J10010-11	6J10010-12							
Client ID No:	EXP-1	MW-29	DUP-6							
Matrix:	Water	Water	Water							
Dilution Factor:	1	1	1	MRL						
8260B+OXYGENATES (EPA 8260B) (continued)										
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	< 0.50	0.50						
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	0.50						
Toluene	< 0.50	< 0.50	< 0.50	0.50						
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	0.50						
1,2,4-Trichlorobenzene	< 0.50	< 0.50	<0.50	0.50						
1,1,1-Trichloroethane	< 0.50	< 0.50	<0.50	0.50						
1,1,2-Trichloroethane	< 0.50	< 0.50	<0.50	0.50						
Trichloroethylene (TCE)	< 0.50	< 0.50	<0.50	0.50						
Trichlorofluoromethane (R11)	< 0.50	< 0.50	<0.50	0.50						
1,2,3-Trichloropropane	<0.50	<0.50	<0.50	0.50						
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	<0.50	0.50						
ane (R113)										
1,3,5-Trimethylbenzene	< 0.50	<0.50	<0.50	0.50						
1,2,4-Trimethylbenzene	<0.50	<0.50	<0.50	0.50						
Vinyl chloride	< 0.50	<0.50	<0.50	0.50						
o-Xylene	< 0.50	<0.50	<0.50	0.50						
m,p-Xylenes	<1.0	<1.0	<1.0	1.0						
Surrogates				%REC Limits						
4-Bromofluorobenzene	111%	112%	109%	70-140						
Dibromofluoromethane	129%	131%	126%	70-140						
Toluene-d8	99%	98%	96%	70-140						

Client: The Source Group, Inc. (SH) AA Project No: A5331953 04-NDLA-013 Date Received: 10/10/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16

Method:	Diesel Range (s: mg/L				
Date Sampled:		10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:		10/12/16	10/12/16	10/12/16	10/12/16	
Date Analyzed:		10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:		6J10010-02	6J10010-03	6J10010-04	6J10010-05	
Client ID No:		GW-8	GMW-6	GMW-47	DUP-5	
Matrix:		Water	Water	Water Water V		
Dilution Factor:		1	1	1	1	MRL
Diesel Range Org	ganics 8015M	(EPA 8015M)				
Diesel Range Orga Diesel	anics as	<0.10	<0.10	2.0	1.9	0.10
Surrogates		4000/	4070/	4000/	4040/	%REC Limits
o-Terphenyl		106%	127%	100%	104%	50-150

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013 Date Received: 10/10/16 Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16

AA Project No: A5331953

Method:	Diesel Range Organics	by GC/FII)			Units: mg/L	
Date Sampled:	10/0	7/16	10/07/16	10/07/16	10/07/16		
Date Prepared:	10/1	2/16	10/12/16	10/12/16	10/12/16		
Date Analyzed:	10/1	3/16	10/13/16	10/13/16	10/13/16		
AA ID No:	6J100	10-06	6J10010-07	6J10010-08	6J10010-09		
Client ID No:	GMV	V-57	GMW-60	GMW-61	MW-16		
Matrix:	Wa	Water W		Water	Water		
Dilution Factor:	1		1	1	1		MRL
Diesel Range Org	anics 8015M (EPA 80	15M <u>)</u>					
Diesel Range Orga Diesel	anics as 0.9	57	0.87	0.39	<0.10		0.10
Surrogates	400	20/	130%	103%	96%	<u>%REC L</u> 50-15	
o-Terphenyl	139	1%	130%	103%	90%	50-13	50

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Date Sampled: 10/07/16 10/07/16 10/07/16 **Date Prepared:** 10/12/16 10/12/16 10/12/16 **Date Analyzed:** 10/13/16 10/13/16 10/13/16 AA ID No: 6J10010-10 6J10010-11 6J10010-12 EXP-1 MW-29 DUP-6 **Client ID No:** Matrix: Water Water Water **Dilution Factor:** 1 **MRL** 1 1 **Diesel Range Organics 8015M (EPA 8015M)**

Diesel Range Organics as <0.10 0.25 0.23 0.10
Diesel

 Surrogates
 %REC Limits

 o-Terphenyl
 100%
 74%
 98%
 50-150

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

metriou.	asomic rang	c Organico by O	Omis. ug/E			
Date Sampled:		10/07/16	10/07/16	10/07/16	10/07/16	
Date Prepared:		10/10/16	10/10/16	10/10/16	10/10/16	
Date Analyzed:		10/10/16	10/10/16	10/10/16	10/10/16	
AA ID No:		6J10010-02	6J10010-03	6J10010-04	6J10010-05	
Client ID No:		GW-8	GMW-6	GMW-47	DUP-5	
Matrix:	latrix: Water		Water	Water	Water	
Dilution Factor:	Dilution Factor:		1	1	1	MRL
Gasoline Range C	organics 8015	SM (EPA 8015M)	1			
Gasoline Range O (GRO)	rganics	<100	<100	<100	<100	100
<u>Surrogates</u>						%REC Limits

95%

93%

92%

96%

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331953

Date Received: 10/10/16

96%

Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L **Date Sampled:** 10/07/16 10/07/16 10/07/16 10/07/16 **Date Prepared:** 10/10/16 10/10/16 10/11/16 10/11/16 **Date Analyzed:** 10/10/16 10/10/16 10/11/16 10/11/16 AA ID No: 6J10010-06 6J10010-07 6J10010-08 6J10010-09 **GMW-57 GMW-60 GMW-61** MW-16 **Client ID No:** Matrix: Water Water Water Water **Dilution Factor:** 1 **MRL** 1 1 1 Gasoline Range Organics 8015M (EPA 8015M) Gasoline Range Organics <100 <100 <100 <100 100 (GRO) **Surrogates %REC Limits**

99%

90%

90%

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled: 10/07/16 10/07/16 10/07/16 **Date Prepared:** 10/11/16 10/11/16 10/11/16 **Date Analyzed:** 10/11/16 10/11/16 10/11/16 AA ID No: 6J10010-10 6J10010-11 6J10010-12 EXP-1 MW-29 DUP-6 **Client ID No:** Matrix: Water Water Water **Dilution Factor:** 1 1 1

Dilution Factor: 1 1 1 MRL

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics <100 <100 <100

(GRO)

Surrogates%REC Limitsa,a,a-Trifluorotoluene93%91%92%80-120

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

		Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
OCs, OXY & TPH Gasoline by G	SC/MS - Qu	ality Contr	ol							
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1)				Prepare	ed & Analy	zed: 1	0/17/16			
Acetone	<10	10	ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L							
Benzene	< 0.50	0.50	ug/L							
Bromobenzene	< 0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

	Reporting			Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOCs, OXY & TPH Gasoline by GC/MS - Quality Control									
Batch B6J1723 - EPA 5030B									

Blank (B6J1723-BLK1) Continue	d			Prepared & Analyzed: 10/17/16
1,1-Dichloroethylene	<0.50	0.50	ug/L	
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L	
1,2-Dichloropropane	< 0.50	0.50	ug/L	
2,2-Dichloropropane	< 0.50	0.50	ug/L	
1,3-Dichloropropane	< 0.50	0.50	ug/L	
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L	
1,1-Dichloropropylene	< 0.50	0.50	ug/L	
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L	
Ethylbenzene	< 0.50	0.50	ug/L	
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L	
Gasoline Range Organics (GRO)	<100	100	ug/L	
Hexachlorobutadiene	<1.0	1.0	ug/L	
2-Hexanone (MBK)	<10	10	ug/L	
Isopropylbenzene	< 0.50	0.50	ug/L	
4-Isopropyltoluene	<1.0	1.0	ug/L	
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L	
Methylene Chloride	<5.0	5.0	ug/L	
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L	
Naphthalene	<2.0	2.0	ug/L	
n-Propylbenzene	< 0.50	0.50	ug/L	
Styrene	< 0.50	0.50	ug/L	
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L	
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L	
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L	
Toluene	< 0.50	0.50	ug/L	
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L	
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L	
1,1,1-Trichloroethane	< 0.50	0.50	ug/L	
1,1,2-Trichloroethane	< 0.50	0.50	ug/L	

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC	/MS - Q	uality Contr	ol							
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continue	d			Prepare	ed & Anal	lyzed: 1	0/17/16			
Trichloroethylene (TCE)	<0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	e <0.50	0.50	ug/L							
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	62.7		ug/L	50		125	70-140			
Surrogate: Toluene-d8	49.7		ug/L	50		99.5	70-140			
LCS (B6J1723-BS1)			J	Prepare	ed: 10/17	/16 Ana	alyzed: 10	0/18/16		
Acetone	47.9	10	ug/L	50		95.8	70-130			
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20		88.4	70-130			
Benzene	22.7	0.50	ug/L	20		113	75-125			
Bromobenzene	19.0	0.50	ug/L	20		94.9	70-130			
Bromochloromethane	21.5	0.50	ug/L	20		108	70-130			
Bromodichloromethane	23.3	0.50	ug/L	20		117	75-125			
Bromoform	16.3	0.50	ug/L	20		81.3	75-125			
Bromomethane	16.5	0.50	ug/L	20		82.6	75-125			
2-Butanone (MEK)	46.0	10	ug/L	50		92.0	70-130			
tert-Butyl alcohol (TBA)	105	10	ug/L	100		105	70-130			
sec-Butylbenzene	21.5	0.50	ug/L	20		108	70-130			
tert-Butylbenzene	22.8	0.50	ug/L	20		114	70-130			
n-Butylbenzene	22.3	0.50	ug/L	20		111	70-130			
Carbon Disulfide	41.5	0.50	ug/L	50		83.1	70-130			
Carbon Tetrachloride	24.2	0.50	ug/L	20		121	75-125			
Chlorobenzene	20.3	0.50	ug/L	20		102	75-125			
Chloroethane	22.5	0.50	ug/L	20		113	75-125			

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	D	0.11.0.	0/050	DDD
	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %R	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

LCS (B6J1723-BS1) Continued				Prepare		alyzed: 10/18/16	
Chloroform	23.5	0.50	ug/L	20	118	75-125	
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125	
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130	
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130	
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125	
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130	
Dibromomethane	21.8	0.50	ug/L	20	109	70-130	
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130	
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125	
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130	
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125	
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125	
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125	
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125	
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130	
2,2-Dichloropropane	24.3	0.50	ug/L	20	122	70-130	
1,3-Dichloropropane	18.6	0.50	ug/L	20	92.8	70-130	
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.9	75-125	
trans-1,3-Dichloropropylene	18.3	0.50	ug/L	20	91.4	70-130	
1,1-Dichloropropylene	23.0	0.50	ug/L	20	115	70-130	
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130	
Ethylbenzene	21.6	0.50	ug/L	20	108	75-125	
Ethyl-tert-Butyl Ether (ETBE)	20.0	2.0	ug/L	20	100	70-130	
Gasoline Range Organics (GRO)	486	100	ug/L	500	97.3	70-130	
Hexachlorobutadiene	18.9	1.0	ug/L	20	94.4	70-130	
2-Hexanone (MBK)	45.3	10	ug/L	50	90.7	70-130	
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130	
4-Isopropyltoluene	22.8	1.0	ug/L	20	114	70-130	

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC **RPD** Units Level Result %REC Limits RPD Result Limit **Limit Notes** Analyte

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B

LCS (B6J1723-BS1) Continued	Prepared: 10/17/16 Analyzed: 10/18/16									
Methyl-tert-Butyl Ether (MTBE)	37.6	1.0	ug/L	40	94.0	75-125				
Methylene Chloride	24.9	5.0	ug/L	20	124	75-130				
4-Methyl-2-pentanone (MIBK)	43.7	10	ug/L	50	87.5	70-130				
Naphthalene	19.8	2.0	ug/L	20	99.2	70-130				
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130				
Styrene	19.4	0.50	ug/L	20	96.8	70-130				
1,1,1,2-Tetrachloroethane	19.4	0.50	ug/L	20	97.1	70-130				
1,1,2,2-Tetrachloroethane	18.4	0.50	ug/L	20	92.2	70-135				
Tetrachloroethylene (PCE)	18.7	0.50	ug/L	20	93.6	75-125				
Toluene	21.2	0.50	ug/L	20	106	75-125				
1,2,3-Trichlorobenzene	18.3	0.50	ug/L	20	91.7	70-130				
1,2,4-Trichlorobenzene	18.4	0.50	ug/L	20	91.8	70-130				
1,1,1-Trichloroethane	24.4	0.50	ug/L	20	122	75-125				
1,1,2-Trichloroethane	19.7	0.50	ug/L	20	98.7	75-125				
Trichloroethylene (TCE)	22.0	0.50	ug/L	20	110	75-125				
Trichlorofluoromethane (R11)	24.8	0.50	ug/L	20	124	70-130				
1,2,3-Trichloropropane	17.3	0.50	ug/L	20	86.6	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane	24.2	0.50	ug/L	20	121	70-130				
(R113)										
1,3,5-Trimethylbenzene	22.1	0.50	ug/L	20	111	70-130				
1,2,4-Trimethylbenzene	22.8	0.50	ug/L	20	114	70-130				
Vinyl chloride	23.0	0.50	ug/L	20	115	75-125				
o-Xylene	21.1	0.50	ug/L	20	105	75-125				
m,p-Xylenes	41.0	1.0	ug/L	40	103	70-130				
Surrogate: 4-Bromofluorobenzene	54.5		ug/L	50	109	70-140				
Surrogate: Dibromofluoromethane	54.0		ug/L	50	108	70-140				
Surrogate: Toluene-d8	53.8		ug/L	50	108	70-140				
Matrix Spike (B6J1723-MS1)	S	ource: 6	J10010-02 F	repare	ed & Analyzed: 1	0/17/16				
Acetone	55.7	10	ug/L	50	111	70-130				
tert-Amyl Methyl Ether (TAME)	19.0	2.0	ug/L	20	94.8	70-130				
Benzene	21.2	0.50	ug/L	20	106	70-130				

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
	reperting			
∆nalvte	Result Limit Units	Level Result %RI	FC Limits RPD	limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Bromobenzene	19.4	0.50	ug/L	20	97.2	70-130
Bromochloromethane	21.7	0.50	ug/L	20	108	70-130
Bromodichloromethane	22.9	0.50	ug/L	20	114	70-130
Bromoform	18.0	0.50	ug/L	20	90.2	70-130
Bromomethane	16.9	0.50	ug/L	20	84.7	70-130
2-Butanone (MEK)	51.9	10	ug/L	50	104	70-130
tert-Butyl alcohol (TBA)	100	10	ug/L	100	100	70-130
sec-Butylbenzene	20.6	0.50	ug/L	20	103	70-130
tert-Butylbenzene	22.0	0.50	ug/L	20	110	70-130
n-Butylbenzene	22.0	0.50	ug/L	20	110	70-130
Carbon Disulfide	45.0	0.50	ug/L	50	90.0	70-130
Carbon Tetrachloride	22.6	0.50	ug/L	20	113	70-130
Chlorobenzene	19.6	0.50	ug/L	20	98.1	70-130
Chloroethane	19.2	0.50	ug/L	20	96.1	70-130
Chloroform	22.7	0.50	ug/L	20	114	70-130
Chloromethane	19.9	0.50	ug/L	20	99.4	70-130
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130
4-Chlorotoluene	21.7	0.50	ug/L	20	109	70-130
1,2-Dibromo-3-chloropropane	24.1	1.0	ug/L	20	121	70-130
Dibromochloromethane	20.9	0.50	ug/L	20	104	70-130
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	96.8	70-130
Dibromomethane	22.3	0.50	ug/L	20	111	70-130
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	108	70-130
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130
1,1-Dichloroethane	22.9	0.50	ug/L	20	114	70-130
1,2-Dichloroethane (EDC)	23.8	0.50	ug/L	20	119	70-130
1,1-Dichloroethylene	23.1	0.50	ug/L	20	115	70-130
trans-1,2-Dichloroethylene	19.9	0.50	ug/L	20	99.7	70-130
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	101	70-130

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
∆nalvte	Result Limit Units	Level Result %RE	C Limits RPD) Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

1,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130
2,2-Dichloropropane	24.2	0.50	ug/L	20	121	70-130
1,3-Dichloropropane	18.9	0.50	ug/L	20	94.6	70-130
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	99.0	70-130
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	99.5	70-130
1,1-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130
Ethylbenzene	20.0	0.50	ug/L	20	100	70-130
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130
Gasoline Range Organics (GRO)	401	100	ug/L	500	80.2	70-130
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.7	70-130
2-Hexanone (MBK)	58.8	10	ug/L	50	118	70-130
Isopropylbenzene	21.5	0.50	ug/L	20	108	70-130
4-Isopropyltoluene	22.2	1.0	ug/L	20	111	70-130
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	103	70-130
Methylene Chloride	26.1	5.0	ug/L	20	11.7 72.2	70-130
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	103	70-130
Naphthalene	24.7	2.0	ug/L	20	123	70-130
n-Propylbenzene	21.5	0.50	ug/L	20	108	70-130
Styrene	18.7	0.50	ug/L	20	93.5	70-130
1,1,1,2-Tetrachloroethane	18.3	0.50	ug/L	20	91.7	70-130
1,1,2,2-Tetrachloroethane	21.1	0.50	ug/L	20	106	70-130
Tetrachloroethylene (PCE)	17.1	0.50	ug/L	20	85.7	70-130
Toluene	19.2	0.50	ug/L	20	95.8	70-130
1,2,3-Trichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	95.6	70-130
1,1,1-Trichloroethane	22.3	0.50	ug/L	20	112	70-130
1,1,2-Trichloroethane	19.5	0.50	ug/L	20	97.6	70-130
Trichloroethylene (TCE)	20.1	0.50	ug/L	20	100	70-130
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	118	70-130
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	104	70-130

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/10/16
Date Reported: 10/21/16

AA Project No: A5331953

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC	/MS - Q	uality Contr	ol						
Batch B6J1723 - EPA 5030B									
Matrix Spike (B6J1723-MS1) Con	tinued	Source: 6J1	0010-02	Prepare	ed & Analyzed: 1	0/17/16			
1,1,2-Trichloro-1,2,2-trifluoroethane			ug/L	20	120	70-130			
(R113)			ŭ						
1,3,5-Trimethylbenzene	21.7		ug/L	20	109	70-130			
1,2,4-Trimethylbenzene	22.3		ug/L	20	112	70-130			
Vinyl chloride	22.7		ug/L	20	113	70-130			
o-Xylene	20.0		ug/L	20	99.8	70-130			
m,p-Xylenes	38.7	1.0	ug/L	40	96.8	70-130			
Surrogate: 4-Bromofluorobenzene	54.6		ug/L	50	109	70-140			
Surrogate: Dibromofluoromethane	53.1		ug/L	50	106	70-140			
Surrogate: Toluene-d8	49.0		ug/L	50	98.0	70-140			
Matrix Spike Dup (B6J1723-MSD1	1)	Source: 6J1	•	Prepare	ed & Analyzed: 1	0/17/16			
Acetone	57.3	10	ug/L	50	115	70-130	2.76	30	
tert-Amyl Methyl Ether (TAME)	19.4		ug/L	20	96.8	70-130	2.14	30	
Benzene	22.3		ug/L	20	111	70-130	4.73	30	
Bromobenzene	20.2		ug/L	20	101	70-130	3.93	30	
Bromochloromethane	21.4	0.50	ug/L	20	107	70-130	1.58	30	
Bromodichloromethane	23.6		ug/L	20	118	70-130	3.23	30	
Bromoform	17.6		ug/L	20	87.8	70-130	2.70	30	
Bromomethane	17.3		ug/L	20	86.4	70-130	2.04	30	
2-Butanone (MEK)	58.3		ug/L	50	117	70-130	11.5	30	
tert-Butyl alcohol (TBA)	109		ug/L	100	109	70-130	8.17	30	
sec-Butylbenzene	21.2		ug/L	20	106	70-130	2.91	30	
tert-Butylbenzene	22.5		ug/L	20	113	70-130	2.65	30	
n-Butylbenzene	22.1	0.50	ug/L	20	110	70-130	0.227	30	
Carbon Disulfide	40.0		ug/L	50	80.0	70-130	11.7	30	
Carbon Tetrachloride	23.2		ug/L	20	116	70-130	2.93	30	
Chlorobenzene	19.7		ug/L	20	98.6	70-130		30	
Chloroethane	20.6		ug/L	20	103	70-130	6.93	30	
Chloroform	23.2		ug/L	20	116	70-130	1.92	30	
Chloromethane	21.3		ug/L	20	106	70-130	6.85	30	
2-Chlorotoluene	22.9	0.50	ug/L	20	115	70-130	5.88	30	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/10/16
Date Reported: 10/21/16

AA Project No: A5331953

Analyte	Result	Reporting Limit	Units		Source Result %RE	%REC EC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Q	uality Contro	ol _	_			_	_	
Batch B6J1723 - EPA 5030B									
Matrix Spike Dup (B6J1723-MSD1	1) 5	Source: 6J1	0010-02	Prepare	ed & Analyzed	10/17/16			
Continued	,			1	,	-			
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	1.64	30	
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119		1.08	30	
Dibromochloromethane	21.5	0.50	ug/L	20	108			30	
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101		4.35	30	
Dibromomethane	23.7	0.50	ug/L	20	119		6.31	30	
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104		3.27	30	
1,2-Dichlorobenzene	22.4	0.50	ug/L	20	112		3.92	30	
1,4-Dichlorobenzene	20.6	0.50	ug/L	20	103		3.36	30	
Dichlorodifluoromethane (R12)	19.0	0.50	ug/L	20	95.	2 70-130	2.71	30	
1,1-Dichloroethane	23.3	0.50	ug/L	20	116		1.78	30	
1,2-Dichloroethane (EDC)	24.2	0.50	ug/L	20	12′		1.67	30	
1,1-Dichloroethylene	23.8	0.50	ug/L	20	119		3.11	30	
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102		1.79	30	
cis-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102		1.03	30	
1,2-Dichloropropane	23.8	0.50	ug/L	20	119		7.49	30	
2,2-Dichloropropane	23.9	0.50	ug/L	20	120		1.25	30	
1,3-Dichloropropane	19.3	0.50	ug/L	20	96.		1.99	30	
cis-1,3-Dichloropropylene	20.3	0.50	ug/L	20	102		2.69	30	
trans-1,3-Dichloropropylene	20.3	0.50	ug/L	20	101		1.79	30	
1,1-Dichloropropylene	21.9	0.50	ug/L	20	110		7.48	30	
Diisopropyl ether (DIPE)	23.4	2.0	ug/L	20	117		5.00	30	
Ethylbenzene	20.4	0.50	ug/L	20	102		1.73	30	
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	108		3.91	30	
Gasoline Range Organics (GRO)	446	100	ug/L	500	89.		10.6	30	
Hexachlorobutadiene	19.8	1.0	ug/L	20	99.		5.50	30	
2-Hexanone (MBK)	56.2	10	ug/L	50	112		4.54	30	
Isopropylbenzene	22.2	0.50	ug/L	20	111		3.06	30	
4-Isopropyltoluene	22.3	1.0	ug/L	20	112		0.539	30	
Methyl-tert-Butyl Ether (MTBE)	43.6	1.0	ug/L	40	109		5.59	30	
Methylene Chloride	27.2		ug/L	20	11.7 77.		4.12	30	
4-Methyl-2-pentanone (MIBK)	53.0	10	ug/L	50	106	70-130	3.04	30	

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Q	uality Contro	ol						
Batch B6J1723 - EPA 5030B									
Matrix Spike Dup (B6J1723-MSD1)	Source: 6J1	0010-02	Prepare	ed & Analyzed: 1	0/17/16			
Continued					-				
Naphthalene	25.7		ug/L	20	129	70-130	4.05	30	
n-Propylbenzene	22.2		ug/L	20	111	70-130	3.02	30	
Styrene	18.8		ug/L	20	94.2	70-130	0.746	30	
1,1,1,2-Tetrachloroethane	18.5		ug/L	20	92.5	70-130	0.869	30	
1,1,2,2-Tetrachloroethane	21.3		ug/L	20	106	70-130	0.801	30	
Tetrachloroethylene (PCE)	18.3		ug/L	20	91.3	70-130	6.33	30	
Toluene	20.1		ug/L	20	100	70-130	4.79	30	
1,2,3-Trichlorobenzene	20.8		ug/L	20	104	70-130	4.23	30	
1,2,4-Trichlorobenzene	20.0		ug/L	20	100	70-130	4.70	30	
1,1,1-Trichloroethane	23.8		ug/L	20	119	70-130	6.33	30	
1,1,2-Trichloroethane	20.7		ug/L	20	103	70-130	5.67	30	
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104	70-130	3.33	30	
Trichlorofluoromethane (R11)	24.6		ug/L	20	123	70-130	3.89	30	
1,2,3-Trichloropropane	19.9		ug/L	20	99.6	70-130	4.56	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.7	0.50	ug/L	20	119	70-130	1.34	30	
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	109	70-130	0.413	30	
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	114	70-130	1.77	30	
Vinyl chloride	23.7	0.50	ug/L	20	119	70-130	4.48	30	
o-Xylene	20.3	0.50	ug/L	20	101	70-130	1.54	30	
m,p-Xylenes	38.6	1.0	ug/L	40	96.5	70-130	0.284	30	
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	52.8	}	ug/L	50	106	70-140			
Surrogate: Toluene-d8	48.8	}	ug/L	50	97.6	70-140			
VOCs & OXYGENATES by GC/MS -	Qualit	y Control	_						
Batch B6J1723 - EPA 5030B	•								
Blank (B6J1723-BLK1)				Prepare	ed & Analyzed: 1	0/17/16			
Acetone	<10	10	ug/L						
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L						
Benzene	<0.50	0.50	ug/L						

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	F Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS - Quality Control										
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continued			Prepared & Analyzed: 10/17/16							
Bromobenzene	<0.50	0.50	ug/L			•				
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331953Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	I Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -										
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continued	t			Prepare	ed & Ana	lyzed: 1	0/17/16			
1,2-Dichloropropane	<0.50	0.50	ug/L	1		<u>, </u>				
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	e <0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)

AA Project No: A5331953 04-NDLA-013 Date Received: 10/10/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
OCs & OXYGENATES by GC/MS	- Quality	Control	_				_	-	_
Batch B6J1723 - EPA 5030B	-								
Blank (B6J1723-BLK1) Continue	d			Prepare	ed & Analyzed: 1	0/17/16			
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L	•	•				
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L						
Vinyl chloride	< 0.50	0.50	ug/L						
o-Xylene	< 0.50	0.50	ug/L						
m,p-Xylenes	<1.0	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	62.7		ug/L	50	125	70-140			
Surrogate: Toluene-d8	49.7		ug/L	50	99.5	70-140			
LCS (B6J1723-BS1)			-3		ed: 10/17/16 Ana		0/18/16		
Acetone	47.9	10	ug/L	50	95.8	70-130			
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20	88.4	70-130			
Benzene	22.7	0.50	ug/L	20	113	75-125			
Bromobenzene	19.0	0.50	ug/L	20	94.9	70-130			
Bromochloromethane	21.5	0.50	ug/L	20	108	70-130			
Bromodichloromethane	23.3	0.50	ug/L	20	117	75-125			
Bromoform	16.3	0.50	ug/L	20	81.3	75-125			
Bromomethane	16.5	0.50	ug/L	20	82.6	75-125			
2-Butanone (MEK)	46.0	10	ug/L	50	92.0	70-130			
tert-Butyl alcohol (TBA)	105	10	ug/L	100	105	70-130			
sec-Butylbenzene	21.5	0.50	ug/L	20	108	70-130			
tert-Butylbenzene	22.8	0.50	ug/L	20	114	70-130			
n-Butylbenzene	22.3	0.50	ug/L	20	111	70-130			
Carbon Disulfide	41.5	0.50	ug/L	50	83.1	70-130			
Carbon Tetrachloride	24.2	0.50	ug/L	20	121	75-125			
Chlorobenzene	20.3	0.50	ug/L	20	102	75-125			
Chloroethane	22.5	0.50	ug/L	20	113	75-125			
Chloroform	23.5	0.50	ug/L	20	118	75-125			
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125			
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130			
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130			
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130			

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

04-NDLA-013 Project No:

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %RI	EC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B								
LCS (B6J1723-BS1) Continued				Prepare	ed: 10/17/16 An	alyzed: 10/1	8/16	
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125		
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130		
Dibromomethane	21.8	0.50	ug/L	20	109	70-130		
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130		
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130		
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125		
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130		
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125		
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125		
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130		
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125		
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125		
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130		
2,2-Dichloropropane	24.3	0.50	ug/L	20	122	70-130		
1,3-Dichloropropane	18.6	0.50	ug/L	20	92.8	70-130		
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.9	75-125		
trans-1,3-Dichloropropylene	18.3	0.50	ug/L	20	91.4	70-130		
1,1-Dichloropropylene	23.0	0.50	ug/L	20	115	70-130		
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130		
Ethylbenzene	21.6	0.50	ug/L	20	108	75-125		
Ethyl-tert-Butyl Ether (ETBE)	20.0	2.0	ug/L	20	100	70-130		
Hexachlorobutadiene	18.9	1.0	ug/L	20	94.4	70-130		
2-Hexanone (MBK)	45.3	10	ug/L	50	90.7	70-130		
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130		
4-Isopropyltoluene	22.8	1.0	ug/L	20	114	70-130		
Methyl-tert-Butyl Ether (MTBE)	37.6	1.0	ug/L	40	94.0	75-125		
Methylene Chloride	24.9	5.0	ug/L	20	124	75-130		
4-Methyl-2-pentanone (MIBK)	43.7	10	ug/L	50	87.5	70-130		
Naphthalene	19.8	2.0	ug/L	20	99.2	70-130		
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130		
Styrene	19.4	0.50	ug/L	20	96.8	70-130		

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Limit Notes Analyte Result Limit **VOCs & OXYGENATES by GC/MS - Quality Control** Batch B6J1723 - EPA 5030B Prepared: 10/17/16 Analyzed: 10/18/16 LCS (B6J1723-BS1) Continued 19.4 0.50 20 97.1 70-130 1,1,1,2-Tetrachloroethane ug/L 18.4 0.50 20 92.2 1,1,2,2-Tetrachloroethane ug/L 70-135 Tetrachloroethylene (PCE) 18.7 0.50 ug/L 20 93.6 75-125 21.2 0.50 106 Toluene ug/L 20 75-125 1,2,3-Trichlorobenzene 18.3 0.50 ug/L 20 91.7 70-130 18.4 0.50 91.8 1,2,4-Trichlorobenzene ug/L 20 70-130 24.4 0.50 122 1,1,1-Trichloroethane ug/L 20 75-125 1,1,2-Trichloroethane 19.7 0.50 ug/L 20 98.7 75-125 110 Trichloroethylene (TCE) 22.0 0.50 20 75-125 ug/L Trichlorofluoromethane (R11) 24.8 0.50 124 70-130 ug/L 20 17.3 1,2,3-Trichloropropane 0.50 ug/L 20 86.6 70-130 121 1,1,2-Trichloro-1,2,2-trifluoroethane 24.2 0.50 70-130 ug/L 20 (R113) 22.1 0.50 20 111 70-130 1,3,5-Trimethylbenzene ug/L 1,2,4-Trimethylbenzene 22.8 0.50 20 114 70-130 ug/L Vinyl chloride 23.0 0.50 ug/L 20 115 75-125 21.1 0.50 105 o-Xylene ug/L 20 75-125 41.0 1.0 103 m,p-Xylenes ug/L 40 70-130 54.5 50 Surrogate: 4-Bromofluorobenzene ug/L 109 70-140 54.0 Surrogate: Dibromofluoromethane ug/L 50 108 70-140 Surrogate: Toluene-d8 53.8 50 ug/L 108 70-140 Matrix Spike (B6J1723-MS1) Source: 6J10010-02 Prepared & Analyzed: 10/17/16 55.7 <10 111 10 ug/L 50 70-130 Acetone tert-Amyl Methyl Ether (TAME) 19.0 2.0 ug/L 20 < 2.0 94.8 70-130 < 0.50 21.2 0.50 106 Benzene ug/L 20 70-130 19.4 0.50 < 0.50 97.2 70-130 Bromobenzene ug/L 20 Bromochloromethane 21.7 0.50 20 < 0.50 108 70-130 ug/L 22.9 < 0.50 114 Bromodichloromethane 0.50ug/L 20 70-130 < 0.50 90.2 **Bromoform** 18.0 0.50 ug/L 20 70-130 16.9 0.50 < 0.50 84.7 **Bromomethane** ug/L 20 70-130 51.9 104 2-Butanone (MEK) 10 ug/L 50 <10 70-130

Client: The Source Group, Inc. (SH)

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953 Date Received: 10/10/16 Date Reported: 10/21/16

Analyte F	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS - 0	Quality	Control								
Batch B6J1723 - EPA 5030B										
Matrix Spike (B6J1723-MS1) Conti	nued S	Source: 6J1	0010-02	Prepare	ed & Analy	yzed: 10	0/17/16			
tert-Butyl alcohol (TBA)	100	10	ug/L	100	<10	100	70-130			-
sec-Butylbenzene	20.6	0.50	ug/L	20	< 0.50	103	70-130			
tert-Butylbenzene	22.0	0.50	ug/L	20	< 0.50	110	70-130			
n-Butylbenzene	22.0	0.50	ug/L	20	< 0.50	110	70-130			
Carbon Disulfide	45.0	0.50	ug/L	50	< 0.50	90.0	70-130			
Carbon Tetrachloride	22.6	0.50	ug/L	20	< 0.50	113	70-130			
Chlorobenzene	19.6	0.50	ug/L	20	< 0.50	98.1	70-130			
Chloroethane	19.2	0.50	ug/L	20	< 0.50	96.1	70-130			
Chloroform	22.7	0.50	ug/L	20	< 0.50	114	70-130			
Chloromethane	19.9	0.50	ug/L	20	< 0.50	99.4	70-130			
2-Chlorotoluene	21.6	0.50	ug/L	20	< 0.50	108	70-130			
4-Chlorotoluene	21.7	0.50	ug/L	20	< 0.50	109	70-130			
1,2-Dibromo-3-chloropropane	24.1	1.0	ug/L	20	<1.0	121	70-130			
Dibromochloromethane	20.9	0.50	ug/L	20	< 0.50	104	70-130			
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	<0.50	96.8	70-130			
Dibromomethane	22.3	0.50	ug/L	20	< 0.50	111	70-130			
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130			
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	< 0.50	108	70-130			
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	< 0.50		70-130			
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	< 0.50		70-130			
1,1-Dichloroethane	22.9	0.50	ug/L	20	< 0.50	114	70-130			
1,2-Dichloroethane (EDC)	23.8	0.50	ug/L	20	< 0.50	119	70-130			
1,1-Dichloroethylene	23.1	0.50	ug/L	20	< 0.50	115	70-130			
trans-1,2-Dichloroethylene	19.9	0.50	ug/L	20	< 0.50		70-130			
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	< 0.50	101	70-130			
1,2-Dichloropropane	22.1	0.50	ug/L	20	< 0.50	110	70-130			
2,2-Dichloropropane	24.2	0.50	ug/L	20	< 0.50	121	70-130			
1,3-Dichloropropane	18.9	0.50	ug/L	20	< 0.50		70-130			
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	<0.50		70-130			
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	< 0.50	99.5	70-130			

1,1-Dichloropropylene

Viorel Vasile Operations Manager ug/L

20

< 0.50 102 70-130

0.50

20.3

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Poperting	Snika Sauraa	0/ DEC	RPD
	Reporting	Spike Source	%REC	KFD
Analyte	Result Limit Units	Level Result %F	REC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Batch B6J1723 - EPA 5030B								
Matrix Spike (B6J1723-MS1) Conti	nued S	ource: 6	6 J10010-02 F	repar	ed & Analy	zed: 1	0/17/16	
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	<2.0	111	70-130	
Ethylbenzene	20.0	0.50	ug/L	20	< 0.50	100	70-130	
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	<2.0	104	70-130	
Hexachlorobutadiene	18.7	1.0	ug/L	20	<1.0	93.7	70-130	
2-Hexanone (MBK)	58.8	10	ug/L	50	<10	118	70-130	
Isopropylbenzene	21.5	0.50	ug/L	20	< 0.50	108	70-130	
4-Isopropyltoluene	22.2	1.0	ug/L	20	<1.0	111	70-130	
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	<1.0	103	70-130	
Methylene Chloride	26.1	5.0	ug/L	20	<5.0	131	70-130	
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	<10	103	70-130	
Naphthalene	24.7	2.0	ug/L	20	<2.0	123	70-130	
n-Propylbenzene	21.5	0.50	ug/L	20	< 0.50	108	70-130	
Styrene	18.7	0.50	ug/L	20	< 0.50	93.5	70-130	
1,1,1,2-Tetrachloroethane	18.3	0.50	ug/L	20	< 0.50	91.7	70-130	
1,1,2,2-Tetrachloroethane	21.1	0.50	ug/L	20	< 0.50	106	70-130	
Tetrachloroethylene (PCE)	17.1	0.50	ug/L	20	< 0.50	85.7	70-130	
Toluene	19.2	0.50	ug/L	20	< 0.50	95.8	70-130	
1,2,3-Trichlorobenzene	19.9	0.50	ug/L	20	< 0.50	99.4	70-130	
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	< 0.50	95.6	70-130	
1,1,1-Trichloroethane	22.3	0.50	ug/L	20	< 0.50	112	70-130	
1,1,2-Trichloroethane	19.5	0.50	ug/L	20	< 0.50	97.6	70-130	
Trichloroethylene (TCE)	20.1	0.50	ug/L	20	< 0.50	100	70-130	
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	< 0.50	118	70-130	
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	< 0.50	104	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane	24.0	0.50	ug/L	20	< 0.50	120	70-130	
(R113)								
1,3,5-Trimethylbenzene	21.7	0.50	ug/L	20	< 0.50	109	70-130	
1,2,4-Trimethylbenzene	22.3	0.50	ug/L	20	< 0.50	112	70-130	
Vinyl chloride	22.7	0.50	ug/L	20	< 0.50	113	70-130	
o-Xylene	20.0	0.50	ug/L	20	< 0.50	99.8	70-130	
m,p-Xylenes	38.7	1.0	ug/L	40	<1.0	96.8	70-130	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/10/16

Date Reported: 10/21/16

AA Project No: A5331953

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result %R	REC Limits	RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	/ Control							
Batch B6J1723 - EPA 5030B									
Matrix Spike (B6J1723-MS1) Cont	inued	Source: 6J1	0010-02	Prepare	ed & Analyze	d: 10/17/16			
Surrogate: 4-Bromofluorobenzene	54.6		ug/L	50	1	09 70-140			
Surrogate: Dibromofluoromethane	53.1		ug/L	50	1	06 70-140			
Surrogate: Toluene-d8	49.0		ug/L	50	98	B.0 70-140			
Matrix Spike Dup (B6J1723-MSD1) ;	Source: 6J1	0010-02	Prepare	ed & Analyze	d: 10/17/16			
Acetone	57.3	10	ug/L	50	<10 1	15 70-130	2.76	30	

Surrogate: Toluene-d8	<i>4</i> 9.0		ug/L	50		98.0	70-140			
Matrix Spike Dup (B6J1723-MSD1)	Sc	ource: 6	J10010-02	Prepare	ed & Analy	zed: 1	0/17/16			
Acetone	57.3	10	ug/L	50	<10	115	70-130	2.76	30	
tert-Amyl Methyl Ether (TAME)	19.4	2.0	ug/L	20	<2.0	96.8	70-130	2.14	30	
Benzene	22.3	0.50	ug/L	20	< 0.50	111	70-130	4.73	30	
Bromobenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130	3.93	30	
Bromochloromethane	21.4	0.50	ug/L	20	< 0.50	107	70-130	1.58	30	
Bromodichloromethane	23.6	0.50	ug/L	20	< 0.50	118	70-130	3.23	30	
Bromoform	17.6	0.50	ug/L	20	< 0.50	87.8	70-130	2.70	30	
Bromomethane	17.3	0.50	ug/L	20	< 0.50	86.4	70-130	2.04	30	
2-Butanone (MEK)	58.3	10	ug/L	50	<10	117	70-130	11.5	30	
tert-Butyl alcohol (TBA)	109	10	ug/L	100	<10	109	70-130	8.17	30	
sec-Butylbenzene	21.2	0.50	ug/L	20	< 0.50	106	70-130	2.91	30	
tert-Butylbenzene	22.5	0.50	ug/L	20	< 0.50	113	70-130	2.65	30	
n-Butylbenzene	22.1	0.50	ug/L	20	< 0.50	110	70-130	0.227	30	
Carbon Disulfide	40.0	0.50	ug/L	50	< 0.50	0.08	70-130	11.7	30	
Carbon Tetrachloride	23.2	0.50	ug/L	20	< 0.50	116	70-130	2.93	30	
Chlorobenzene	19.7	0.50	ug/L	20	< 0.50	98.6	70-130	0.508	30	
Chloroethane	20.6	0.50	ug/L	20	< 0.50	103	70-130	6.93	30	
Chloroform	23.2	0.50	ug/L	20	< 0.50	116	70-130	1.92	30	
Chloromethane	21.3	0.50	ug/L	20	< 0.50	106	70-130	6.85	30	
2-Chlorotoluene	22.9	0.50	ug/L	20	< 0.50	115	70-130	5.88	30	
4-Chlorotoluene	22.1	0.50	ug/L	20	< 0.50	110	70-130	1.64	30	
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	<1.0	119	70-130	1.08	30	
Dibromochloromethane	21.5	0.50	ug/L	20	< 0.50	108	70-130	2.97	30	
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	< 0.50	101	70-130	4.35	30	
Dibromomethane	23.7	0.50	ug/L	20	< 0.50	119	70-130	6.31	30	
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	< 0.50	104	70-130	3.27	30	
1,2-Dichlorobenzene	22.4	0.50	ug/L	20	<0.50	112	70-130	3.92	30	

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Source: 6J10010-02 Prepared & Analyzed: 10/17/16 Matrix Spike Dup (B6J1723-MSD1) Continued 20.6 0.50 < 0.50 103 30 1,4-Dichlorobenzene ug/L 20 70-130 3.36 19.0 0.50 < 0.50 95.2 20 70-130 2.71 30 Dichlorodifluoromethane (R12) ua/L 1,1-Dichloroethane 23.3 0.50 ug/L 20 < 0.50 116 70-130 1.78 30 24.2 0.50 20 < 0.50 121 30 1,2-Dichloroethane (EDC) ug/L 70-130 1.67 23.8 0.50 < 0.50 119 1,1-Dichloroethylene ug/L 20 70-130 3.11 30 trans-1,2-Dichloroethylene 20.3 0.50 ug/L 20 < 0.50 102 70-130 1.79 30 20.4 0.50 < 0.50 102 cis-1,2-Dichloroethylene ug/L 20 70-130 1.03 30 23.8 0.50 20 < 0.50 119 70-130 7.49 30 1,2-Dichloropropane ua/L 23.9 0.50 < 0.50 120 2,2-Dichloropropane 70-130 30 ug/L 20 1.25 19.3 0.50 20 < 0.50 96.6 70-130 30 1,3-Dichloropropane ug/L 1.99 20.3 0.50 < 0.50 102 cis-1,3-Dichloropropylene ug/L 20 70-130 2.69 30 trans-1,3-Dichloropropylene 20.3 0.50 < 0.50 101 70-130 30 ug/L 20 1.79 1,1-Dichloropropylene 21.9 0.50 ug/L 20 < 0.50 110 70-130 7.48 30 23.4 2.0 < 2.0 117 Diisopropyl ether (DIPE) 20 70-130 30 ua/L 5.00 20.4 0.50 < 0.50 102 Ethylbenzene ug/L 20 70-130 1.73 30 21.6 2.0 20 < 2.0 108 70-130 30 Ethyl-tert-Butyl Ether (ETBE) ug/L 3.91 19.8 1.0 <1.0 99.0 Hexachlorobutadiene ug/L 20 70-130 5.50 30 2-Hexanone (MBK) 56.2 10 50 <10 112 70-130 30 ug/L 4.54 22.2 0.50 < 0.50 111 Isopropylbenzene ug/L 20 70-130 3.06 30 22.3 1.0 <1.0 112 4-Isopropyltoluene ug/L 20 70-130 0.539 30 43.6 1.0 <1.0 109 Methyl-tert-Butyl Ether (MTBE) 40 70-130 5.59 30 ug/L < 5.0 136 Methylene Chloride 27.2 5.0 ug/L 20 70-130 4.12 30 4-Methyl-2-pentanone (MIBK) 53.0 10 ug/L 50 <10 106 70-130 3.04 30 129 Naphthalene 25.7 2.0 20 <2.0 70-130 4.05 30 ug/L < 0.50 n-Propylbenzene 22.2 0.50 ug/L 20 111 70-130 3.02 30 18.8 0.50 < 0.50 94.2 Styrene ug/L 20 70-130 0.746 30 18.5 0.50 < 0.50 92.5 1,1,1,2-Tetrachloroethane 20 70-130 0.869 30 ug/L < 0.50 1,1,2,2-Tetrachloroethane 21.3 0.50 ug/L 20 106 70-130 0.801 30 18.3 0.50 < 0.50 91.3 Tetrachloroethylene (PCE) ug/L 20 70-130 6.33 30 < 0.50 100 Toluene 20.1 0.50 ug/L 20 70-130 4.79 30 < 0.50 104 20.8 0.50 1,2,3-Trichlorobenzene ug/L 20 70-130 4.23 30

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	Control								
Batch B6J1723 - EPA 5030B	•									
Matrix Spike Dup (B6J1723-MSD	1) S	Source: 6J1	0010-02	Prepare	ed & Anal	yzed: 1	0/17/16			
Continued	,			•	•	,				
1,2,4-Trichlorobenzene	20.0	0.50	ug/L	20	<0.50	100	70-130	4.70	30	
1,1,1-Trichloroethane	23.8	0.50	ug/L	20	< 0.50	119	70-130	6.33	30	
1,1,2-Trichloroethane	20.7	0.50	ug/L	20	< 0.50	103	70-130	5.67	30	
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	< 0.50	104	70-130	3.33	30	
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	< 0.50	123	70-130	3.89	30	
1,2,3-Trichloropropane	19.9	0.50	ug/L	20	<0.50		70-130	4.56	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.7	0.50	ug/L	20	<0.50	119	70-130	1.34	30	
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	< 0.50	109	70-130	0.413	30	
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	< 0.50	114	70-130	1.77	30	
Vinyl chloride	23.7	0.50	ug/L	20	<0.50	119	70-130	4.48	30	
o-Xylene	20.3	0.50	ug/L	20	<0.50	101	70-130	1.54	30	
m,p-Xylenes	38.6	1.0	ug/L	40	<1.0	96.5	70-130	0.284	30	
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	52.8		ug/L	50		106	70-140			
Surrogate: Toluene-d8	<i>4</i> 8.8		ug/L	50		97.6	70-140			
Diesel Range Organics by GC/FID	- Quality	Control								
Batch B6J1220 - EPA 3510C										
Blank (B6J1220-BLK1)				Prepare	ed: 10/12/	16 Ana	alyzed: 10	0/13/16		
Diesel Range Organics as Diesel	<0.10	0.10	mg/L							
Surrogate: o-Terphenyl	0.0398		mg/L	0.040		99.6	50-150			
LCS (B6J1220-BS1)				Prepare	ed: 10/12/	16 Ana	alyzed: 10	0/13/16		
Diesel Range Organics as Diesel	0.904	0.10	mg/L	0.80		113	75-125			
Surrogate: o-Terphenyl	0.0546		mg/L	0.040		136	50-150			
LCS Dup (B6J1220-BSD1)			-	Prepare	ed: 10/12/	16 Ana	alyzed: 10	0/13/16		
Diesel Range Organics as Diesel	0.806	0.10	mg/L	0.80		101	75-125	11.5	30	
Surrogate: o-Terphenyl	0.0513		mg/L	0.040		128	50-150			

A

Gasoline Range Organics by GC/FID - Quality Control

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953 Date Received: 10/10/16 Date Reported: 10/21/16

Analyte	F Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline Range Organics by GC/F	ID - Qual	ity Control								
Batch B6J1039 - EPA 5030B		•								
Blank (B6J1039-BLK1)				Prepare	ed & Analy	zed: 1	0/10/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	<i>52.4</i>		ug/L	50		105	80-120			
LCS (B6J1039-BS1)				Prepare	ed & Analy	zed: 1	0/10/16			
Gasoline Range Organics (GRO)	437	100	ug/L	500		87.4	75-125			
Surrogate: a,a,a-Trifluorotoluene	46.6		ug/L	50		93.2	80-120			
LCS Dup (B6J1039-BSD1)				Prepare	ed & Analy	zed: 1	0/10/16			
Gasoline Range Organics (GRO)	447	100	ug/L	500		89.4	75-125	2.22	30	
Surrogate: a,a,a-Trifluorotoluene	48.8		ug/L	50		97.5	80-120			
Batch B6J1129 - EPA 5030B										
Blank (B6J1129-BLK1)				Prepare	ed & Analy	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	47.8		ug/L	50		95.7	80-120			
LCS (B6J1129-BS1)				Prepare	ed & Analy	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	425	100	ug/L	500		85.1	75-125			
Surrogate: a,a,a-Trifluorotoluene	45.2		ug/L	50		90.4	80-120			
LCS Dup (B6J1129-BSD1)				Prepare	ed & Analy	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	429	100	ug/L	500		85.8	75-125	0.825	30	
Surrogate: a,a,a-Trifluorotoluene	48.4		ug/L	50		96.7	80-120			
Matrix Spike (B6J1129-MS1)	S	ource: 6J1	0011-03	Prepare	ed & Analy	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	486	100	ug/L	500	53.4	86.5	70-130			
Surrogate: a,a,a-Trifluorotoluene	45.8		ug/L	50		91.6	80-120			
Matrix Spike Dup (B6J1129-MSD	1) S	ource: 6J1	001 <mark>1-03</mark>	Prepare	ed & Analy	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	476	100	ug/L	500	53.4	84.6	70-130	1.99	30	
Surrogate: a,a,a-Trifluorotoluene	44.1		ug/L	50		88.2	80-120			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331953

Date Received: 10/10/16

Date Reported: 10/21/16

Special Notes

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

A.A. COC No.: (九) 289位 70046817

Tel: 818-998-5547 FAX: 818-998-7258

Instructions Special Received by Received by \$ 0 D TEMP DAULO WOOM SAMPE INTEGRALY Please enter the TAT Turnaround Codes ** below Sampler's Name: Sampler's Signature: Quote No.: ANALYSIS REQUESTED (Test Name) Salme Salme Time Time Cate Co Date Date Ž > V Ž ¥ X Relinquished by Relinquished by Relinquished by X UKS Noralk V Cont Ŋ Š. ₽ 01900 1 O 10 Working Days (Standard TAT) Sample Matrix 3 GE 9 20 OE GE 3 10 3 E E B 9 \mathcal{O} Project Name / No.: State & Zip: 80 Site Address: 00/ 37 Time 01/ 10 15 * 18 / N XXXX . ⊗ Coc (4) = 72 Hour Rush(5) = 5 Day Rush97-1-07 DING 11/00 91-1-10 31-601 10-7-16 10-7-16 10-7-16 37101 10-7-16 10-7-16 10-7-16 Date 01001C9 11 TAT Turnaround Codes 9 2 9 710010-01) 5 7 (X) (Y) 7 × Date to Comme TOS SECZ X A.A. I.D. For Laboratory Use A.A. Project No.: マンスシータへ3 040-165-225-Same Day Rush = 24 Hour Rush 10r Ebs 2951 48 Hour Rush (N) (P) 5mm-61 09-14150 Client I.D. GMW-57 815.29 Project Manager: Grim-10 SCE-ありこの -83JO 600 m-4-050100 DUP 6 T CX3 いって Phone: Client: Fax:

Note: By relinquishing samples to American Analytics, client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 21, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331954 / 6J10011

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/10/16 13:28 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received					
8260B+OXY+TPHG										
QCTB-1	6J10011-01	Water	5	10/10/16 06:00	10/10/16 13:28					
QCEB-1	6J10011-09	Water	5	10/10/16 11:15	10/10/16 13:28					
8260B+OXYGENATES										
GMW-12	6J10011-02	Water	5	10/10/16 08:05	10/10/16 13:28					
TF-8	6J10011-03	Water	5	10/10/16 08:40	10/10/16 13:28					
DUP-7	6J10011-04	Water	5	10/10/16 00:00	10/10/16 13:28					
GW-4	6J10011-05	Water	5	10/10/16 09:15	10/10/16 13:28					
GMW-21	6J10011-06	Water	5	10/10/16 09:50	10/10/16 13:28					
GMW-15	6J10011-07	Water	5	10/10/16 10:25	10/10/16 13:28					
GMW-45	6J10011-08	Water	5	10/10/16 10:55	10/10/16 13:28					
Diesel Range Organics 8015M										
GMW-12	6J10011-02	Water	5	10/10/16 08:05	10/10/16 13:28					
TF-8	6J10011-03	Water	5	10/10/16 08:40	10/10/16 13:28					
DUP-7	6J10011-04	Water	5	10/10/16 00:00	10/10/16 13:28					
GW-4	6J10011-05	Water	5	10/10/16 09:15	10/10/16 13:28					
GMW-21	6J10011-06	Water	5	10/10/16 09:50	10/10/16 13:28					
GMW-15	6J10011-07	Water	5	10/10/16 10:25	10/10/16 13:28					
GMW-45	6J10011-08	Water	5	10/10/16 10:55	10/10/16 13:28					

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
Gasoline Range Organics 8015M					
GMW-12	6J10011-02	Water	5	10/10/16 08:05	10/10/16 13:28
TF-8	6J10011-03	Water	5	10/10/16 08:40	10/10/16 13:28
DUP-7	6J10011-04	Water	5	10/10/16 00:00	10/10/16 13:28
GW-4	6J10011-05	Water	5	10/10/16 09:15	10/10/16 13:28
GMW-21	6J10011-06	Water	5	10/10/16 09:50	10/10/16 13:28
GMW-15	6J10011-07	Water	5	10/10/16 10:25	10/10/16 13:28
GMW-45	6J10011-08	Water	5	10/10/16 10:55	10/10/16 13:28

MRL

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled: 10/10/16 10/10/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10011-01 6J10011-09 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1

8260B+OXY+TPHG (EPA 8260B)		
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	0.50
Dibromomethane	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	< 0.50	<0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/10/16 10/10/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10011-01 6J10011-09 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor: 1 1 1 MRL

8260B+OXY+TPHG (EPA 8260B	(continued)		
1,4-Dichlorobenzene	<0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics	<100	<100	100
(GRO)			
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	< 0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	< 0.50	< 0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled: 10/10/16 10/10/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/17/16 AA ID No: 6J10011-01 6J10011-09 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL

8260B+OXY+TPHG (EPA 8260B)	(continued))	
Styrene	< 0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	<0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	<0.50	0.50
Vinyl chloride	<0.50	<0.50	0.50
o-Xylene	<0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

Surrogates			%REC Limits
4-Bromofluorobenzene	114%	113%	70-140
Dibromofluoromethane	121%	129%	70-140
Toluene-d8	101%	99%	70-140

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331954 Date Received: 10/10/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/10/16	10/10/16	10/10/16	10/10/16					
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16					
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16					
AA ID No:	6J10011-02	6J10011-03	6J10011-04	6J10011-05					
Client ID No:	GMW-12	TF-8	DUP-7	GW-4					
Matrix:	Water	Water	Water	Water					
Dilution Factor:	1	1	1	1	MRL				
8260B+OXYGENATES (EPA 82	8260B+OXYGENATES (EPA 8260B)								
Acetone	<10	<10	<10	<10	10				
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<2.0	2.0				
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Bromobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Bromochloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Bromodichloromethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Bromoform	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
2-Butanone (MEK)	<10	<10	<10	<10	10				
tert-Butyl alcohol (TBA)	<10	<10	<10	<10	10				
sec-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50				
tert-Butylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
n-Butylbenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Carbon Disulfide	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Chlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Chloroethane	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Chloroform	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Chloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50				
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<0.50	0.50				
4-Chlorotoluene	< 0.50	<0.50	< 0.50	<0.50	0.50				
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	1.0				
Dibromochloromethane	< 0.50	< 0.50	< 0.50	<0.50	0.50				
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	<0.50	0.50				
Dibromomethane	< 0.50	< 0.50	< 0.50	<0.50	0.50				
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50				
1,2-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<0.50	0.50				

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331954 Date Received: 10/10/16

Date Reported: 10/10/16

Units: ug/L

Date Sampled:	10/10/16	10/10/16	10/10/16	10/10/16					
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16					
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16					
AA ID No:	6J10011-02	6J10011-03	6J10011-04	6J10011-05					
Client ID No:	GMW-12	TF-8	DUP-7	GW-4					
Matrix:	Water	Water	Water	Water					
Dilution Factor:	1	1	1	1	MRL				
8260B+OXYGENATES (EPA 8260B) (continued)									
1,4-Dichlorobenzene	< 0.50	< 0.50	<0.50	< 0.50	0.50				
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<2.0	2.0				
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<2.0	2.0				
Hexachlorobutadiene	<1.0	<1.0	<1.0	<1.0	1.0				
2-Hexanone (MBK)	<10	<10	<10	<10	10				
Isopropylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
4-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	1.0				
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.2	1.3	<1.0	1.0				
Methylene Chloride	<5.0	<5.0	<5.0	<5.0	5.0				
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<10	10				
Naphthalene	<2.0	<2.0	<2.0	<2.0	2.0				
n-Propylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50				
Styrene	<0.50	< 0.50	<0.50	< 0.50	0.50				
1,1,1,2-Tetrachloroethane	<0.50	< 0.50	<0.50	< 0.50	0.50				

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331954

Date Received: 10/10/16

Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J10011-02	6J10011-03	6J10011-04	6J10011-05	
Client ID No:	GMW-12	TF-8	DUP-7	GW-4	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
8260B+OXYGENATES (EPA 82	60B) (continue	d)			
1,1,2,2-Tetrachloroethane	<0.50	< 0.50	<0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	<0.50	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	< 0.50	< 0.50	0.50
ane (R113)					
1,3,5-Trimethylbenzene	<0.50	< 0.50	< 0.50	<0.50	0.50
1,2,4-Trimethylbenzene	<0.50	< 0.50	< 0.50	< 0.50	0.50
Vinyl chloride	<0.50	< 0.50	<0.50	<0.50	0.50
o-Xylene	<0.50	< 0.50	<0.50	<0.50	0.50
m,p-Xylenes	<1.0	<1.0	<1.0	<1.0	1.0
<u>Surrogates</u>					%REC Limits
4-Bromofluorobenzene	110%	111%	107%	111%	70-140
Dibromofluoromethane	126%	128%	125%	125%	70-140
Toluene-d8	99%	99%	98%	99%	70-140

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Wethou.	DENAILS by GC	,/1VIO		Omis. ug/L
Date Sampled:	10/10/16	10/10/16	10/10/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	
AA ID No:	6J10011-06	6J10011-07	6J10011-08	
Client ID No:	GMW-21	GMW-15	GMW-45	
Matrix:	Water	Water	Water	
Dilution Factor:	1	1	1	MRL
8260B+OXYGENATES (EPA 82	260B <u>)</u>			
Acetone	<10	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	<10	10
sec-Butylbenzene	3.4	< 0.50	4.1	0.50
tert-Butylbenzene	1.1	< 0.50	1.2	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	0.50
Chloroform	< 0.50	< 0.50	< 0.50	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	0.50
2-Chlorotoluene	< 0.50	< 0.50	<0.50	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	1.0
Dibromochloromethane	< 0.50	<0.50	< 0.50	0.50
1,2-Dibromoethane (EDB)	<0.50	< 0.50	<0.50	0.50
Dibromomethane	< 0.50	<0.50	< 0.50	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichlorobenzene	<0.50	< 0.50	<0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYGENATES by GC/MS Units: ug/L

Date Sampled:	10/10/16	10/10/16	10/10/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	
AA ID No:	6J10011-06	6J10011-07	6J10011-08	
Client ID No:	GMW-21	GMW-15	GMW-45	
Matrix:	Water	Water	Water	MDI
Dilution Factor:	1	1	1	MRL
8260B+OXYGENATES (EPA 82	<u>:60B)</u> (continue	ed)		
1,4-Dichlorobenzene	< 0.50	< 0.50	< 0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	<0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	<10	10
Isopropylbenzene	5.4	< 0.50	17	0.50
4-Isopropyltoluene	<1.0	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	1.5	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	10
Naphthalene	<2.0	<2.0	6.8	2.0
n-Propylbenzene	< 0.50	< 0.50	13	0.50
Styrene	< 0.50	< 0.50	< 0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	<0.50	0.50

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs & OXYG		Units: ug/L		
Date Sampled:	10/10/16	10/10/16	10/10/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	
AA ID No:	6J10011-06	6J10011-07	6J10011-08	
Client ID No:	GMW-21	GMW-15	GMW-45	
Matrix:	Water	Water	Water	
Dilution Factor:	1	1	1	MRL
8260B+OXYGENATES (EPA 82	60B) (continue	ed)		
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	<0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	<0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	< 0.50	0.50
ane (R113)				
1,3,5-Trimethylbenzene	< 0.50	<0.50	<0.50	0.50
1,2,4-Trimethylbenzene	< 0.50	<0.50	<0.50	0.50
Vinyl chloride	< 0.50	<0.50	<0.50	0.50
o-Xylene	< 0.50	< 0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	<1.0	1.0
<u>Surrogates</u>				%REC Limits
4-Bromofluorobenzene	108%	111%	107%	70-140
Dibromofluoromethane	115%	118%	112%	70-140
Toluene-d8	100%	99%	104%	70-140

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Date Sampled:	10/10/16	10/10/16	10/10/16	10/10/16	
Date Prepared:	10/12/16	10/12/16	10/12/16	10/12/16	
Date Analyzed:	10/13/16	10/13/16	10/13/16	10/13/16	
AA ID No:	6J10011-02	6J10011-03	6J10011-04	6J10011-05	
Client ID No:	GMW-12	TF-8	DUP-7	GW-4	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Diesel Range Organics 8015	БМ (EPA 8015M)				
Diesel Range Organics as Diesel	1.4	0.77	0.80	0.12	0.10
Surrogates					%REC Limits
o-Terphenyl	81%	125%	122%	98%	50-150

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Diesel Range Organics by GC/FID Units: mg/L

Date Sampled: 10/10/16 10/10/16 10/10/16 **Date Prepared:** 10/12/16 10/12/16 10/12/16 **Date Analyzed:** 10/13/16 10/13/16 10/13/16 AA ID No: 6J10011-06 6J10011-07 6J10011-08 **GMW-21 GMW-15 GMW-45 Client ID No:** Matrix: Water Water Water **Dilution Factor:** 1 **MRL** 1 1

D: 10 0 : 004514 (FD4 004514)

<u>Diesel Range Organics 8015M (EPA 8015M)</u>

Diesel Range Organics as 2.5 2.4 4.5 0.10

Diesel

 Surrogates
 %REC Limits

 o-Terphenyl
 95%
 100%
 87%
 50-150

80-120

a,a,a-Trifluorotoluene

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Metriod:	asomic rang	o Organico by O	0/1 10		Onne	3. 49/E
Date Sampled:		10/10/16	10/10/16	10/10/16	10/10/16	
Date Prepared:		10/11/16	10/11/16	10/11/16	10/11/16	
Date Analyzed:		10/11/16	10/11/16	10/11/16	10/11/16	
AA ID No:		6J10011-02	6J10011-03	6J10011-04	6J10011-05	
Client ID No:		GMW-12	TF-8	DUP-7	GW-4	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	1	MRL
Gasoline Range C	organics 8015	<u>SM (EPA 8015M)</u>	1			
Gasoline Range O (GRO)	rganics	<100	<100	<100	<100	100
<u>Surrogates</u>						%REC Limits

96%

97%

94%

93%

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled: 10/10/16 10/10/16 10/10/16 **Date Prepared:** 10/11/16 10/11/16 10/11/16 **Date Analyzed:** 10/11/16 10/11/16 10/11/16 AA ID No: 6J10011-06 6J10011-07 6J10011-08 **GMW-21 GMW-15 GMW-45 Client ID No:** Matrix: Water Water Water **Dilution Factor:** 1 **MRL** 1 1

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics 130 <100 2200 100

(GRO)

Surrogates%REC Limitsa,a,a-Trifluorotoluene92%91%89%80-120

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954
Date Received: 10/10/16
Date Reported: 10/21/16

		Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
OCs, OXY & TPH Gasoline by G	SC/MS - Qu	ality Contr	ol							
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1)				Prepare	ed & Analy	zed: 1	0/17/16			
Acetone	<10	10	ug/L							
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L							
Benzene	< 0.50	0.50	ug/L							
Bromobenzene	< 0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

	Reporting		Spike Source	%REC		RPD	
Analyte	Result Limit	Units	Level Result %REC	Limits	RPD	Limit	Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B		-	
Blank (B6J1723-BLK1) Continue	d		Prepared & Analyzed: 10/17/16
1,1-Dichloroethylene	<0.50	0.50	ug/L
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L
1,2-Dichloropropane	< 0.50	0.50	ug/L
2,2-Dichloropropane	< 0.50	0.50	ug/L
1,3-Dichloropropane	< 0.50	0.50	ug/L
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L
1,1-Dichloropropylene	< 0.50	0.50	ug/L
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L
Ethylbenzene	< 0.50	0.50	ug/L
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L
Gasoline Range Organics (GRO)	<100	100	ug/L
Hexachlorobutadiene	<1.0	1.0	ug/L
2-Hexanone (MBK)	<10	10	ug/L
Isopropylbenzene	< 0.50	0.50	ug/L
4-Isopropyltoluene	<1.0	1.0	ug/L
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L
Methylene Chloride	<5.0	5.0	ug/L
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L
Naphthalene	<2.0	2.0	ug/L
n-Propylbenzene	< 0.50	0.50	ug/L
Styrene	< 0.50	0.50	ug/L
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L
Toluene	< 0.50	0.50	ug/L
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L
1,1,1-Trichloroethane	< 0.50	0.50	ug/L
1,1,2-Trichloroethane	< 0.50	0.50	ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC	/MS - Q	uality Contr	ol							
Batch B6J1723 - EPA 5030B										
Blank (B6J1723-BLK1) Continue	d			Prepare	ed & Anal	lyzed: 1	0/17/16			
Trichloroethylene (TCE)	<0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	e <0.50	0.50	ug/L							
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L							
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50		111	70-140			
Surrogate: Dibromofluoromethane	62.7		ug/L	50		125	70-140			
Surrogate: Toluene-d8	49.7		ug/L	50		99.5	70-140			
LCS (B6J1723-BS1)			J	Prepare	ed: 10/17	/16 Ana	alyzed: 10	0/18/16		
Acetone	47.9	10	ug/L	50		95.8	70-130			
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20		88.4	70-130			
Benzene	22.7	0.50	ug/L	20		113	75-125			
Bromobenzene	19.0	0.50	ug/L	20		94.9	70-130			
Bromochloromethane	21.5	0.50	ug/L	20		108	70-130			
Bromodichloromethane	23.3	0.50	ug/L	20		117	75-125			
Bromoform	16.3	0.50	ug/L	20		81.3	75-125			
Bromomethane	16.5	0.50	ug/L	20		82.6	75-125			
2-Butanone (MEK)	46.0	10	ug/L	50		92.0	70-130			
tert-Butyl alcohol (TBA)	105	10	ug/L	100		105	70-130			
sec-Butylbenzene	21.5	0.50	ug/L	20		108	70-130			
tert-Butylbenzene	22.8	0.50	ug/L	20		114	70-130			
n-Butylbenzene	22.3	0.50	ug/L	20		111	70-130			
Carbon Disulfide	41.5	0.50	ug/L	50		83.1	70-130			
Carbon Tetrachloride	24.2	0.50	ug/L	20		121	75-125			
Chlorobenzene	20.3	0.50	ug/L	20		102	75-125			
Chloroethane	22.5	0.50	ug/L	20		113	75-125			

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

LCS (B6J1723-BS1) Continued				Prepare	ed: 10/17/16 An	alyzed: 10/	18/16
Chloroform	23.5	0.50	ug/L	20	118	75-125	
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125	
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130	
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130	
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125	
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130	
Dibromomethane	21.8	0.50	ug/L	20	109	70-130	
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130	
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125	
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130	
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125	
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125	
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130	
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125	
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125	
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130	
2,2-Dichloropropane	24.3	0.50	ug/L	20	122	70-130	
1,3-Dichloropropane	18.6	0.50	ug/L	20	92.8	70-130	
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.9	75-125	
trans-1,3-Dichloropropylene	18.3	0.50	ug/L	20	91.4	70-130	
1,1-Dichloropropylene	23.0	0.50	ug/L	20	115	70-130	
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130	
Ethylbenzene	21.6	0.50	ug/L	20	108	75-125	
Ethyl-tert-Butyl Ether (ETBE)	20.0	2.0	ug/L	20	100	70-130	
Gasoline Range Organics (GRO)	486	100	ug/L	500	97.3	70-130	
Hexachlorobutadiene	18.9	1.0	ug/L	20	94.4	70-130	
2-Hexanone (MBK)	45.3	10	ug/L	50	90.7	70-130	
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130	
4-Isopropyltoluene	22.8	1.0	ug/L	20	114	70-130	

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte Limit VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B LCS (B6J1723-BS1) Continued Prepared: 10/17/16 Analyzed: 10/18/16 Methyl-tert-Butyl Ether (MTBE) 37.6 1.0 94.0 75-125 ug/L 40 24.9 5.0 124 Methylene Chloride ug/L 20 75-130 4-Methyl-2-pentanone (MIBK) 43.7 10 ug/L 50 87.5 70-130 19.8 2.0 99.2 Naphthalene ug/L 20 70-130 111 n-Propylbenzene 22.2 0.50 ug/L 20 70-130 19.4 0.50 96.8 Styrene ug/L 20 70-130 19.4 0.50 97.1 1,1,1,2-Tetrachloroethane ug/L 20 70-130 1,1,2,2-Tetrachloroethane 18.4 0.50 ug/L 20 92.2 70-135 75-125 Tetrachloroethylene (PCE) 18.7 0.50 20 93.6 ug/L 21.2 0.50 106 Toluene ug/L 20 75-125 18.3 91.7 1.2.3-Trichlorobenzene 0.50 ug/L 20 70-130 18.4 0.50 91.8 1.2.4-Trichlorobenzene ug/L 20 70-130 1,1,1-Trichloroethane 24.4 0.50 ug/L 20 122 75-125 19.7 0.50 98.7 1.1.2-Trichloroethane 20 75-125 ug/L 110 Trichloroethylene (TCE) 22.0 0.50 ug/L 20 75-125 Trichlorofluoromethane (R11) 24.8 0.50 124 ug/L 20 70-130 17.3 86.6 1,2,3-Trichloropropane 0.50 ug/L 20 70-130 1,1,2-Trichloro-1,2,2-trifluoroethane 24.2 0.50 121 ug/L 20 70-130 (R113) 22.1 0.50 20 111 70-130 1,3,5-Trimethylbenzene ug/L 1,2,4-Trimethylbenzene 22.8 0.50 ug/L 20 114 70-130 23.0 0.50 115 Vinyl chloride ug/L 20 75-125 21.1 0.50 105 o-Xylene ug/L 20 75-125 41.0 1.0 103 m,p-Xylenes 40 70-130 ug/L 54.5 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 54.0 Surrogate: Dibromofluoromethane ug/L 50 108 70-140 53.8 Surrogate: Toluene-d8 ug/L 50 108 70-140 Matrix Spike (B6J1723-MS1) Source: 6J10010-02 Prepared & Analyzed: 10/17/16 55.7 Acetone 10 ug/L 50 111 70-130 19.0 2.0 94.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 21.2 0.50 106 Benzene ug/L 20 70-130

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/10/16
Date Reported: 10/21/16

AA Project No: A5331954

Analyte	F Result	Reporting Limit	Units	•	Source Result %REC	%REC	RPD	RPD Limit	Notes
							=		
VOCs, OXY & TPH Gasoline b	y GC/MS - Qu	ality Con	trol						
Batch B6J1723 - EPA 5030B									
Matrix Spike (B6J1723-MS1) Continued S	ource: 6J	10010-02	Prepare	ed & Analyzed: 1	0/17/16			
Bromobenzene	19.4	0.50	ug/L	20	97.2	70-130			
Bromochloromethane	21.7	0.50	ug/L	20	108	70-130			
Bromodichloromethane	22.9	0.50	ug/L	20	114	70-130			
Bromoform	18.0	0.50	ug/L	20	90.2	70-130			
Bromomethane	16.9	0.50	ug/L	20	84.7	70-130			
2-Butanone (MEK)	51.9	10	ua/L	50	104	70-130			

Biomometriane	10.3	0.00	ug/L	20	07.7	70-130	
2-Butanone (MEK)	51.9	10	ug/L	50	104	70-130	
tert-Butyl alcohol (TBA)	100	10	ug/L	100	100	70-130	
sec-Butylbenzene	20.6	0.50	ug/L	20	103	70-130	
tert-Butylbenzene	22.0	0.50	ug/L	20	110	70-130	
n-Butylbenzene	22.0	0.50	ug/L	20	110	70-130	
Carbon Disulfide	45.0	0.50	ug/L	50	90.0	70-130	
Carbon Tetrachloride	22.6	0.50	ug/L	20	113	70-130	
Chlorobenzene	19.6	0.50	ug/L	20	98.1	70-130	
Chloroethane	19.2	0.50	ug/L	20	96.1	70-130	
Chloroform	22.7	0.50	ug/L	20	114	70-130	
Chloromethane	19.9	0.50	ug/L	20	99.4	70-130	
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130	
4-Chlorotoluene	21.7	0.50	ug/L	20	109	70-130	
1,2-Dibromo-3-chloropropane	24.1	1.0	ug/L	20	121	70-130	
Dibromochloromethane	20.9	0.50	ug/L	20	104	70-130	
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	96.8	70-130	
Dibromomethane	22.3	0.50	ug/L	20	111	70-130	
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130	
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	108	70-130	
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130	
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130	
			and the second s				

0.50

0.50

0.50

0.50

0.50

22.9

23.8

23.1

19.9

20.2

Viorel Vasile Operations Manager

1,1-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloroethane (EDC)

trans-1,2-Dichloroethylene

cis-1,2-Dichloroethylene

ug/L

ug/L

ug/L

ug/L

ug/L

20

20

20

20

20

114

119

115

99.7

101

70-130

70-130

70-130

70-130

70-130

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %	REC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

1,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130
2,2-Dichloropropane	24.2	0.50	ug/L	20	121	70-130
1,3-Dichloropropane	18.9	0.50	ug/L	20	94.6	70-130
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	99.0	70-130
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	99.5	70-130
1,1-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130
Ethylbenzene	20.0	0.50	ug/L	20	100	70-130
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130
Gasoline Range Organics (GRO)	401	100	ug/L	500	80.2	70-130
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.7	70-130
2-Hexanone (MBK)	58.8	10	ug/L	50	118	70-130
Isopropylbenzene	21.5	0.50	ug/L	20	108	70-130
4-Isopropyltoluene	22.2	1.0	ug/L	20	111	70-130
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	103	70-130
Methylene Chloride	26.1	5.0	ug/L	20	11.7 72.2	70-130
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	103	70-130
Naphthalene	24.7	2.0	ug/L	20	123	70-130
n-Propylbenzene	21.5	0.50	ug/L	20	108	70-130
Styrene	18.7	0.50	ug/L	20	93.5	70-130
1,1,1,2-Tetrachloroethane	18.3	0.50	ug/L	20	91.7	70-130
1,1,2,2-Tetrachloroethane	21.1	0.50	ug/L	20	106	70-130
Tetrachloroethylene (PCE)	17.1	0.50	ug/L	20	85.7	70-130
Toluene	19.2	0.50	ug/L	20	95.8	70-130
1,2,3-Trichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130
1,2,4-Trichlorobenzene	19.1	0.50	ug/L	20	95.6	70-130
1,1,1-Trichloroethane	22.3	0.50	ug/L	20	112	70-130
1,1,2-Trichloroethane	19.5	0.50	ug/L	20	97.6	70-130
Trichloroethylene (TCE)	20.1	0.50	ug/L	20	100	70-130
Trichlorofluoromethane (R11)	23.7	0.50	ug/L	20	118	70-130
1,2,3-Trichloropropane	20.8	0.50	ug/L	20	104	70-130

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Limit Analyte Result VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B Matrix Spike (B6J1723-MS1) Continued Source: 6J10010-02 Prepared & Analyzed: 10/17/16 1,1,2-Trichloro-1,2,2-trifluoroethane 24.0 0.50 20 120 70-130 ug/L (R113) 109 1,3,5-Trimethylbenzene 21.7 0.50 ug/L 20 70-130 1,2,4-Trimethylbenzene 22.3 0.50 112 ug/L 20 70-130 22.7 0.50 113 Vinvl chloride ua/L 20 70-130 o-Xylene 20.0 0.50 ug/L 20 99.8 70-130 m,p-Xylenes 38.7 1.0 40 96.8 70-130 ug/L 54.6 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 Surrogate: Dibromofluoromethane 53.1 50 106 70-140 ug/L Surrogate: Toluene-d8 49.0 ug/L 50 98.0 70-140 Matrix Spike Dup (B6J1723-MSD1) **Source: 6J10010-02** Prepared & Analyzed: 10/17/16 57.3 10 115 70-130 ug/L 50 2.76 30 19.4 2.0 96.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 2.14 30 22.3 0.50 111 Benzene ug/L 20 70-130 4.73 30 20.2 0.50 20 101 70-130 30 Bromobenzene ug/L 3.93 Bromochloromethane 21.4 0.50 ug/L 20 107 70-130 1.58 30 Bromodichloromethane 23.6 0.50 118 70-130 30 ug/L 20 3.23 17.6 0.50 87.8 **Bromoform** ug/L 20 70-130 2.70 30 **Bromomethane** 17.3 0.50 ug/L 20 86.4 70-130 2.04 30 58.3 10 117 2-Butanone (MEK) 70-130 30 ug/L 50 11.5 tert-Butyl alcohol (TBA) 109 10 100 109 70-130 ug/L 8.17 30 sec-Butylbenzene 21.2 0.50 ug/L 20 106 70-130 2.91 30 tert-Butylbenzene 22.5 0.50 20 113 70-130 30 ug/L 2.65 n-Butylbenzene 22.1 0.50 ug/L 20 110 70-130 0.227 30 Carbon Disulfide 40.0 0.50 0.08 ug/L 50 70-130 11.7 30 23.2 0.50 Carbon Tetrachloride 116 70-130 30 ug/L 20 2.93 Chlorobenzene 19.7 0.50 20 98.6 70-130 0.508 30 ug/L 20.6 0.50 103 Chloroethane ug/L 20 70-130 6.93 30 Chloroform 23.2 0.50 ug/L 20 116 70-130 1.92 30 21.3 0.50 106 Chloromethane ug/L 20 70-130 6.85 30 22.9 2-Chlorotoluene 0.50 ug/L 20 115 70-130 5.88 30

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Matrix Spike Dup (B6J1723-MSD1 Continued										
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	1.64	30		
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119	70-130	1.08	30		
Dibromochloromethane	21.5	0.50	ug/L	20	108	70-130	2.97	30		
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101	70-130	4.35	30		
Dibromomethane	23.7	0.50	ug/L	20	119	70-130	6.31	30		
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104	70-130	3.27	30		
1,2-Dichlorobenzene	22.4	0.50	ug/L	20	112	70-130	3.92	30		
1,4-Dichlorobenzene	20.6	0.50	ug/L	20	103	70-130	3.36	30		
Dichlorodifluoromethane (R12)	19.0	0.50	ug/L	20	95.2	70-130	2.71	30		
1,1-Dichloroethane	23.3	0.50	ug/L	20	116	70-130	1.78	30		
1,2-Dichloroethane (EDC)	24.2	0.50	ug/L	20	121	70-130	1.67	30		
1,1-Dichloroethylene	23.8	0.50	ug/L	20	119	70-130	3.11	30		
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102	70-130	1.79	30		
cis-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102	70-130	1.03	30		
1,2-Dichloropropane	23.8	0.50	ug/L	20	119	70-130	7.49	30		
2,2-Dichloropropane	23.9	0.50	ug/L	20	120	70-130	1.25	30		
1,3-Dichloropropane	19.3	0.50	ug/L	20	96.6	70-130	1.99	30		
cis-1,3-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130	2.69	30		
trans-1,3-Dichloropropylene	20.3	0.50	ug/L	20	101	70-130	1.79	30		
1,1-Dichloropropylene	21.9	0.50	ug/L	20	110	70-130	7.48	30		
Diisopropyl ether (DIPE)	23.4	2.0	ug/L	20	117	70-130	5.00	30		
Ethylbenzene	20.4	0.50	ug/L	20	102	70-130	1.73	30		
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	108	70-130	3.91	30		
Gasoline Range Organics (GRO)	446	100	ug/L	500	89.2	70-130	10.6	30		
Hexachlorobutadiene	19.8	1.0	ug/L	20	99.0	70-130	5.50	30		
2-Hexanone (MBK)	56.2	10	ug/L	50	112	70-130	4.54	30		
Isopropylbenzene	22.2	0.50	ug/L	20	111	70-130	3.06	30		
4-Isopropyltoluene	22.3	1.0	ug/L	20	112	70-130	0.539	30		
Methyl-tert-Butyl Ether (MTBE)	43.6	1.0	ug/L	40	109	70-130	5.59	30		
Methylene Chloride	27.2	5.0	ug/L	20	11.7 77.7	70-130	4.12	30		
4-Methyl-2-pentanone (MIBK)	53.0	10	ug/L	50	106	70-130	3.04	30		

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/21/16

AA Project No: A5331954

Date Received: 10/10/16

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units		Result %RE	C Limits	RPD	Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Qu	ality Cont	rol						
Batch B6J1723 - EPA 5030B		•							
Matrix Spike Dup (B6J1723-MSD1) S	ource: 6J	10010-02	Prepare	ed & Analyzed:	10/17/16			
Continued									
Naphthalene	25.7	2.0	ug/L	20	129	70-130	4.05	30	
n Propylhonzono	22.2	0.50	ua/l	20	111	70 120	3 03	30	

Continued								
Naphthalene	25.7	2.0	ug/L	20	129	70-130	4.05	30
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130	3.02	30
Styrene	18.8	0.50	ug/L	20	94.2	70-130	0.746	30
1,1,1,2-Tetrachloroethane	18.5	0.50	ug/L	20	92.5	70-130	0.869	30
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20	106	70-130	0.801	30
Tetrachloroethylene (PCE)	18.3	0.50	ug/L	20	91.3	70-130	6.33	30
Toluene	20.1	0.50	ug/L	20	100	70-130	4.79	30
1,2,3-Trichlorobenzene	20.8	0.50	ug/L	20	104	70-130	4.23	30
1,2,4-Trichlorobenzene	20.0	0.50	ug/L	20	100	70-130	4.70	30
1,1,1-Trichloroethane	23.8	0.50	ug/L	20	119	70-130	6.33	30
1,1,2-Trichloroethane	20.7	0.50	ug/L	20	103	70-130	5.67	30
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104	70-130	3.33	30
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	123	70-130	3.89	30
1,2,3-Trichloropropane	19.9	0.50	ug/L	20	99.6	70-130	4.56	30
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.7	0.50	ug/L	20	119	70-130	1.34	30
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	109	70-130	0.413	30
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	114	70-130	1.77	30
Vinyl chloride	23.7	0.50	ug/L	20	119	70-130	4.48	30
o-Xylene	20.3	0.50	ug/L	20	101	70-130	1.54	30
m,p-Xylenes	38.6	1.0	ug/L	40	96.5	70-130	0.284	30
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50	111	70-140		
Surrogate: Dibromofluoromethane	52.8		ug/L	50	106	70-140		
Surrogate: Toluene-d8	48.8		ug/L	50	97.6	70-140		

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Blank (B6J1827-BLK1)Prepared & Analyzed: 10/18/16Acetone<10</td>10ug/Ltert-Amyl Methyl Ether (TAME)<2.0</td>2.0ug/L

0.50

< 0.50

Viorel Vasile Operations Manager

Benzene

ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	3 - Quality	Control								
Batch B6J1827 - EPA 5030B	,									
Blank (B6J1827-BLK1) Continu	ed			Prepare	ed & Ana	lyzed: 10	0/18/16			
Bromobenzene	<0.50	0.50	ug/L							
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331954Project No:04-NDLA-013Date Received: 10/10/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	I Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -										
Batch B6J1827 - EPA 5030B										
Blank (B6J1827-BLK1) Continued	t			Prepare	ed & Ana	lyzed: 1	0/18/16			
1,2-Dichloropropane	<0.50	0.50	ug/L	1						
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result %RE0	%REC	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control							
Batch B6J1827 - EPA 5030B									
Blank (B6J1827-BLK1) Continue	d			Prepare	ed & Analyzed:	10/18/16			
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L	<u> </u>	,				
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L						
Vinyl chloride	< 0.50	0.50	ug/L						
o-Xylene	< 0.50	0.50	ug/L						
m,p-Xylenes	<1.0	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	55.8		ug/L	50	112	70-140			
Surrogate: Dibromofluoromethane	65.4		ug/L	50	131	70-140			
Surrogate: Toluene-d8	49.6		ug/L	50	99.1	70-140			
LCS (B6J1827-BS1)			J		ed & Analyzed:				
Acetone	54.5	10	ug/L	50	109	70-130			
tert-Amyl Methyl Ether (TAME)	17.3	2.0	ug/L	20	86.6	70-130			
Benzene	21.6	0.50	ug/L	20	108	75-125			
Bromobenzene	18.8	0.50	ug/L	20	94.0	70-130			
Bromochloromethane	19.8	0.50	ug/L	20	99.0	70-130			
Bromodichloromethane	22.2	0.50	ug/L	20	111	75-125			
Bromoform	16.4	0.50	ug/L	20	82.2	75-125			
Bromomethane	19.2	0.50	ug/L	20	95.8	75-125			
2-Butanone (MEK)	46.7	10	ug/L	50	93.4	70-130			
tert-Butyl alcohol (TBA)	113	10	ug/L	100	113	70-130			
sec-Butylbenzene	21.7	0.50	ug/L	20	108	70-130			
tert-Butylbenzene	22.5	0.50	ug/L	20	112	70-130			
n-Butylbenzene	23.0	0.50	ug/L	20	115	70-130			
Carbon Disulfide	41.2	0.50	ug/L	50	82.4	70-130			
Carbon Tetrachloride	23.0	0.50	ug/L	20	115	75-125			
Chlorobenzene	19.4	0.50	ug/L	20	97.1	75-125			
Chloroethane	22.5	0.50	ug/L	20	112	75-125			
Chloroform	22.4	0.50	ug/L	20	112	75-125			
Chloromethane	21.6	0.50	ug/L	20	108	65-125			
2-Chlorotoluene	22.4	0.50	ug/L	20	112	70-130			
4-Chlorotoluene	22.0	0.50	ug/L	20	110	70-130			
1,2-Dibromo-3-chloropropane	22.3	1.0	ug/L	20	112	70-130			

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Analyte	F Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control							
Batch B6J1827 - EPA 5030B	,								
LCS (B6J1827-BS1) Continued				Prepare	ed & Analyzed: 1	0/18/16			
Dibromochloromethane	19.6	0.50	ug/L	20	98.0	75-125			
1,2-Dibromoethane (EDB)	18.0	0.50	ug/L	20	89.9	70-130			
Dibromomethane	20.6	0.50	ug/L	20	103	70-130			
1,3-Dichlorobenzene	20.3	0.50	ug/L	20	101	70-130			
1,2-Dichlorobenzene	21.6	0.50	ug/L	20	108	70-130			
1,4-Dichlorobenzene	20.0	0.50	ug/L	20	100	75-125			
Dichlorodifluoromethane (R12)	20.2	0.50	ug/L	20	101	70-130			
1,1-Dichloroethane	23.2	0.50	ug/L	20	116	70-125			
1,2-Dichloroethane (EDC)	22.1	0.50	ug/L	20	110	75-125			
1,1-Dichloroethylene	22.3	0.50	ug/L	20	112	70-130			
trans-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102	75-125			
cis-1,2-Dichloroethylene	19.7	0.50	ug/L	20	98.7	75-125			
1,2-Dichloropropane	21.7	0.50	ug/L	20	109	75-130			
2,2-Dichloropropane	24.0	0.50	ug/L	20	120	70-130			
1,3-Dichloropropane	17.6	0.50	ug/L	20	87.8	70-130			
cis-1,3-Dichloropropylene	19.0	0.50	ug/L	20	95.1	75-125			
trans-1,3-Dichloropropylene	19.6	0.50	ug/L	20	98.2	70-130			
1,1-Dichloropropylene	21.4	0.50	ug/L	20	107	70-130			
Diisopropyl ether (DIPE)	20.7	2.0	ug/L	20	104	70-130			
Ethylbenzene	21.0	0.50	ug/L	20	105	75-125			
Ethyl-tert-Butyl Ether (ETBE)	19.3	2.0	ug/L	20	96.4	70-130			
Hexachlorobutadiene	19.9	1.0	ug/L	20	99.3	70-130			
2-Hexanone (MBK)	44.6	10	ug/L	50	89.2	70-130			
Isopropylbenzene	22.2	0.50	ug/L	20	111	70-130			
4-Isopropyltoluene	23.0	1.0	ug/L	20	115	70-130			
Methyl-tert-Butyl Ether (MTBE)	37.6	1.0	ug/L	40	94.1	75-125			
Methylene Chloride	28.3	5.0	ug/L	20	142	75-130			
4-Methyl-2-pentanone (MIBK)	42.1	10	ug/L	50	84.2	70-130			
Naphthalene	22.4	2.0	ug/L	20	112	70-130			
n-Propylbenzene	22.4	0.50	ug/L	20	112	70-130			
Styrene	18.8	0.50	ug/L	20	94.2	70-130			

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Analyta		Reporting Limit	Units	Spike	Source Result %	/DEC	%REC	RPD	RPD Limit	Notes
Analyte VOCs & OXYGENATES by GC/MS	Result		Jillis	LEVEI	iveant /	OILL	Lillits	NI D	<u> </u>	140162
	- Quanty	Control								
Batch B6J1827 - EPA 5030B				_			_,,_,,			
LCS (B6J1827-BS1) Continued					ed & Analy:					
1,1,1,2-Tetrachloroethane	18.0	0.50	ug/L	20		90.0	70-130			
1,1,2,2-Tetrachloroethane	18.6	0.50	ug/L	20		92.8	70-135			
Tetrachloroethylene (PCE)	17.5	0.50	ug/L	20		87.7	75-125			
Toluene	20.0	0.50	ug/L	20		100	75-125			
1,2,3-Trichlorobenzene	19.2	0.50	ug/L	20		95.9	70-130			
1,2,4-Trichlorobenzene	18.7	0.50	ug/L	20		93.5	70-130			
1,1,1-Trichloroethane	23.6	0.50	ug/L	20		118	75-125			
1,1,2-Trichloroethane	18.3	0.50	ug/L	20		91.6	75-125			
Trichloroethylene (TCE)	20.8	0.50	ug/L	20		104	75-125			
Trichlorofluoromethane (R11)	24.7	0.50	ug/L	20		124	70-130			
1,2,3-Trichloropropane	18.1	0.50	ug/L	20		90.4	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane	23.0	0.50	ug/L	20		115	70-130			
(R113)										
1,3,5-Trimethylbenzene	22.5	0.50	ug/L	20		112	70-130			
1,2,4-Trimethylbenzene	22.6	0.50	ug/L	20		113	70-130			
Vinyl chloride	22.2	0.50	ug/L	20		111	75-125			
o-Xylene	20.5	0.50	ug/L	20		103	75-125			
m,p-Xylenes	39.4	1.0	ug/L	40		98.5	70-130			
Surrogate: 4-Bromofluorobenzene	54.3		ug/L	50		109	70-140			
Surrogate: Dibromofluoromethane	52.2		ug/L	50		104	70-140			
Surrogate: Toluene-d8	50.3		ug/L	50		101	70-140			
Matrix Spike (B6J1827-MS1)	5	Source: 6J1	0011-02	Prepare	ed: 10/18/1	6 Ana	alyzed: 10	0/19/16		
Acetone	60.5	10	ug/L	50	<10	121	70-130			
tert-Amyl Methyl Ether (TAME)	21.2	2.0	ug/L	20	<2.0	106	70-130			
Benzene	23.6	0.50	ug/L	20	< 0.50	118	70-130			
Bromobenzene	20.1	0.50	ug/L	20	< 0.50	100	70-130			
Bromochloromethane	22.5	0.50	ug/L	20	< 0.50	113	70-130			
Bromodichloromethane	22.2	0.50	ug/L	20	< 0.50	111	70-130			
Bromoform	18.2	0.50	ug/L	20	< 0.50	91.2	70-130			
		0.50	٠.		0.50	~- ~				

Viorel Vasile Operations Manager

Bromomethane

2-Butanone (MEK)

ug/L

ug/L

20

50

<0.50 87.2

<10 115

70-130

70-130

17.4

57.4

0.50

10

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/10/16
Date Reported: 10/21/16

AA Project No: A5331954

	F	Reporting			Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Matrix Spike (B6J1827-MS1) Continued Source: 6J10011-02 Prepared: 10/18/16 Analyzed: 10/19/16									
tert-Butyl alcohol (TBA)	120	10	ug/L	100	<10	120	70-130		
sec-Butylbenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130		
tert-Butylbenzene	21.6	0.50	ug/L	20	0.460	106	70-130		
n-Butylbenzene	20.5	0.50	ug/L	20	< 0.50	103	70-130		
Carbon Disulfide	42.5	0.50	ug/L	50	< 0.50	84.9	70-130		
Carbon Tetrachloride	20.6	0.50	ug/L	20	< 0.50	103	70-130		
Chlorobenzene	19.6	0.50	ug/L	20	< 0.50	97.8	70-130		
Chloroethane	22.8	0.50	ug/L	20	< 0.50	114	70-130		
Chloroform	21.6	0.50	ug/L	20	< 0.50	108	70-130		
Chloromethane	18.2	0.50	ug/L	20	< 0.50	91.2	70-130		
2-Chlorotoluene	21.4	0.50	ug/L	20	< 0.50	107	70-130		
4-Chlorotoluene	20.6	0.50	ug/L	20	< 0.50	103	70-130		
1,2-Dibromo-3-chloropropane	24.5	1.0	ug/L	20	<1.0	122	70-130		
Dibromochloromethane	20.9	0.50	ug/L	20	< 0.50	104	70-130		
1,2-Dibromoethane (EDB)	20.1	0.50	ug/L	20	< 0.50	101	70-130		
Dibromomethane	22.9	0.50	ug/L	20	< 0.50	115	70-130		
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	< 0.50	104	70-130		
1,2-Dichlorobenzene	22.3	0.50	ug/L	20	< 0.50	112	70-130		
1,4-Dichlorobenzene	20.2	0.50	ug/L	20	< 0.50	101	70-130		
Dichlorodifluoromethane (R12)	16.1	0.50	ug/L	20	< 0.50	80.4	70-130		
1,1-Dichloroethane	22.9	0.50	ug/L	20	< 0.50	115	70-130		
1,2-Dichloroethane (EDC)	22.2	0.50	ug/L	20	< 0.50	111	70-130		
1,1-Dichloroethylene	23.2	0.50	ug/L	20	< 0.50	116	70-130		
trans-1,2-Dichloroethylene	20.0	0.50	ug/L	20	< 0.50	99.8	70-130		
cis-1,2-Dichloroethylene	19.8	0.50	ug/L	20	< 0.50	98.8	70-130		
1,2-Dichloropropane	24.5	0.50	ug/L	20	< 0.50	123	70-130		
2,2-Dichloropropane	19.9	0.50	ug/L	20	< 0.50	99.4	70-130		
1,3-Dichloropropane	20.6	0.50	ug/L	20	< 0.50	103	70-130		
cis-1,3-Dichloropropylene	20.5	0.50	ug/L	20	< 0.50	102	70-130		
trans-1,3-Dichloropropylene	20.0	0.50	ug/L	20	< 0.50	100	70-130		
1,1-Dichloropropylene	20.8	0.50	ug/L	20	< 0.50	104	70-130		

Limit Notes

Analyte

LABORATORY ANALYSIS RESULTS

Units

Reporting

Result Limit

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Date Reported	d: 10/21/16
Spike Source	%REC	RPD

Level Result %REC Limits RPD

AA Project No: A5331954

Date Received: 10/10/16

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Diisopropyl ether (DIPE)	24.5	2.0	ug/L	20	<2.0	122	70-130
Ethylbenzene	19.6	0.50	ug/L	20	< 0.50	98.2	70-130
Ethyl-tert-Butyl Ether (ETBE)	22.9	2.0	ug/L	20	<2.0	114	70-130
Hexachlorobutadiene	18.0	1.0	ug/L	20	<1.0	90.2	70-130
2-Hexanone (MBK)	59.6	10	ug/L	50	<10	119	70-130
sopropylbenzene	21.0	0.50	ug/L	20	< 0.50	105	70-130
4-Isopropyltoluene	21.4	1.0	ug/L	20	<1.0	107	70-130
Methyl-tert-Butyl Ether (MTBE)	46.8	1.0	ug/L	40	<1.0	117	70-130
Methylene Chloride	24.8	5.0	ug/L	20	<5.0	124	70-130
4-Methyl-2-pentanone (MIBK)	58.1	10	ug/L	50	<10	116	70-130
Naphthalene	25.7	2.0	ug/L	20	<2.0	129	70-130
n-Propylbenzene	20.7	0.50	ug/L	20	< 0.50	104	70-130
Styrene	18.5	0.50	ug/L	20	< 0.50	92.5	70-130
1,1,1,2-Tetrachloroethane	18.7	0.50	ug/L	20	< 0.50	93.5	70-130
1,1,2,2-Tetrachloroethane	21.7	0.50	ug/L	20	< 0.50	108	70-130
Tetrachloroethylene (PCE)	18.4	0.50	ug/L	20	< 0.50	92.1	70-130
Toluene	19.5	0.50	ug/L	20	< 0.50	97.6	70-130
1,2,3-Trichlorobenzene	20.0	0.50	ug/L	20	< 0.50	100	70-130
1,2,4-Trichlorobenzene	18.9	0.50	ug/L	20	< 0.50	94.4	70-130
1,1,1-Trichloroethane	21.5	0.50	ug/L	20	< 0.50	108	70-130
1,1,2-Trichloroethane	21.2	0.50	ug/L	20	< 0.50	106	70-130
Trichloroethylene (TCE)	20.5	0.50	ug/L	20	< 0.50	103	70-130
Trichlorofluoromethane (R11)	20.5	0.50	ug/L	20	< 0.50	103	70-130
1,2,3-Trichloropropane	21.2	0.50	ug/L	20	< 0.50	106	70-130
1,1,2-Trichloro-1,2,2-trifluoroethane	23.3	0.50	ug/L	20	< 0.50	117	70-130
(R113)							
1,3,5-Trimethylbenzene	21.0	0.50	ug/L	20	< 0.50	105	70-130
1,2,4-Trimethylbenzene	21.7	0.50	ug/L	20	< 0.50	108	70-130
Vinyl chloride	19.8	0.50	ug/L	20	< 0.50	98.8	70-130
o-Xylene	19.3	0.50	ug/L	20	< 0.50	96.4	70-130
m,p-Xylenes	38.7	1.0	ug/L	40	<1.0	96.8	70-130

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954
Date Received: 10/10/16
Date Reported: 10/21/16

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS - Quality Control									

Batch B6J1827 - EPA 5030B

Matrix Spike (B6J1827-MS1) Conti		ource: 6			d: 10/18/			0/19/16	
Surrogate: 4-Bromofluorobenzene	53.6		ug/L	50		107	70-140		
Surrogate: Dibromofluoromethane	52.2		ug/L	50		104	70-140		
Surrogate: Toluene-d8	49.3		ug/L	50		98.7	70-140		
Matrix Spike Dup (B6J1827-MSD1)			J10011-02	Prepare	d: 10/18/	16 An	alyzed: 10	0/19/16	
Acetone	54.7	10	ug/L	50	<10	109	70-130	10.1	30
tert-Amyl Methyl Ether (TAME)	19.6	2.0	ug/L	20	<2.0	98.0	70-130	8.08	30
Benzene	22.7	0.50	ug/L	20	<0.50	114	70-130	3.84	30
Bromobenzene	20.8	0.50	ug/L	20	< 0.50	104	70-130	3.66	30
Bromochloromethane	21.2	0.50	ug/L	20	< 0.50	106	70-130	5.76	30
Bromodichloromethane	21.6	0.50	ug/L	20	<0.50	108	70-130	2.60	30
Bromoform	16.5	0.50	ug/L	20	< 0.50	82.6	70-130	9.84	30
Bromomethane	19.0	0.50	ug/L	20	< 0.50	95.0	70-130	8.45	30
2-Butanone (MEK)	51.5	10	ug/L	50	<10	103	70-130	10.8	30
tert-Butyl alcohol (TBA)	112	10	ug/L	100	<10	112	70-130	6.89	30
sec-Butylbenzene	21.6	0.50	ug/L	20	< 0.50	108	70-130	6.85	30
tert-Butylbenzene	23.5	0.50	ug/L	20	0.460	115	70-130	8.38	30
n-Butylbenzene	21.8	0.50	ug/L	20	< 0.50	109	70-130	5.96	30
Carbon Disulfide	44.5	0.50	ug/L	50	< 0.50	89.1	70-130	4.76	30
Carbon Tetrachloride	21.2	0.50	ug/L	20	< 0.50	106	70-130	2.49	30
Chlorobenzene	19.7	0.50	ug/L	20	< 0.50	98.4	70-130	0.662	30
Chloroethane	23.9	0.50	ug/L	20	<0.50	119	70-130	4.63	30
Chloroform	21.6	0.50	ug/L	20	< 0.50	108	70-130	0.139	30
Chloromethane	19.3	0.50	ug/L	20	<0.50	96.5	70-130	5.70	30
2-Chlorotoluene	22.1	0.50	ug/L	20	< 0.50	110	70-130	3.13	30
4-Chlorotoluene	21.9	0.50	ug/L	20	< 0.50	110	70-130	6.21	30
1,2-Dibromo-3-chloropropane	23.0	1.0	ug/L	20	<1.0	115	70-130	6.06	30
Dibromochloromethane	20.1	0.50	ug/L	20	< 0.50	101	70-130	3.56	30
1,2-Dibromoethane (EDB)	18.9	0.50	ug/L	20	< 0.50	94.5	70-130	6.30	30
Dibromomethane	19.9	0.50	ug/L	20	< 0.50	99.5	70-130	14.2	30
1,3-Dichlorobenzene	21.1	0.50	ug/L	20	< 0.50	106	70-130	1.38	30
1,2-Dichlorobenzene	22.4	0.50	ug/L	20	< 0.50	112	70-130	0.492	30

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954
Date Received: 10/10/16
Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	S - Quality	y Control								
Batch B6J1827 - EPA 5030B										
Matrix Spike Dup (B6J1827-MS	D1)	Source: 6J1	0011-02	Prepare	ed: 10/18/	16 An	alyzed: 10	0/19/16		
Continued	•			-			-			
1,4-Dichlorobenzene	20.7	0.50	ug/L	20	<0.50	104	70-130	2.74	30	
Dichlorodifluoromethane (R12)	16.4	0.50	ug/L	20	< 0.50	82.0	70-130	1.97	30	
1,1-Dichloroethane	22.5	0.50	ug/L	20	< 0.50	113	70-130	1.63	30	
1,2-Dichloroethane (EDC)	20.9	0.50	ug/L	20	< 0.50	104	70-130	6.27	30	
1 1-Dichloroethylene	23.9	0.50	ua/l	20	< 0.50	119	70-130	2 76	30	

1,4-Dichlorobenzene	20.7	0.50	ug/L	20	<0.50 104	70-130	2.74	30
Dichlorodifluoromethane (R12)	16.4	0.50	ug/L	20	<0.50 82.0	70-130	1.97	30
1,1-Dichloroethane	22.5	0.50	ug/L	20	<0.50 113	70-130	1.63	30
1,2-Dichloroethane (EDC)	20.9	0.50	ug/L	20	<0.50 104	70-130	6.27	30
1,1-Dichloroethylene	23.9	0.50	ug/L	20	<0.50 119	70-130	2.76	30
trans-1,2-Dichloroethylene	21.0	0.50	ug/L	20	<0.50 105	70-130	4.89	30
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	<0.50 101	70-130	2.40	30
1,2-Dichloropropane	23.1	0.50	ug/L	20	<0.50 116	70-130	6.00	30
2,2-Dichloropropane	20.7	0.50	ug/L	20	<0.50 103	70-130	3.80	30
1,3-Dichloropropane	19.3	0.50	ug/L	20	<0.50 96.3		6.72	30
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	<0.50 93.8		8.76	30
trans-1,3-Dichloropropylene	19.2	0.50	ug/L	20	<0.50 96.2	70-130	3.98	30
1,1-Dichloropropylene	21.0	0.50	ug/L	20	<0.50 105	70-130	1.10	30
Diisopropyl ether (DIPE)	23.1	2.0	ug/L	20	<2.0 115	70-130	5.80	30
Ethylbenzene	20.7	0.50	ug/L	20	<0.50 103	70-130	5.16	30
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	<2.0 108	70-130	5.76	30
Hexachlorobutadiene	19.8	1.0	ug/L	20	<1.0 98.9		9.26	30
2-Hexanone (MBK)	52.8	10	ug/L	50	<10 106	70-130	12.1	30
Isopropylbenzene	22.7	0.50	ug/L	20	<0.50 114	70-130	7.81	30
4-Isopropyltoluene	22.7	1.0	ug/L	20	<1.0 114	70-130	5.80	30
Methyl-tert-Butyl Ether (MTBE)	42.4	1.0	ug/L	40	<1.0 106	70-130	9.83	30
Methylene Chloride	24.4	5.0	ug/L	20	<5.0 122	70-130	1.79	30
4-Methyl-2-pentanone (MIBK)	49.0	10	ug/L	50	<10 98.1	70-130	16.9	30
Naphthalene	24.7	2.0	ug/L	20	<2.0 124	70-130	3.96	30
n-Propylbenzene	22.2	0.50	ug/L	20	<0.50 111	70-130	6.62	30
Styrene	18.9	0.50	ug/L	20	<0.50 94.4		2.03	30
1,1,1,2-Tetrachloroethane	19.1	0.50	ug/L	20	<0.50 95.3		1.91	30
1,1,2,2-Tetrachloroethane	19.5	0.50	ug/L	20	<0.50 97.6		10.4	30
Tetrachloroethylene (PCE)	19.2	0.50	ug/L	20	<0.50 96.2		4.35	30
Toluene	20.3	0.50	ug/L	20	<0.50 101	70-130	3.87	30
1,2,3-Trichlorobenzene	19.8	0.50	ug/L	20	<0.50 98.8	70-130	1.21	30

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954
Date Received: 10/10/16
Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS										
Batch B6J1827 - EPA 5030B	40.0	,								
Matrix Spike Dup (B6J1827-MSD	1)	Source: 6J1	0011-02	Prepare	ed: 10/18/	/16 Ana	alyzed: 10	0/19/16		
Continued	-,						,			
1,2,4-Trichlorobenzene	19.6	0.50	ug/L	20	<0.50	98.2	70-130	3.95	30	
1,1,1-Trichloroethane	21.8	0.50	ug/L	20	< 0.50	109	70-130	1.43	30	
1,1,2-Trichloroethane	19.8		ug/L	20	<0.50		70-130	6.44	30	
Trichloroethylene (TCE)	20.2		ug/L	20	<0.50		70-130	1.37	30	
Trichlorofluoromethane (R11)	20.8		ug/L	20	<0.50		70-130	1.50	30	
1,2,3-Trichloropropane	18.7		ug/L	20	< 0.50		70-130	12.5	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	23.4	0.50	ug/L	20	<0.50	117	70-130	0.257	30	
1,3,5-Trimethylbenzene	22.3	0.50	ug/L	20	< 0.50	112	70-130	6.14	30	
1,2,4-Trimethylbenzene	22.4	0.50	ug/L	20	<0.50	112	70-130	3.27	30	
Vinyl chloride	21.3		ug/L	20	<0.50		70-130	7.50	30	
o-Xylene	19.7		ug/L	20	<0.50		70-130	2.26	30	
m,p-Xylenes	39.8	1.0	ug/L	40	<1.0	99.6	70-130	2.83	30	
Surrogate: 4-Bromofluorobenzene	<i>52.4</i>		ug/L	50		105	70-140			
Surrogate: Dibromofluoromethane	50.3		ug/L	50		101	70-140			
Surrogate: Toluene-d8	4 9.6	1	ug/L	50		99.3	70-140			
Diesel Range Organics by GC/FID	- Qualit	y Control								
Batch B6J1220 - EPA 3510C										
Blank (B6J1220-BLK1)				Prepare	ed: 10/12/	/16 Ana	alyzed: 10	0/13/16		
Diesel Range Organics as Diesel	<0.10	0.10	mg/L							
Surrogate: o-Terphenyl	0.0398	}	mg/L	0.040		99.6	50-150			
LCS (B6J1220-BS1)				Prepare	ed: 10/12/	/16 Ana	alyzed: 10	0/13/16		
Diesel Range Organics as Diesel	0.904	0.10	mg/L	0.80		113	75-125			
Surrogate: o-Terphenyl	0.0546	}	mg/L	0.040		136	50-150			
LCS Dup (B6J1220-BSD1)				Prepare	ed: 10/12/	/16 Ana	alyzed: 10	0/13/16		

Gasoline Range Organics by GC/FID - Quality Control

Surrogate: o-Terphenyl

Diesel Range Organics as Diesel

Viorel Vasile Operations Manager mg/L

mg/L

0.80

0.040

101

128

75-125

50-150

11.5

30

0.10

0.806

0.0513

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954

Date Received: 10/10/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %	%REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline Range Organics by GC/FI				2.2.		<u> </u>				
Batch B6J1129 - EPA 5030B				_						
Blank (B6J1129-BLK1)				Prepare	ed & Analyz	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	47.8		ug/L	50		95.7	80-120			
LCS (B6J1129-BS1)			-	Prepare	ed & Analyz	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	425	100	ug/L	500		85.1	75-125			
Surrogate: a,a,a-Trifluorotoluene	45.2		ug/L	50		90.4	80-120			
LCS Dup (B6J1129-BSD1)			-	Prepare	ed & Analyz	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	429	100	ug/L	500	<u>_</u> _	85.8	75-125	0.825	30	
Surrogate: a,a,a-Trifluorotoluene	48.4		ug/L	50		96.7	80-120			
Matrix Spike (B6J1129-MS1)	5	Source: 6J1	0011-03	Prepare	ed & Analyz	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	486	100	ug/L	500	53.4	86.5	70-130			
Surrogate: a,a,a-Trifluorotoluene	45.8		ug/L	50		91.6	80-120			
Matrix Spike Dup (B6J1129-MSD1	1) 5	Source: 6J1	-	Prepare	ed & Analyz	zed: 1	0/11/16			
Gasoline Range Organics (GRO)	476	100	ug/L	500	53.4	84.6	70-130	1.99	30	
Surrogate: a,a,a-Trifluorotoluene	44.1		ug/L	50		88.2	80-120			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331954 Date Received: 10/10/16 Date Reported: 10/21/16

Special Notes

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

70046816

me: THUS Willow	3	No.:	No.:	me)		Special					эметика байтарын жалын		20	1	MPLE TENT	- Joy			Received by	Recorded by	Received by		
Sampler's Name:	Sampler's Signature:	P.O. No.:	Quote No.:	ANAL YSIS REQUESTED (Test Name)			ound Codes **										5 3			Time		Time	
	Sa			ANALYSIS REQI	1		Please enter the TAT Turnaround Codes ** below	NATIONAL PROPERTY OF THE PROPE												Date 10 -10 -1/5	10 Pate 10	Date	
OK	KAUL				(V) 6M/2	\	Please enter	* ×	XXX	XXX	×	メメメ	メーマーヌ	N X X	1 4 1	3				ý q	by	by	
DFSP Nowaak	15306 Nowalk M	Horwalk	CA 40650			TAT)	Sample No.	_	7	£	i,	7	7	1 1 0		7				Kelinquished by	Relinquished by	Relinquished by	***************************************
Name / No.:	1 1	1 :	State & Zip: 📿		c	10 Working Days (Standard TAT)	Time Sar	<u> </u>					810 Gw	1025 GW						Dù			
Project Nar	Site		Star	**	4 = 72 Hour Rush $5 = 5$ Day Rush		Date	10 10-16	91-01-01	91-01-01	1		10-10-16	10-01-01	22 CHO1	31.01.01							
de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	TL SWENSSON	-1052	1070	TAT Turnaround Codes **	Same Day Rush (4) = 24 Hour Rush (5) =	48 Hour Rush X =		100K9		9	7		38	(0-	Xe-	9				Laboratory Use	Date 1010 Grime (4.0)	TAT Nove Sign:	100179/155119
Client: 4/8/2-56/2	Project Manager: アルビモ らいといくらのれ	Phone: 1-562-597-1055	Fax: 1-162-597-1070		(1) = Same (2) = 24 Ho	3 = 48 Ho	Client I.D.	(\$C73-1	6mw-12	24	DNP 7	h-m5	GMW/21	SMW-15	Sh-MWS	00 EB 1							A.A. Project No.: 143 >5 175 4

Note: By relinquishing samples to American Aflalytics, client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 21, 2016

Neil Irish The Source Group, Inc. (SH) 1962 Freeman Ave. Signal Hill, CA 90755

Re: DFSP Norwalk GW Sampling / 04-NDLA-013

A5331957 / 6J12011

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/12/16 16:45 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

	1 9				
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
8260B+OXY+TPHG					
QCTB-1	6J12011-01	Water	5	10/11/16 06:00	10/12/16 16:45
QCEB-1	6J12011-10	Water	5	10/11/16 12:20	10/12/16 16:45
8260B+OXYGENATES					
TF-21	6J12011-02	Water	5	10/11/16 08:30	10/12/16 16:45
GMW-59	6J12011-03	Water	5	10/11/16 09:05	10/12/16 16:45
GMW-48	6J12011-04	Water	5	10/11/16 09:45	10/12/16 16:45
DUP-8	6J12011-05	Water	5	10/11/16 00:00	10/12/16 16:45
GMW-7	6J12011-06	Water	5	10/11/16 10:20	10/12/16 16:45
GW-7	6J12011-07	Water	5	10/11/16 10:55	10/12/16 16:45
TF-24	6J12011-08	Water	5	10/11/16 11:20	10/12/16 16:45
GW-15	6J12011-09	Water	5	10/11/16 12:05	10/12/16 16:45
Diesel Range Organics 8015M					
TF-21	6J12011-02	Water	5	10/11/16 08:30	10/12/16 16:45
GMW-59	6J12011-03	Water	5	10/11/16 09:05	10/12/16 16:45
GMW-48	6J12011-04	Water	5	10/11/16 09:45	10/12/16 16:45
DUP-8	6J12011-05	Water	5	10/11/16 00:00	10/12/16 16:45
GMW-7	6J12011-06	Water	5	10/11/16 10:20	10/12/16 16:45
GW-7	6J12011-07	Water	5	10/11/16 10:55	10/12/16 16:45

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

Floject Name. Di Si Norwalk GW		Date Repo	160. 10/21/10		
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
TF-24	6J12011-08	Water	5	10/11/16 11:20	10/12/16 16:45
GW-15	6J12011-09	Water	5	10/11/16 12:05	10/12/16 16:45
Gasoline Range Organics 8015M					
TF-21	6J12011-02	Water	5	10/11/16 08:30	10/12/16 16:45
GMW-59	6J12011-03	Water	5	10/11/16 09:05	10/12/16 16:45
GMW-48	6J12011-04	Water	5	10/11/16 09:45	10/12/16 16:45
DUP-8	6J12011-05	Water	5	10/11/16 00:00	10/12/16 16:45
GMW-7	6J12011-06	Water	5	10/11/16 10:20	10/12/16 16:45
GW-7	6J12011-07	Water	5	10/11/16 10:55	10/12/16 16:45
TF-24	6J12011-08	Water	5	10/11/16 11:20	10/12/16 16:45
GW-15	6J12011-09	Water	5	10/11/16 12:05	10/12/16 16:45

0.50

LABORATORY ANALYSIS RESULTS

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/11/16 10/11/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/18/16 AA ID No: 6J12011-01 6J12011-10 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL

8260B+OXY+TPHG (EPA 8260B)			
Acetone	<10	<10	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	2.0
Benzene	< 0.50	< 0.50	0.50
Bromobenzene	< 0.50	< 0.50	0.50
Bromochloromethane	< 0.50	< 0.50	0.50
Bromodichloromethane	< 0.50	< 0.50	0.50
Bromoform	< 0.50	< 0.50	0.50
Bromomethane	< 0.50	< 0.50	0.50
2-Butanone (MEK)	<10	<10	10
tert-Butyl alcohol (TBA)	<10	<10	10
sec-Butylbenzene	< 0.50	< 0.50	0.50
tert-Butylbenzene	< 0.50	< 0.50	0.50
n-Butylbenzene	< 0.50	< 0.50	0.50
Carbon Disulfide	< 0.50	< 0.50	0.50

Chlorobenzene < 0.50 < 0.50 0.50 Chloroethane < 0.50 < 0.50 0.50 Chloroform < 0.50 < 0.50 0.50 Chloromethane < 0.50 < 0.50 0.50 2-Chlorotoluene < 0.50 < 0.50 0.50 4-Chlorotoluene < 0.50 < 0.50 0.50 1,2-Dibromo-3-chloropropane <1.0 <1.0 1.0 Dibromochloromethane < 0.50 < 0.50 0.50 1,2-Dibromoethane (EDB) < 0.50 < 0.50 0.50 Dibromomethane < 0.50 < 0.50 0.50 1,3-Dichlorobenzene < 0.50 < 0.50 0.50 1,2-Dichlorobenzene < 0.50 < 0.50 0.50

< 0.50

< 0.50

Viorel Vasile Operations Manager

Carbon Tetrachloride

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: VOCs, OXY & TPH Gasoline by GC/MS Units: ug/L

Date Sampled: 10/11/16 10/11/16 **Date Prepared:** 10/17/16 10/17/16 **Date Analyzed:** 10/17/16 10/18/16 AA ID No: 6J12011-01 6J12011-10 Client ID No: QCTB-1 QCEB-1 Water Water Matrix:

Dilution Factor: 1 1 1 MRL

8260B+OXY+TPHG (EPA 8260B	(continued)		
1,4-Dichlorobenzene	<0.50	<0.50	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	0.50
1,1-Dichloroethane	< 0.50	< 0.50	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	0.50
1,2-Dichloropropane	< 0.50	< 0.50	0.50
2,2-Dichloropropane	< 0.50	< 0.50	0.50
1,3-Dichloropropane	< 0.50	< 0.50	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	2.0
Ethylbenzene	< 0.50	< 0.50	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	2.0
Gasoline Range Organics	<100	<100	100
(GRO)			
Hexachlorobutadiene	<1.0	<1.0	1.0
2-Hexanone (MBK)	<10	<10	10
Isopropylbenzene	<0.50	<0.50	0.50
4-Isopropyltoluene	<1.0	<1.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<1.0	1.0
Methylene Chloride	<5.0	<5.0	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	10
Naphthalene	<2.0	<2.0	2.0
n-Propylbenzene	<0.50	<0.50	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs, OXY & TPH Gasoline by GC/MS

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled: 10/11/16 10/11/16 **Date Prepared:** 10/17/16 10/17/16 Date Analyzed: 10/17/16 10/18/16 AA ID No: 6J12011-01 6J12011-10 **Client ID No:** QCTB-1 QCEB-1 Water Water Matrix: **Dilution Factor:** 1 1 MRL

8260B+OXY+TPHG (EPA 8260B)	(continued)		
Styrene	<0.50	<0.50	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	0.50
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	0.50
Tetrachloroethylene (PCE)	< 0.50	< 0.50	0.50
Toluene	< 0.50	< 0.50	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	< 0.50	0.50
ane (R113)			
1,3,5-Trimethylbenzene	<0.50	< 0.50	0.50
1,2,4-Trimethylbenzene	<0.50	< 0.50	0.50
Vinyl chloride	<0.50	< 0.50	0.50
o-Xylene	< 0.50	< 0.50	0.50
m,p-Xylenes	<1.0	<1.0	1.0

Surrogates			%REC Limits
4-Bromofluorobenzene	111%	117%	70-140
Dibromofluoromethane	129%	123%	70-140
Toluene-d8	101%	103%	70-140

A

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331957 Date Received: 10/12/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J12011-02	6J12011-03	6J12011-04	6J12011-05	
Client ID No:	TF-21	GMW-59	GMW-48	DUP-8	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	2	2	2	MRL
8260B+OXYGENATES (EPA 82	260B)				
Acetone	<10	<20	<20	<20	10
tert-Amyl Methyl Ether (TAME)	<2.0	<4.0	<4.0	<4.0	2.0
Benzene	8.5	110	200	200	0.50
Bromobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Bromochloromethane	< 0.50	<1.0	<1.0	<1.0	0.50
Bromodichloromethane	< 0.50	<1.0	<1.0	<1.0	0.50
Bromoform	< 0.50	<1.0	<1.0	<1.0	0.50
Bromomethane	< 0.50	<1.0	<1.0	<1.0	0.50
2-Butanone (MEK)	<10	<20	<20	<20	10
tert-Butyl alcohol (TBA)	<10	<20	<20	<20	10
sec-Butylbenzene	4.9	4.3	2.9	2.6	0.50
tert-Butylbenzene	1.2	1.5	1.1	<1.0	0.50
n-Butylbenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Carbon Disulfide	< 0.50	<1.0	<1.0	<1.0	0.50
Carbon Tetrachloride	< 0.50	<1.0	<1.0	<1.0	0.50
Chlorobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Chloroethane	< 0.50	<1.0	<1.0	<1.0	0.50
Chloroform	< 0.50	<1.0	<1.0	<1.0	0.50
Chloromethane	< 0.50	<1.0	<1.0	<1.0	0.50
2-Chlorotoluene	< 0.50	<1.0	<1.0	<1.0	0.50
4-Chlorotoluene	< 0.50	<1.0	<1.0	<1.0	0.50
1,2-Dibromo-3-chloropropane	<1.0	<2.0	<2.0	<2.0	1.0
Dibromochloromethane	< 0.50	<1.0	<1.0	<1.0	0.50
1,2-Dibromoethane (EDB)	< 0.50	<1.0	<1.0	<1.0	0.50
Dibromomethane	< 0.50	<1.0	<1.0	<1.0	0.50
1,3-Dichlorobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
1,2-Dichlorobenzene	<0.50	<1.0	<1.0	<1.0	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331957 Date Received: 10/12/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J12011-02	6J12011-03	6J12011-04	6J12011-05	
Client ID No:	TF-21	GMW-59	GMW-48	DUP-8	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	2	2	2	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Dichlorodifluoromethane (R12)	< 0.50	<1.0	<1.0	<1.0	0.50
1,1-Dichloroethane	< 0.50	<1.0	<1.0	<1.0	0.50
1,2-Dichloroethane (EDC)	< 0.50	<1.0	<1.0	<1.0	0.50
1,1-Dichloroethylene	< 0.50	<1.0	<1.0	<1.0	0.50
trans-1,2-Dichloroethylene	< 0.50	<1.0	<1.0	<1.0	0.50
cis-1,2-Dichloroethylene	< 0.50	4.8	4.0	3.7	0.50
1,2-Dichloropropane	< 0.50	<1.0	<1.0	<1.0	0.50
2,2-Dichloropropane	< 0.50	<1.0	<1.0	<1.0	0.50
1,3-Dichloropropane	< 0.50	<1.0	<1.0	<1.0	0.50
cis-1,3-Dichloropropylene	< 0.50	<1.0	<1.0	<1.0	0.50
trans-1,3-Dichloropropylene	< 0.50	<1.0	<1.0	<1.0	0.50
1,1-Dichloropropylene	< 0.50	<1.0	<1.0	<1.0	0.50
Diisopropyl ether (DIPE)	<2.0	<4.0	<4.0	<4.0	2.0
Ethylbenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<4.0	<4.0	<4.0	2.0
Hexachlorobutadiene	<1.0	<2.0	<2.0	<2.0	1.0
2-Hexanone (MBK)	<10	<20	<20	<20	10
Isopropylbenzene	28	32	25	23	0.50
4-Isopropyltoluene	<1.0	<2.0	<2.0	<2.0	1.0
Methyl-tert-Butyl Ether (MTBE)	<1.0	<2.0	<2.0	<2.0	1.0
Methylene Chloride	<5.0	<10	<10	<10	5.0
4-Methyl-2-pentanone (MIBK)	<10	<20	<20	<20	10
Naphthalene	11	5.1	<4.0	<4.0	2.0
n-Propylbenzene	22	2.5	2.2	2.1	0.50
Styrene	< 0.50	<1.0	<1.0	<1.0	0.50
1,1,1,2-Tetrachloroethane	<0.50	<1.0	<1.0	<1.0	0.50

AA Project No: A5331957

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Date Received: 10/12/16 Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16 VOCs & OXYGENATES by GC/MS Method: Units: ug/L

Date Sampled: 10/11/16 10/11/16 10/11/16 10/11/16 **Date Prepared:** 10/18/16 10/18/16 10/18/16 10/18/16 Date Analyzed: 10/18/16 10/18/16 10/18/16 10/18/16 AA ID No: 6J12011-02 6J12011-03 6J12011-04 6J12011-05 Client ID No: TF-21 **GMW-59 GMW-48** DUP-8 Water Water Water Water Matrix:

Dilution Factor:	1	2	2	2	MDI
				2	MRL
8260B+OXYGENATES (EPA 8260E	3) (continue	d)			
1,1,2,2-Tetrachloroethane	<0.50	<1.0	<1.0	<1.0	0.50
Tetrachloroethylene (PCE)	1.7	2.3	1.2	<1.0	0.50
Toluene	< 0.50	<1.0	<1.0	<1.0	0.50
1,2,3-Trichlorobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
1,2,4-Trichlorobenzene	< 0.50	<1.0	<1.0	<1.0	0.50
1,1,1-Trichloroethane	< 0.50	<1.0	<1.0	<1.0	0.50
1,1,2-Trichloroethane	< 0.50	<1.0	<1.0	<1.0	0.50
Trichloroethylene (TCE)	< 0.50	<1.0	<1.0	<1.0	0.50
Trichlorofluoromethane (R11)	< 0.50	<1.0	<1.0	<1.0	0.50
1,2,3-Trichloropropane	< 0.50	<1.0	<1.0	<1.0	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth	< 0.50	<1.0	<1.0	<1.0	0.50
ane (R113)					
1,3,5-Trimethylbenzene	<0.50	<1.0	<1.0	<1.0	0.50
1,2,4-Trimethylbenzene	< 0.50	<1.0	<1.0	<1.0	0.50
Vinyl chloride	< 0.50	<1.0	<1.0	<1.0	0.50
o-Xylene	< 0.50	<1.0	<1.0	<1.0	0.50
m,p-Xylenes	<1.0	<2.0	<2.0	<2.0	1.0

<u>Surrogates</u>					%REC Limits
4-Bromofluorobenzene	105%	102%	103%	101%	70-140
Dibromofluoromethane	114%	115%	112%	113%	70-140
Toluene-d8	101%	100%	99%	98%	70-140

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J12011-06	6J12011-07	6J12011-08	6J12011-09	
Client ID No:	GMW-7	GW-7	TF-24	GW-15	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	5	MRL
8260B+OXYGENATES (EPA 82	260B <u>)</u>				
Acetone	<10	<10	<10	<50	10
tert-Amyl Methyl Ether (TAME)	<2.0	<2.0	<2.0	<10	2.0
Benzene	7.5	< 0.50	< 0.50	730	0.50
Bromobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
Bromochloromethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
Bromodichloromethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
Bromoform	< 0.50	< 0.50	< 0.50	<2.5	0.50
Bromomethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
2-Butanone (MEK)	<10	<10	<10	<50	10
tert-Butyl alcohol (TBA)	47	<10	<10	<50	10
sec-Butylbenzene	1.6	< 0.50	< 0.50	6.0	0.50
tert-Butylbenzene	0.79	< 0.50	< 0.50	2.6	0.50
n-Butylbenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
Carbon Disulfide	< 0.50	< 0.50	< 0.50	<2.5	0.50
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	<2.5	0.50
Chlorobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
Chloroethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
Chloroform	< 0.50	< 0.50	< 0.50	<2.5	0.50
Chloromethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
2-Chlorotoluene	< 0.50	< 0.50	< 0.50	<2.5	0.50
4-Chlorotoluene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<5.0	1.0
Dibromochloromethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	<2.5	0.50
Dibromomethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,3-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2-Dichlorobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J12011-06	6J12011-07	6J12011-08	6J12011-09	
Client ID No:	GMW-7	GW-7	TF-24	GW-15	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	5	MRL
8260B+OXYGENATES (EPA 82	260B) (continue	ed)			
1,4-Dichlorobenzene	< 0.50	<0.50	< 0.50	<2.5	0.50
Dichlorodifluoromethane (R12)	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1-Dichloroethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2-Dichloroethane (EDC)	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1-Dichloroethylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
trans-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
cis-1,2-Dichloroethylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2-Dichloropropane	< 0.50	< 0.50	< 0.50	<2.5	0.50
2,2-Dichloropropane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	<2.5	0.50
cis-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
trans-1,3-Dichloropropylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1-Dichloropropylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
Diisopropyl ether (DIPE)	<2.0	<2.0	<2.0	<10	2.0
Ethylbenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
Ethyl-tert-Butyl Ether (ETBE)	<2.0	<2.0	<2.0	<10	2.0
Hexachlorobutadiene	<1.0	<1.0	<1.0	<5.0	1.0
2-Hexanone (MBK)	<10	<10	<10	<50	10
Isopropylbenzene	4.6	0.63	0.63	11	0.50
4-Isopropyltoluene	1.7	<1.0	<1.0	16	1.0
Methyl-tert-Butyl Ether (MTBE)	1.4	<1.0	<1.0	<5.0	1.0
Methylene Chloride	< 5.0	<5.0	<5.0	<25	5.0
4-Methyl-2-pentanone (MIBK)	<10	<10	<10	<50	10
Naphthalene	<2.0	<2.0	<2.0	31	2.0
n-Propylbenzene	1.1	< 0.50	< 0.50	7.0	0.50
Styrene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1,1,2-Tetrachloroethane	< 0.50	< 0.50	< 0.50	<2.5	0.50

70-140

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: VOCs & OXYGENATES by GC/MS

AA Project No: A5331957 Date Received: 10/12/16

Date Reported: 10/21/16

Units: ug/L

Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/18/16	10/18/16	10/18/16	10/18/16	
Date Analyzed:	10/18/16	10/18/16	10/18/16	10/18/16	
AA ID No:	6J12011-06	6J12011-07	6J12011-08	6J12011-09	
Client ID No:	GMW-7	GW-7	TF-24	GW-15	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	5	MRL
8260B+OXYGENATES (EPA 82	(continue	ed)			_
1,1,2,2-Tetrachloroethane	< 0.50	<0.50	<0.50	<2.5	0.50
Tetrachloroethylene (PCE)	3.8	< 0.50	< 0.50	<2.5	0.50
Toluene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2,3-Trichlorobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2,4-Trichlorobenzene	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1,1-Trichloroethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	<2.5	0.50
Trichloroethylene (TCE)	< 0.50	< 0.50	< 0.50	<2.5	0.50
Trichlorofluoromethane (R11)	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	<2.5	0.50
1,1,2-Trichloro-1,2,2-trifluoroeth ane (R113)	<0.50	<0.50	<0.50	<2.5	0.50
1,3,5-Trimethylbenzene	3.3	< 0.50	< 0.50	12	0.50
1,2,4-Trimethylbenzene	1.0	< 0.50	< 0.50	20	0.50
Vinyl chloride	< 0.50	< 0.50	< 0.50	<2.5	0.50
o-Xylene	< 0.50	< 0.50	< 0.50	<2.5	0.50
m,p-Xylenes	<1.0	<1.0	<1.0	<5.0	1.0
<u>Surrogates</u>					%REC Limits
4-Bromofluorobenzene	103%	110%	111%	104%	70-140
Dibromofluoromethane	119%	122%	119%	118%	70-140

101%

98%

98%

101%

Viorel Vasile Operations Manager

Toluene-d8

Client: The Source Group, Inc. (SH) AA Project No: A5331957 04-NDLA-013 Date Received: 10/12/16 **Project No:** Project Name: DFSP Norwalk GW Sampling Date Reported: 10/21/16 Method:

Diesel Range Organics by GC/FID Units: ma/l

wethou:	nesei Kange O	rganics by GC/i	רוט		Onic	S: mg/L
Date Sampled:		10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:		10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:		10/17/16	10/17/16	10/17/16	10/17/16	
AA ID No:		6J12011-02	6J12011-03	6J12011-04	6J12011-05	
Client ID No:		TF-21	GMW-59	GMW-48	DUP-8	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	1	MRL
Diesel Range Org	janics 8015M (EPA 8015M)				
Diesel Range Orga Diesel	anics as	7.8	1.8	1.1	1.1	0.10
Surrogates o Torphonyl		1000/	139%	145%	134%	%REC Limits 50-150
o-Terphenyl		109%	139%	143%	134%	50-150

50-150

o-Terphenyl

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Method: Diesel Range Organics by GC/FID

AA Project No: A5331957

Date Received: 10/12/16 Date Reported: 10/21/16

Units: mg/L

	.ooor rango t	organice by Go,	2		•	g, =
Date Sampled:		10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:		10/17/16	10/17/16	10/17/16	10/17/16	
Date Analyzed:		10/17/16	10/17/16	10/17/16	10/18/16	
AA ID No:		6J12011-06	6J12011-07	6J12011-08	6J12011-09	
Client ID No:		GMW-7	GW-7	TF-24	GW-15	
Matrix:		Water	Water	Water	Water	
Dilution Factor:		1	1	1	10	MRL
Diesel Range Orga	anics 8015M	(EPA 8015M)				
Diesel Range Orga Diesel	nics as	2.0	0.12	1.1	24	0.10
Surrogates						%REC Limits

121%

146%

132%

134%

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

					_
Date Sampled:	10/11/16	10/11/16	10/11/16	10/11/16	
Date Prepared:	10/14/16	10/14/16	10/14/16	10/14/16	
Date Analyzed:	10/14/16	10/14/16	10/14/16	10/14/16	
AA ID No:	6J12011-02	6J12011-03	6J12011-04	6J12011-05	
Client ID No:	TF-21	GMW-59	GMW-48	DUP-8	
Matrix:	Water	Water	Water	Water	
Dilution Factor:	1	1	1	1	MRL
Gasoline Range Organics 80	015M (EPA 8015M)			
Gasoline Range Organics (GRO)	1300	470	470	530	100

<u>Surrogates</u>					%REC Limits
a,a,a-Trifluorotoluene	100%	96%	95%	97%	80-120

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

AA Project No: A5331957

Date Received: 10/12/16

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/12/16

Date Reported: 10/21/16

Method: Gasoline Range Organics by GC/FID Units: ug/L

Date Sampled: 10/11/16 10/11/16 10/11/16 10/11/16 **Date Prepared:** 10/14/16 10/14/16 10/14/16 10/14/16 **Date Analyzed:** 10/14/16 10/14/16 10/14/16 10/14/16 AA ID No: 6J12011-06 6J12011-07 6J12011-08 6J12011-09 GMW-7 GW-7 TF-24 GW-15 **Client ID No:** Matrix: Water Water Water Water **Dilution Factor:** 1 20 **MRL** 1 1

Gasoline Range Organics 8015M (EPA 8015M)

Gasoline Range Organics **560** <100 <100 **8700** 100

(GRO)

 Surrogates
 %REC Limits

 a,a,a-Trifluorotoluene
 95%
 93%
 90%
 94%
 80-120

Client: The Source Group, Inc. (SH)

04-NDLA-013 **Project No:**

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

	Reporting			Spike	Spike Source %REC			RPD		
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes	

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B			
Blank (B6J1723-BLK1)			Prepared & Analyzed: 10/17/16
Acetone	<10	10	ug/L
tert-Amyl Methyl Ether (TAME)	<2.0	2.0	ug/L
Benzene	< 0.50	0.50	ug/L
Bromobenzene	< 0.50	0.50	ug/L
Bromochloromethane	< 0.50	0.50	ug/L
Bromodichloromethane	< 0.50	0.50	ug/L
Bromoform	< 0.50	0.50	ug/L
Bromomethane	< 0.50	0.50	ug/L
2-Butanone (MEK)	<10	10	ug/L
tert-Butyl alcohol (TBA)	<10	10	ug/L
sec-Butylbenzene	< 0.50	0.50	ug/L
tert-Butylbenzene	< 0.50	0.50	ug/L
n-Butylbenzene	< 0.50	0.50	ug/L
Carbon Disulfide	< 0.50	0.50	ug/L
Carbon Tetrachloride	< 0.50	0.50	ug/L
Chlorobenzene	< 0.50	0.50	ug/L
Chloroethane	<0.50	0.50	ug/L
Chloroform	< 0.50	0.50	ug/L
Chloromethane	< 0.50	0.50	ug/L
2-Chlorotoluene	<0.50	0.50	ug/L
4-Chlorotoluene	<0.50	0.50	ug/L
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L
Dibromochloromethane	< 0.50	0.50	ug/L
1,2-Dibromoethane (EDB)	<0.50	0.50	ug/L
Dibromomethane	< 0.50	0.50	ug/L
1,3-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dichlorobenzene	< 0.50	0.50	ug/L
1,4-Dichlorobenzene	< 0.50	0.50	ug/L
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L
1,1-Dichloroethane	< 0.50	0.50	ug/L
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

nalyte Re	sult	eporting Limit	Units	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
OCs, OXY & TPH Gasoline by GC/MS	S - Qua	ality Contro	ol					

Blank (B6J1723-BLK1) Continued	t		Prepared & Analyzed: 10/17/16
1,1-Dichloroethylene	< 0.50	0.50	ug/L
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L
cis-1,2-Dichloroethylene	<0.50	0.50	ug/L
1,2-Dichloropropane	<0.50	0.50	ug/L
2,2-Dichloropropane	< 0.50	0.50	ug/L
1,3-Dichloropropane	< 0.50	0.50	ug/L
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L
1,1-Dichloropropylene	< 0.50	0.50	ug/L
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L
Ethylbenzene	< 0.50	0.50	ug/L
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L
Gasoline Range Organics (GRO)	<100	100	ug/L
Hexachlorobutadiene	<1.0	1.0	ug/L
2-Hexanone (MBK)	<10	10	ug/L
Isopropylbenzene	<0.50	0.50	ug/L
4-Isopropyltoluene	<1.0	1.0	ug/L
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L
Methylene Chloride	<5.0	5.0	ug/L
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L
Naphthalene	<2.0	2.0	ug/L
n-Propylbenzene	< 0.50	0.50	ug/L
Styrene	< 0.50	0.50	ug/L
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L
1,1,2,2-Tetrachloroethane	<0.50	0.50	ug/L
Tetrachloroethylene (PCE)	<0.50	0.50	ug/L
Toluene	< 0.50	0.50	ug/L
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L
1,1,1-Trichloroethane	< 0.50	0.50	ug/L
1,1,2-Trichloroethane	< 0.50	0.50	ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC/	MS - Q	uality Contr	ol						•
Batch B6J1723 - EPA 5030B									
Blank (B6J1723-BLK1) Continued				Prepare	ed & Analyzed: 1	10/17/16			
Trichloroethylene (TCE)	<0.50	0.50	ug/L		·				
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L						
1,2,3-Trichloropropane	< 0.50	0.50	ug/L						
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<0.50	0.50	ug/L						
1,3,5-Trimethylbenzene	< 0.50	0.50	ug/L						
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L						
Vinyl chloride	< 0.50	0.50	ug/L						
o-Xylene	<0.50	0.50	ug/L						
m,p-Xylenes	<1.0	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	55.4		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	62.7		ug/L	50	125	70-140			
Surrogate: Toluene-d8	49.7		ug/L	50	99.5	70-140			
LCS (B6J1723-BS1)				Prepare	ed: 10/17/16 An	alyzed: 10	0/18/16		
Acetone	47.9	10	ug/L	50	95.8	70-130			
tert-Amyl Methyl Ether (TAME)	17.7	2.0	ug/L	20	88.4	70-130			
Benzene	22.7	0.50	ug/L	20	113	75-125			
Bromobenzene	19.0	0.50	ug/L	20	94.9	70-130			
Bromochloromethane	21.5	0.50	ug/L	20	108	70-130			
Bromodichloromethane	23.3	0.50	ug/L	20	117	75-125			
Bromoform	16.3	0.50	ug/L	20	81.3	75-125			
Bromomethane	16.5	0.50	ug/L	20	82.6	75-125			
2-Butanone (MEK)	46.0	10	ug/L	50	92.0	70-130			
tert-Butyl alcohol (TBA)	105	10	ug/L	100	105	70-130			
sec-Butylbenzene	21.5	0.50	ug/L	20	108	70-130			
tert-Butylbenzene	22.8	0.50	ug/L	20	114	70-130			
n-Butylbenzene	22.3	0.50	ug/L	20	111	70-130			
Carbon Disulfide	41.5	0.50	ug/L	50	83.1	70-130			
Carbon Tetrachloride	24.2		ug/L	20	121	75-125			
Chlorobenzene	20.3	0.50	ug/L	20	102	75-125			
Chloroethane	22.5	0.50	ug/L	20	113	75-125			

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %RI	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

LCS (B6J1723-BS1) Continued	Prepared: 10/17/16 Analyzed: 10/18/16							
Chloroform	23.5	0.50	ug/L	20	118	75-125		
Chloromethane	19.7	0.50	ug/L	20	98.4	65-125		
2-Chlorotoluene	22.2	0.50	ug/L	20	111	70-130		
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130		
1,2-Dibromo-3-chloropropane	20.8	1.0	ug/L	20	104	70-130		
Dibromochloromethane	21.2	0.50	ug/L	20	106	75-125		
1,2-Dibromoethane (EDB)	18.1	0.50	ug/L	20	90.6	70-130		
Dibromomethane	21.8	0.50	ug/L	20	109	70-130		
1,3-Dichlorobenzene	20.4	0.50	ug/L	20	102	70-130		
1,2-Dichlorobenzene	21.1	0.50	ug/L	20	105	70-130		
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.6	75-125		
Dichlorodifluoromethane (R12)	19.2	0.50	ug/L	20	96.2	70-130		
1,1-Dichloroethane	23.0	0.50	ug/L	20	115	70-125		
1,2-Dichloroethane (EDC)	23.6	0.50	ug/L	20	118	75-125		
1,1-Dichloroethylene	22.9	0.50	ug/L	20	115	70-130		
trans-1,2-Dichloroethylene	19.6	0.50	ug/L	20	98.0	75-125		
cis-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	75-125		
1,2-Dichloropropane	23.6	0.50	ug/L	20	118	75-130		
2,2-Dichloropropane	24.3	0.50	ug/L	20	122	70-130		
1,3-Dichloropropane	18.6	0.50	ug/L	20	92.8	70-130		
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.9	75-125		
trans-1,3-Dichloropropylene	18.3	0.50	ug/L	20	91.4	70-130		
1,1-Dichloropropylene	23.0	0.50	ug/L	20	115	70-130		
Diisopropyl ether (DIPE)	22.0	2.0	ug/L	20	110	70-130		
Ethylbenzene	21.6	0.50	ug/L	20	108	75-125		
Ethyl-tert-Butyl Ether (ETBE)	20.0	2.0	ug/L	20	100	70-130		
Gasoline Range Organics (GRO)	486	100	ug/L	500	97.3	70-130		
Hexachlorobutadiene	18.9	1.0	ug/L	20	94.4	70-130		
2-Hexanone (MBK)	45.3	10	ug/L	50	90.7	70-130		
Isopropylbenzene	22.6	0.50	ug/L	20	113	70-130		
4-Isopropyltoluene	22.8	1.0	ug/L	20	114	70-130		

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD
Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B LCS (B6J1723-BS1) Continued Prepared: 10/17/16 Analyzed: 10/18/16 Methyl-tert-Butyl Ether (MTBE) 37.6 1.0 94.0 75-125 ug/L 40 24.9 5.0 124 Methylene Chloride ug/L 20 75-130 4-Methyl-2-pentanone (MIBK) 43.7 10 ug/L 50 87.5 70-130 19.8 2.0 99.2 Naphthalene ug/L 20 70-130 111 n-Propylbenzene 22.2 0.50 ug/L 20 70-130 19.4 0.50 96.8 Styrene ug/L 20 70-130 19.4 0.50 97.1 1,1,1,2-Tetrachloroethane ug/L 20 70-130 1,1,2,2-Tetrachloroethane 18.4 0.50 ug/L 20 92.2 70-135 75-125 Tetrachloroethylene (PCE) 18.7 0.50 20 93.6 ug/L 21.2 0.50 106 Toluene ug/L 20 75-125 18.3 ug/L 91.7 1.2.3-Trichlorobenzene 0.50 20 70-130 18.4 0.50 91.8 1.2.4-Trichlorobenzene ug/L 20 70-130 1,1,1-Trichloroethane 24.4 0.50 ug/L 20 122 75-125 19.7 0.50 98.7 1.1.2-Trichloroethane 20 75-125 ug/L 110 Trichloroethylene (TCE) 22.0 0.50 ug/L 20 75-125 Trichlorofluoromethane (R11) 24.8 0.50 124 ug/L 20 70-130 17.3 86.6 1,2,3-Trichloropropane 0.50 ug/L 20 70-130 1,1,2-Trichloro-1,2,2-trifluoroethane 24.2 0.50 121 ug/L 20 70-130 (R113) 22.1 0.50 20 111 70-130 1,3,5-Trimethylbenzene ug/L 1,2,4-Trimethylbenzene 22.8 0.50 ug/L 20 114 70-130 23.0 0.50 115 Vinyl chloride ug/L 20 75-125 21.1 0.50 105 o-Xylene ug/L 20 75-125 41.0 1.0 103 m,p-Xylenes 40 70-130 ug/L 54.5 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 54.0 Surrogate: Dibromofluoromethane ug/L 50 108 70-140 53.8 Surrogate: Toluene-d8 ug/L 50 108 70-140 Matrix Spike (B6J1723-MS1) Source: 6J10010-02 Prepared & Analyzed: 10/17/16 55.7 Acetone 10 ug/L 50 111 70-130 19.0 2.0 94.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 21.2 0.50 106 Benzene ug/L 20 70-130

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	S Level Result %RE	EC Limits RPD	Limit Notes

VOCs, OXY & TPH Gasoline by GC/MS - Quality Control

Batch B6J1723 - EPA 5030B

Bromobenzene	19.4	0.50	ug/L	20	97.2	70-130
Bromochloromethane	21.7	0.50	ug/L	20	108	70-130
Bromodichloromethane	22.9	0.50	ug/L	20	114	70-130
Bromoform	18.0	0.50	ug/L	20	90.2	70-130
Bromomethane	16.9	0.50	ug/L	20	84.7	70-130
2-Butanone (MEK)	51.9	10	ug/L	50	104	70-130
tert-Butyl alcohol (TBA)	100	10	ug/L	100	100	70-130
sec-Butylbenzene	20.6	0.50	ug/L	20	103	70-130
tert-Butylbenzene	22.0	0.50	ug/L	20	110	70-130
n-Butylbenzene	22.0	0.50	ug/L	20	110	70-130
Carbon Disulfide	45.0	0.50	ug/L	50	90.0	70-130
Carbon Tetrachloride	22.6	0.50	ug/L	20	113	70-130
Chlorobenzene	19.6	0.50	ug/L	20	98.1	70-130
Chloroethane	19.2	0.50	ug/L	20	96.1	70-130
Chloroform	22.7	0.50	ug/L	20	114	70-130
Chloromethane	19.9	0.50	ug/L	20	99.4	70-130
2-Chlorotoluene	21.6	0.50	ug/L	20	108	70-130
4-Chlorotoluene	21.7	0.50	ug/L	20	109	70-130
1,2-Dibromo-3-chloropropane	24.1	1.0	ug/L	20	121	70-130
Dibromochloromethane	20.9	0.50	ug/L	20	104	70-130
1,2-Dibromoethane (EDB)	19.4	0.50	ug/L	20	96.8	70-130
Dibromomethane	22.3	0.50	ug/L	20	111	70-130
1,3-Dichlorobenzene	20.2	0.50	ug/L	20	101	70-130
1,2-Dichlorobenzene	21.5	0.50	ug/L	20	108	70-130
1,4-Dichlorobenzene	19.9	0.50	ug/L	20	99.4	70-130
Dichlorodifluoromethane (R12)	18.5	0.50	ug/L	20	92.6	70-130
1,1-Dichloroethane	22.9	0.50	ug/L	20	114	70-130
1,2-Dichloroethane (EDC)	23.8	0.50	ug/L	20	119	70-130
1,1-Dichloroethylene	23.1	0.50	ug/L	20	115	70-130
trans-1,2-Dichloroethylene	19.9	0.50	ug/L	20	99.7	70-130
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	101	70-130

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

Project Name: DFSP Norwalk G	Date Reported: 10/21/16								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by G	C/MS - Qu	uality Contr	ol						
Batch B6J1723 - EPA 5030B									
Matrix Spike (B6J1723-MS1) Co	ntinued S	Source: 6J1	0010-02	Prepare	ed & Analyzed: 1	0/17/16			
1,2-Dichloropropane	22.1	0.50	ug/L	20	110	70-130			
2,2-Dichloropropane	24.2	0.50	ug/L	20	121	70-130			
1,3-Dichloropropane	18.9	0.50	ug/L	20	94.6	70-130			
cis-1,3-Dichloropropylene	19.8	0.50	ug/L	20	99.0	70-130			
trans-1,3-Dichloropropylene	19.9	0.50	ug/L	20	99.5	70-130			
1,1-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130			
Diisopropyl ether (DIPE)	22.2	2.0	ug/L	20	111	70-130			
Ethylbenzene	20.0	0.50	ug/L	20	100	70-130			
Ethyl-tert-Butyl Ether (ETBE)	20.8	2.0	ug/L	20	104	70-130			
Gasoline Range Organics (GRO)	401	100	ug/L	500	80.2	70-130			
Hexachlorobutadiene	18.7	1.0	ug/L	20	93.7	70-130			
2-Hexanone (MBK)	58.8	10	ug/L	50	118	70-130			
Isopropylbenzene	21.5	0.50	ug/L	20	108	70-130			
4-Isopropyltoluene	22.2	1.0	ug/L	20	111	70-130			
Methyl-tert-Butyl Ether (MTBE)	41.2	1.0	ug/L	40	103	70-130			
Methylene Chloride	26.1	5.0	ug/L	20	11.7 72.2	70-130			
4-Methyl-2-pentanone (MIBK)	51.5	10	ug/L	50	103	70-130			
Naphthalene	24.7	2.0	ug/L	20	123	70-130			
n-Propylbenzene	21.5	0.50	ug/L	20	108	70-130			
_									

ug/L

20

20

20

20

20

20

20

20

20

20

20

20

93.5

91.7

106

85.7

95.8

99.4

112

97.6

100

118

104

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

95.6 70-130

18.7

18.3

21.1

17.1

19.2

19.9

19.1

22.3

19.5

20.1

23.7

20.8

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethylene (PCE)

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethylene (TCE)

1,2,3-Trichloropropane

Trichlorofluoromethane (R11)

Viorel Vasile Operations Manager

Styrene

Toluene

Date Received: 10/12/16

Date Reported: 10/21/16

0.08

116

98.6

103

116

106

115

70-130

70-130

70-130

70-130

70-130

70-130

70-130 0.508

11.7

2.93

6.93

1.92

6.85

5.88

30

30

30

30

30

30

30

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Reporting Spike Source %REC RPD

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Limit Analyte Result VOCs, OXY & TPH Gasoline by GC/MS - Quality Control Batch B6J1723 - EPA 5030B Matrix Spike (B6J1723-MS1) Continued Source: 6J10010-02 Prepared & Analyzed: 10/17/16 1,1,2-Trichloro-1,2,2-trifluoroethane 24.0 0.50 20 120 70-130 ug/L (R113) 109 1,3,5-Trimethylbenzene 21.7 0.50 ug/L 20 70-130 1,2,4-Trimethylbenzene 22.3 0.50 112 ug/L 20 70-130 22.7 0.50 113 Vinvl chloride ua/L 20 70-130 o-Xylene 20.0 0.50 ug/L 20 99.8 70-130 m,p-Xylenes 38.7 1.0 40 96.8 70-130 ug/L 54.6 Surrogate: 4-Bromofluorobenzene ug/L 50 109 70-140 Surrogate: Dibromofluoromethane 53.1 50 106 70-140 ug/L Surrogate: Toluene-d8 49.0 70-140 ug/L 50 98.0 Matrix Spike Dup (B6J1723-MSD1) **Source: 6J10010-02** Prepared & Analyzed: 10/17/16 57.3 10 115 70-130 ug/L 50 2.76 30 19.4 2.0 96.8 tert-Amyl Methyl Ether (TAME) ug/L 20 70-130 2.14 30 22.3 0.50 111 Benzene ug/L 20 70-130 4.73 30 20.2 0.50 20 101 70-130 30 Bromobenzene ug/L 3.93 Bromochloromethane 21.4 0.50 ug/L 20 107 70-130 1.58 30 Bromodichloromethane 23.6 0.50 118 70-130 30 ug/L 20 3.23 17.6 0.50 87.8 **Bromoform** ug/L 20 70-130 2.70 30 **Bromomethane** 17.3 0.50 ug/L 20 86.4 70-130 2.04 30 58.3 10 117 2-Butanone (MEK) 70-130 30 ug/L 50 11.5 tert-Butyl alcohol (TBA) 109 10 100 109 70-130 ug/L 8.17 30 sec-Butylbenzene 21.2 0.50 ug/L 20 106 70-130 2.91 30 tert-Butylbenzene 22.5 0.50 20 113 70-130 30 ug/L 2.65 n-Butylbenzene 22.1 0.50 ug/L 20 110 70-130 0.227 30

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

50

20

20

20

20

20

20

40.0

23.2

19.7

20.6

23.2

21.3

22.9

0.50

0.50

0.50

0.50

0.50

0.50

0.50

Viorel Vasile Operations Manager

Carbon Disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

Chloroethane

Chloroform

Carbon Tetrachloride

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/21/16

AA Project No: A5331957

Date Received: 10/12/16

Analyte	F Result	Reporting Limit	Units	•	Source Result %REC	%REC	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by G	SC/MS - Qu	ality Contr	ol						
Batch B6J1723 - EPA 5030B		•							
Matrix Spike Dup (B6J1723-MS	SD1) S	ource: 6J1	0010-02	Prepare	ed & Analyzed:	10/17/16			
Continued	,			•	·				
4-Chlorotoluene	22.1	0.50	ug/L	20	110	70-130	1.64	30	
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119	70-130	1.08	30	
Dibromochloromethane	21.5	0.50	ug/L	20	108	70-130	2.97	30	
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101	70-130	4.35	30	
Dibromomethane	23.7	0.50	ug/L	20	119	70-130	6.31	30	

			- 3						
1,2-Dibromo-3-chloropropane	23.9	1.0	ug/L	20	119	70-130	1.08	30	
Dibromochloromethane	21.5	0.50	ug/L	20	108	70-130	2.97	30	
1,2-Dibromoethane (EDB)	20.2	0.50	ug/L	20	101	70-130	4.35	30	
Dibromomethane	23.7	0.50	ug/L	20	119	70-130	6.31	30	
1,3-Dichlorobenzene	20.8	0.50	ug/L	20	104	70-130	3.27	30	
1,2-Dichlorobenzene	22.4	0.50	ug/L	20	112	70-130	3.92	30	
1,4-Dichlorobenzene	20.6	0.50	ug/L	20	103	70-130	3.36	30	
Dichlorodifluoromethane (R12)	19.0	0.50	ug/L	20	95.2	70-130	2.71	30	
1,1-Dichloroethane	23.3	0.50	ug/L	20	116	70-130	1.78	30	
1,2-Dichloroethane (EDC)	24.2	0.50	ug/L	20	121	70-130	1.67	30	
1,1-Dichloroethylene	23.8	0.50	ug/L	20	119	70-130	3.11	30	
trans-1,2-Dichloroethylene	20.3	0.50	ug/L	20	102	70-130	1.79	30	
cis-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102	70-130	1.03	30	
1,2-Dichloropropane	23.8	0.50	ug/L	20	119	70-130	7.49	30	
2,2-Dichloropropane	23.9	0.50	ug/L	20	120		1.25	30	
1,3-Dichloropropane	19.3	0.50	ug/L	20	96.6		1.99	30	
cis-1,3-Dichloropropylene	20.3	0.50	ug/L	20	102	70-130	2.69	30	
trans-1,3-Dichloropropylene	20.3	0.50	ug/L	20	101	70-130	1.79	30	
1,1-Dichloropropylene	21.9	0.50	ug/L	20	110		7.48	30	
Diisopropyl ether (DIPE)	23.4	2.0	ug/L	20	117	70-130	5.00	30	
Ethylbenzene	20.4	0.50	ug/L	20	102		1.73	30	
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	108	70-130	3.91	30	
Gasoline Range Organics (GRO)	446	100	ug/L	500	89.2		10.6	30	
Hexachlorobutadiene	19.8	1.0	ug/L	20	99.0		5.50	30	
2-Hexanone (MBK)	56.2	10	ug/L	50	112		4.54	30	
Isopropylbenzene	22.2	0.50	ug/L	20	111	70-130	3.06	30	
4-Isopropyltoluene	22.3	1.0	ug/L	20	112		0.539	30	
Methyl-tert-Butyl Ether (MTBE)	43.6	1.0	ug/L	40	109	70-130	5.59	30	
Methylene Chloride	27.2	5.0	ug/L	20	11.7 77.7		4.12	30	
4-Methyl-2-pentanone (MIBK)	53.0	10	ug/L	50	106	70-130	3.04	30	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Received: 10/12/16
Date Reported: 10/21/16

AA Project No: A5331957

Analyte	l Result	Reporting Limit	Units		Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs, OXY & TPH Gasoline by GC Batch B6J1723 - EPA 5030B	MS - Qu	ality Contr	ol						
Matrix Spike Dup (B6J1723-MSD1 Continued) S	Source: 6J1	0010-02	Prepare	ed & Analyzed: 1	0/17/16			
Naphthalene	25.7	2.0	ug/L	20	129	70-130	4.05	30	
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130	3.02	30	
Styrene	18.8	0.50	ug/L	20	94.2	70-130	0.746	30	
1,1,1,2-Tetrachloroethane	18.5	0.50	ug/L	20	92.5	70-130	0.869	30	
			•						

n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130	3.02	30	
Styrene	18.8	0.50	ug/L	20	94.2	70-130	0.746	30	
1,1,1,2-Tetrachloroethane	18.5	0.50	ug/L	20	92.5	70-130	0.869	30	
1,1,2,2-Tetrachloroethane	21.3	0.50	ug/L	20	106	70-130	0.801	30	
Tetrachloroethylene (PCE)	18.3	0.50	ug/L	20	91.3	70-130	6.33	30	
Toluene	20.1	0.50	ug/L	20	100	70-130	4.79	30	
1,2,3-Trichlorobenzene	20.8	0.50	ug/L	20	104	70-130	4.23	30	
1,2,4-Trichlorobenzene	20.0	0.50	ug/L	20	100	70-130	4.70	30	
1,1,1-Trichloroethane	23.8	0.50	ug/L	20	119	70-130	6.33	30	
1,1,2-Trichloroethane	20.7	0.50	ug/L	20	103	70-130	5.67	30	
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104	70-130	3.33	30	
Trichlorofluoromethane (R11)	24.6	0.50	ug/L	20	123	70-130	3.89	30	
1,2,3-Trichloropropane	19.9	0.50	ug/L	20	99.6	70-130	4.56	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	23.7	0.50	ug/L	20	119	70-130	1.34	30	
(R113)									
1,3,5-Trimethylbenzene	21.8	0.50	ug/L	20	109	70-130	0.413	30	
1,2,4-Trimethylbenzene	22.7	0.50	ug/L	20	114	70-130	1.77	30	
Vinyl chloride	23.7	0.50	ug/L	20	119	70-130	4.48	30	
o-Xylene	20.3	0.50	ug/L	20	101	70-130	1.54	30	
m,p-Xylenes	38.6	1.0	ug/L	40	96.5	70-130	0.284	30	
Surrogate: 4-Bromofluorobenzene	<i>55.4</i>		ug/L	50	111	70-140			
Surrogate: Dibromofluoromethane	52.8		ug/L	50	106	70-140			
Surrogate: Toluene-d8	48.8		ug/L	50	97.6	70-140			

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Blank (B6J1827-BLK1) Prepared & Analyzed: 10/18/16

 Acetone
 <10</td>
 10
 ug/L

 tert-Amyl Methyl Ether (TAME)
 <2.0</td>
 2.0
 ug/L

 Benzene
 <0.50</td>
 0.50
 ug/L

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	F Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS										
Batch B6J1827 - EPA 5030B		-								
Blank (B6J1827-BLK1) Continue	ed			Prepare	ed & Ana	lyzed: 10	0/18/16			
Bromobenzene	<0.50	0.50	ug/L			-				
Bromochloromethane	< 0.50	0.50	ug/L							
Bromodichloromethane	< 0.50	0.50	ug/L							
Bromoform	< 0.50	0.50	ug/L							
Bromomethane	< 0.50	0.50	ug/L							
2-Butanone (MEK)	<10	10	ug/L							
tert-Butyl alcohol (TBA)	<10	10	ug/L							
sec-Butylbenzene	< 0.50	0.50	ug/L							
tert-Butylbenzene	< 0.50	0.50	ug/L							
n-Butylbenzene	< 0.50	0.50	ug/L							
Carbon Disulfide	< 0.50	0.50	ug/L							
Carbon Tetrachloride	< 0.50	0.50	ug/L							
Chlorobenzene	< 0.50	0.50	ug/L							
Chloroethane	< 0.50	0.50	ug/L							
Chloroform	< 0.50	0.50	ug/L							
Chloromethane	< 0.50	0.50	ug/L							
2-Chlorotoluene	< 0.50	0.50	ug/L							
4-Chlorotoluene	< 0.50	0.50	ug/L							
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
Dibromochloromethane	< 0.50	0.50	ug/L							
1,2-Dibromoethane (EDB)	< 0.50	0.50	ug/L							
Dibromomethane	< 0.50	0.50	ug/L							
1,3-Dichlorobenzene	< 0.50	0.50	ug/L							
1,2-Dichlorobenzene	< 0.50	0.50	ug/L							
1,4-Dichlorobenzene	< 0.50	0.50	ug/L							
Dichlorodifluoromethane (R12)	< 0.50	0.50	ug/L							
1,1-Dichloroethane	< 0.50	0.50	ug/L							
1,2-Dichloroethane (EDC)	< 0.50	0.50	ug/L							
1,1-Dichloroethylene	< 0.50	0.50	ug/L							
trans-1,2-Dichloroethylene	< 0.50	0.50	ug/L							
cis-1,2-Dichloroethylene	< 0.50	0.50	ug/L							

Client:The Source Group, Inc. (SH)AA Project No: A5331957Project No:04-NDLA-013Date Received: 10/12/16Project Name:DFSP Norwalk GW SamplingDate Reported: 10/21/16

Analyte	l Result	Reporting Limit	Units		Source Result		%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	Control								
Batch B6J1827 - EPA 5030B										
Blank (B6J1827-BLK1) Continued	t			Prepare	ed & Ana	lyzed: 1	0/18/16			
1,2-Dichloropropane	<0.50	0.50	ug/L							
2,2-Dichloropropane	< 0.50	0.50	ug/L							
1,3-Dichloropropane	< 0.50	0.50	ug/L							
cis-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
trans-1,3-Dichloropropylene	< 0.50	0.50	ug/L							
1,1-Dichloropropylene	< 0.50	0.50	ug/L							
Diisopropyl ether (DIPE)	<2.0	2.0	ug/L							
Ethylbenzene	< 0.50	0.50	ug/L							
Ethyl-tert-Butyl Ether (ETBE)	<2.0	2.0	ug/L							
Hexachlorobutadiene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<10	10	ug/L							
Isopropylbenzene	< 0.50	0.50	ug/L							
4-Isopropyltoluene	<1.0	1.0	ug/L							
Methyl-tert-Butyl Ether (MTBE)	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L							
Naphthalene	<2.0	2.0	ug/L							
n-Propylbenzene	< 0.50	0.50	ug/L							
Styrene	< 0.50	0.50	ug/L							
1,1,1,2-Tetrachloroethane	< 0.50	0.50	ug/L							
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L							
Tetrachloroethylene (PCE)	< 0.50	0.50	ug/L							
Toluene	< 0.50	0.50	ug/L							
1,2,3-Trichlorobenzene	< 0.50	0.50	ug/L							
1,2,4-Trichlorobenzene	< 0.50	0.50	ug/L							
1,1,1-Trichloroethane	< 0.50	0.50	ug/L							
1,1,2-Trichloroethane	< 0.50	0.50	ug/L							
Trichloroethylene (TCE)	< 0.50	0.50	ug/L							
Trichlorofluoromethane (R11)	< 0.50	0.50	ug/L							
1,2,3-Trichloropropane	< 0.50	0.50	ug/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	e <0.50	0.50	ug/L							

Client: The Source Group, Inc. (SH)
Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %R	EC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS										
Batch B6J1827 - EPA 5030B	-									
Blank (B6J1827-BLK1) Continue	d			Prepare	ed & Analyzed	d: 10	/18/16			
1,3,5-Trimethylbenzene	<0.50	0.50	ug/L		<u> </u>					
1,2,4-Trimethylbenzene	< 0.50	0.50	ug/L							
Vinyl chloride	< 0.50	0.50	ug/L							
o-Xylene	< 0.50	0.50	ug/L							
m,p-Xylenes	<1.0	1.0	ug/L							
Surrogate: 4-Bromofluorobenzene	55.8		ug/L	50	11	12	70-140			
Surrogate: Dibromofluoromethane	<i>65.4</i>		ug/L	50	13		70-140			
Surrogate: Toluene-d8	49.6		ug/L	50	99		70-140			
LCS (B6J1827-BS1)			J	Prepare	ed & Analyzed	d: 10	/18/16			
Acetone	54.5	10	ug/L	50	10		70-130			
tert-Amyl Methyl Ether (TAME)	17.3	2.0	ug/L	20	86	.6	70-130			
Benzene	21.6	0.50	ug/L	20	10)8	75-125			
Bromobenzene	18.8	0.50	ug/L	20	94	.0	70-130			
Bromochloromethane	19.8	0.50	ug/L	20	99	.0	70-130			
Bromodichloromethane	22.2	0.50	ug/L	20	11	1 :	75-125			
Bromoform	16.4	0.50	ug/L	20	82	.2	75-125			
Bromomethane	19.2	0.50	ug/L	20	95	.8	75-125			
2-Butanone (MEK)	46.7	10	ug/L	50	93	.4	70-130			
tert-Butyl alcohol (TBA)	113	10	ug/L	100	11	3	70-130			
sec-Butylbenzene	21.7	0.50	ug/L	20	10)8	70-130			
tert-Butylbenzene	22.5	0.50	ug/L	20	11		70-130			
n-Butylbenzene	23.0	0.50	ug/L	20	11		70-130			
Carbon Disulfide	41.2	0.50	ug/L	50	82		70-130			
Carbon Tetrachloride	23.0	0.50	ug/L	20	11		75-125			
Chlorobenzene	19.4	0.50	ug/L	20	97		75-125			
Chloroethane	22.5	0.50	ug/L	20	11		75-125			
Chloroform	22.4	0.50	ug/L	20	11		75-125			
Chloromethane	21.6	0.50	ug/L	20	10		65-125			
2-Chlorotoluene	22.4	0.50	ug/L	20	11		70-130			
4-Chlorotoluene	22.0	0.50	ug/L	20	11		70-130			
1,2-Dibromo-3-chloropropane	22.3	1.0	ug/L	20	11	2	70-130			

AA Project No: A5331957 Date Received: 10/12/16

Date Reported: 10/21/16

84.2 70-130

70-130

70-130 94.2 70-130

112

112

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Analyte	F Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS									
Batch B6J1827 - EPA 5030B	•								
LCS (B6J1827-BS1) Continued				Prepare	ed & Analyzed: 1	0/18/16			
Dibromochloromethane	19.6	0.50	ug/L	20	98.0	75-125			
1,2-Dibromoethane (EDB)	18.0	0.50	ug/L	20	89.9	70-130			
Dibromomethane	20.6	0.50	ug/L	20	103	70-130			
1,3-Dichlorobenzene	20.3	0.50	ug/L	20	101	70-130			
1,2-Dichlorobenzene	21.6	0.50	ug/L	20	108	70-130			
1,4-Dichlorobenzene	20.0	0.50	ug/L	20	100	75-125			
Dichlorodifluoromethane (R12)	20.2	0.50	ug/L	20	101	70-130			
1,1-Dichloroethane	23.2	0.50	ug/L	20	116	70-125			
1,2-Dichloroethane (EDC)	22.1	0.50	ug/L	20	110	75-125			
1,1-Dichloroethylene	22.3	0.50	ug/L	20	112	70-130			
trans-1,2-Dichloroethylene	20.4	0.50	ug/L	20	102	75-125			
cis-1,2-Dichloroethylene	19.7	0.50	ug/L	20	98.7	75-125			
1,2-Dichloropropane	21.7	0.50	ug/L	20	109	75-130			
2,2-Dichloropropane	24.0	0.50	ug/L	20	120	70-130			
1,3-Dichloropropane	17.6	0.50	ug/L	20	87.8	70-130			
cis-1,3-Dichloropropylene	19.0	0.50	ug/L	20	95.1	75-125			
trans-1,3-Dichloropropylene	19.6	0.50	ug/L	20	98.2	70-130			
1,1-Dichloropropylene	21.4	0.50	ug/L	20	107	70-130			
Diisopropyl ether (DIPE)	20.7	2.0	ug/L	20	104	70-130			
Ethylbenzene	21.0	0.50	ug/L	20	105	75-125			
Ethyl-tert-Butyl Ether (ETBE)	19.3	2.0	ug/L	20	96.4	70-130			
Hexachlorobutadiene	19.9	1.0	ug/L	20	99.3	70-130			
2-Hexanone (MBK)	44.6	10	ug/L	50	89.2	70-130			
Isopropylbenzene	22.2	0.50	ug/L	20	111	70-130			
4-Isopropyltoluene	23.0	1.0	ug/L	20	115	70-130			
Methyl-tert-Butyl Ether (MTBE)	37.6	1.0	ug/L	40	94.1	75-125			
Methylene Chloride	28.3	5.0	ug/L	20	142	75-130			

4-Methyl-2-pentanone (MIBK)

Naphthalene

Styrene

n-Propylbenzene

Viorel Vasile Operations Manager ug/L

ug/L

ug/L

ug/L

50

20

20

20

42.1

22.4

22.4

18.8

10

2.0

0.50

0.50

Date Received: 10/12/16

Date Reported: 10/21/16

115 70-130

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units		Result %REC		RPD	Limit	Notes
VOCs & OXYGENATES by GC/MS	- Quality	Control							
Batch B6J1827 - EPA 5030B									
LCS (B6J1827-BS1) Continued				Prepare	ed & Analyzed: 1	0/18/16			
1,1,1,2-Tetrachloroethane	18.0	0.50	ug/L	20	90.0	70-130			
1,1,2,2-Tetrachloroethane	18.6	0.50	ug/L	20	92.8	70-135			
Tetrachloroethylene (PCE)	17.5	0.50	ug/L	20	87.7	75-125			
Toluene	20.0	0.50	ug/L	20	100	75-125			
1,2,3-Trichlorobenzene	19.2	0.50	ug/L	20	95.9	70-130			
1,2,4-Trichlorobenzene	18.7	0.50	ug/L	20	93.5	70-130			
1,1,1-Trichloroethane	23.6	0.50	ug/L	20	118	75-125			
1,1,2-Trichloroethane	18.3	0.50	ug/L	20	91.6	75-125			
Trichloroethylene (TCE)	20.8	0.50	ug/L	20	104	75-125			
Trichlorofluoromethane (R11)	24.7	0.50	ug/L	20	124	70-130			
1,2,3-Trichloropropane	18.1	0.50	ug/L	20	90.4	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane	23.0	0.50	ug/L	20	115	70-130			
(R113)									
1,3,5-Trimethylbenzene	22.5	0.50	ug/L	20	112	70-130			
1,2,4-Trimethylbenzene	22.6	0.50	ug/L	20	113	70-130			
Vinyl chloride	22.2	0.50	ug/L	20	111	75-125			
o-Xylene	20.5	0.50	ug/L	20	103	75-125			
m,p-Xylenes	39.4	1.0	ug/L	40	98.5	70-130			
Surrogate: 4-Bromofluorobenzene	<i>54</i> .3		ug/L	50	109	70-140			
Surrogate: Dibromofluoromethane	52.2		ug/L	50	10 4	70-140			
Surrogate: Toluene-d8	50.3		ug/L	50	101	70-140			
Matrix Spike (B6J1827-MS1)			0011-02	Prepare	ed: 10/18/16 Ana	alyzed: 10	0/19/16		
Acetone	60.5	10	ug/L	50	121	70-130			
tert-Amyl Methyl Ether (TAME)	21.2	2.0	ug/L	20	106	70-130			
Benzene	23.6	0.50	ug/L	20	118	70-130			
Bromobenzene	20.1	0.50	ug/L	20	100	70-130			
Bromochloromethane	22.5	0.50	ug/L	20	113	70-130			
Bromodichloromethane	22.2	0.50	ug/L	20	111	70-130			
Bromoform	18.2	0.50	ug/L	20	91.2	70-130			
Bromomethane	17.4	0.50	ug/L	20	87.2	70-130			
0.0 ((((((((((((((((((4.0	/•		44-				

Viorel Vasile Operations Manager

2-Butanone (MEK)

ug/L

50

57.4

10

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %		D Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

ert-Butyl alcohol (TBA)	120	10	ug/L	100		120	70-130
ec-Butylbenzene	20.2	0.50	ug/L	20		101	70-130
ert-Butylbenzene	21.6	0.50	ug/L	20	0.460	106	70-130
-Butylbenzene	20.5	0.50	ug/L	20		103	70-130
Carbon Disulfide	42.5	0.50	ug/L	50		84.9	70-130
Carbon Tetrachloride	20.6	0.50	ug/L	20		103	70-130
Chlorobenzene	19.6	0.50	ug/L	20		97.8	70-130
Chloroethane	22.8	0.50	ug/L	20		114	70-130
Chloroform	21.6	0.50	ug/L	20		108	70-130
Chloromethane	18.2	0.50	ug/L	20		91.2	70-130
-Chlorotoluene	21.4	0.50	ug/L	20		107	70-130
-Chlorotoluene	20.6	0.50	ug/L	20		103	70-130
,2-Dibromo-3-chloropropane	24.5	1.0	ug/L	20		122	70-130
Dibromochloromethane	20.9	0.50	ug/L	20		104	70-130
,2-Dibromoethane (EDB)	20.1	0.50	ug/L	20		101	70-130
Dibromomethane	22.9	0.50	ug/L	20		115	70-130
,3-Dichlorobenzene	20.8	0.50	ug/L	20		104	70-130
,2-Dichlorobenzene	22.3	0.50	ug/L	20		112	70-130
,4-Dichlorobenzene	20.2	0.50	ug/L	20		101	70-130
Dichlorodifluoromethane (R12)	16.1	0.50	ug/L	20		80.4	70-130
,1-Dichloroethane	22.9	0.50	ug/L	20		115	70-130
,2-Dichloroethane (EDC)	22.2	0.50	ug/L	20		111	70-130
,1-Dichloroethylene	23.2	0.50	ug/L	20		116	70-130
ans-1,2-Dichloroethylene	20.0	0.50	ug/L	20		99.8	70-130
is-1,2-Dichloroethylene	19.8	0.50	ug/L	20		98.8	70-130
,2-Dichloropropane	24.5	0.50	ug/L	20		123	70-130
,2-Dichloropropane	19.9	0.50	ug/L	20		99.4	70-130
,3-Dichloropropane	20.6	0.50	ug/L	20		103	70-130
is-1,3-Dichloropropylene	20.5	0.50	ug/L	20		102	70-130
ans-1,3-Dichloropropylene	20.0	0.50	ug/L	20		100	70-130
,1-Dichloropropylene	20.8	0.50	ug/L	20		104	70-130

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Reporting	Spike Source	%REC	RPD
Analyte	Result Limit Units	Level Result %RI	EC Limits RPD	Limit Notes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Diisopropyl ether (DIPE)	24.5	2.0	ug/L	20	122	70-130	
Ethylbenzene	19.6	0.50	ug/L	20	98.2	70-130	
Ethyl-tert-Butyl Ether (ETBE)	22.9	2.0	ug/L	20	114	70-130	
Hexachlorobutadiene	18.0	1.0	ug/L	20	90.2	70-130	
2-Hexanone (MBK)	59.6	10	ug/L	50	119	70-130	
lsopropylbenzene ^	21.0	0.50	ug/L	20	105	70-130	
4-Isopropyltoluene	21.4	1.0	ug/L	20	107	70-130	
Methyl-tert-Butyl Ether (MTBE)	46.8	1.0	ug/L	40	117	70-130	
Methylene Chloride	24.8	5.0	ug/L	20	124	70-130	
4-Methyl-2-pentanone (MIBK)	58.1	10	ug/L	50	116	70-130	
Naphthalene	25.7	2.0	ug/L	20	129	70-130	
n-Propylbenzene	20.7	0.50	ug/L	20	104	70-130	
Styrene	18.5	0.50	ug/L	20	92.5	70-130	
1,1,1,2-Tetrachloroethane	18.7	0.50	ug/L	20	93.5	70-130	
1,1,2,2-Tetrachloroethane	21.7	0.50	ug/L	20	108	70-130	
Tetrachloroethylene (PCE)	18.4	0.50	ug/L	20	92.1	70-130	
Toluene	19.5	0.50	ug/L	20	97.6	70-130	
1,2,3-Trichlorobenzene	20.0	0.50	ug/L	20	100	70-130	
1,2,4-Trichlorobenzene	18.9	0.50	ug/L	20	94.4	70-130	
1,1,1-Trichloroethane	21.5	0.50	ug/L	20	108	70-130	
1,1,2-Trichloroethane	21.2	0.50	ug/L	20	106	70-130	
Trichloroethylene (TCE)	20.5	0.50	ug/L	20	103	70-130	
Trichlorofluoromethane (R11)	20.5	0.50	ug/L	20	103	70-130	
1,2,3-Trichloropropane	21.2	0.50	ug/L	20	106	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane	23.3	0.50	ug/L	20	117	70-130	
(R113)							
1,3,5-Trimethylbenzene	21.0	0.50	ug/L	20	105	70-130	
1,2,4-Trimethylbenzene	21.7	0.50	ug/L	20	108	70-130	
Vinyl chloride	19.8	0.50	ug/L	20	98.8	70-130	
o-Xylene	19.3	0.50	ug/L	20	96.4	70-130	
m,p-Xylenes	38.7	1.0	ug/L	40	96.8	70-130	

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

Date Reported: 10/21/16

AA Project No: A5331957

Date Received: 10/12/16

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result %REC	Limits	RPD	Limit	Notes
VOC- 9 OVVOENATED by OCIMO	0	0							

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Matrix Spike (B6J1827-MS1) Contin	nued S	ource: 6	J10011-02	Prepared	d: 10/18/	16 An	alyzed: 10	0/19/16		
Surrogate: 4-Bromofluorobenzene	53.6		ug/L	50		107	70-140			
Surrogate: Dibromofluoromethane	52.2		ug/L	50		104	70-140			
Surrogate: Toluene-d8	49.3		ug/L	50		98.7	70-140			
Matrix Spike Dup (B6J1827-MSD1)	S	ource: 6	J10011-02	Prepared	d: 10/18/	16 An	alyzed: 10	0/19/16		
Acetone	54.7	10	ug/L	50		109	70-130	10.1	30	
tert-Amyl Methyl Ether (TAME)	19.6	2.0	ug/L	20		98.0	70-130	8.08	30	
Benzene	22.7	0.50	ug/L	20		114	70-130	3.84	30	
Bromobenzene	20.8	0.50	ug/L	20		104	70-130	3.66	30	
Bromochloromethane	21.2	0.50	ug/L	20		106	70-130	5.76	30	
Bromodichloromethane	21.6	0.50	ug/L	20		108	70-130	2.60	30	
Bromoform	16.5	0.50	ug/L	20		82.6	70-130	9.84	30	
Bromomethane	19.0	0.50	ug/L	20		95.0	70-130	8.45	30	
2-Butanone (MEK)	51.5	10	ug/L	50		103	70-130	10.8	30	
tert-Butyl alcohol (TBA)	112	10	ug/L	100		112	70-130	6.89	30	
sec-Butylbenzene	21.6	0.50	ug/L	20		108	70-130	6.85	30	
tert-Butylbenzene	23.5	0.50	ug/L	20	0.460	115	70-130	8.38	30	
n-Butylbenzene	21.8	0.50	ug/L	20		109	70-130	5.96	30	
Carbon Disulfide	44.5	0.50	ug/L	50		89.1	70-130	4.76	30	
Carbon Tetrachloride	21.2	0.50	ug/L	20		106	70-130	2.49	30	
Chlorobenzene	19.7	0.50	ug/L	20		98.4	70-130	0.662	30	
Chloroethane	23.9	0.50	ug/L	20		119	70-130	4.63	30	
Chloroform	21.6	0.50	ug/L	20		108	70-130	0.139	30	
Chloromethane	19.3	0.50	ug/L	20		96.5	70-130	5.70	30	
2-Chlorotoluene	22.1	0.50	ug/L	20		110	70-130	3.13	30	
4-Chlorotoluene	21.9	0.50	ug/L	20		110	70-130	6.21	30	
1,2-Dibromo-3-chloropropane	23.0	1.0	ug/L	20		115	70-130	6.06	30	
Dibromochloromethane	20.1	0.50	ug/L	20		101	70-130	3.56	30	
1,2-Dibromoethane (EDB)	18.9	0.50	ug/L	20		94.5	70-130	6.30	30	
Dibromomethane	19.9	0.50	ug/L	20		99.5	70-130	14.2	30	
1,3-Dichlorobenzene	21.1	0.50	ug/L	20		106	70-130	1.38	30	
1,2-Dichlorobenzene	22.4	0.50	ug/L	20		112	70-130	0.492	30	

Date Received: 10/12/16

Date Reported: 10/21/16

LABORATORY ANALYSIS RESULTS

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

	Poporting	Spike Source	% DEC	RPD	
	Reporting	Spike Source	%REC	KFD	
Analyte	Result Limit Units	Level Result %F	REC Limits RPD) limit N	lotes

VOCs & OXYGENATES by GC/MS - Quality Control

Batch B6J1827 - EPA 5030B

Matrix Spike Dup (B6J1827-MSD1) Continued	S	ource: 6	J10011-02 F	Prepar	ed: 10/18/16 An	alyzed: 10	0/19/16	
1,4-Dichlorobenzene	20.7	0.50	ug/L	20	104	70-130	2.74	30
Dichlorodifluoromethane (R12)	16.4	0.50	ug/L	20	82.0	70-130	1.97	30
1,1-Dichloroethane	22.5	0.50	ug/L	20	113	70-130	1.63	30
1,2-Dichloroethane (EDC)	20.9	0.50	ug/L	20	104	70-130	6.27	30
1,1-Dichloroethylene	23.9	0.50	ug/L	20	119	70-130	2.76	30
trans-1,2-Dichloroethylene	21.0	0.50	ug/L	20	105	70-130	4.89	30
cis-1,2-Dichloroethylene	20.2	0.50	ug/L	20	101	70-130	2.40	30
1,2-Dichloropropane	23.1	0.50	ug/L	20	116	70-130	6.00	30
2,2-Dichloropropane	20.7	0.50	ug/L	20	103	70-130	3.80	30
1,3-Dichloropropane	19.3	0.50	ug/L	20	96.3	70-130	6.72	30
cis-1,3-Dichloropropylene	18.8	0.50	ug/L	20	93.8	70-130	8.76	30
trans-1,3-Dichloropropylene	19.2	0.50	ug/L	20	96.2	70-130	3.98	30
1,1-Dichloropropylene	21.0	0.50	ug/L	20	105	70-130	1.10	30
Diisopropyl ether (DIPE)	23.1	2.0	ug/L	20	115	70-130	5.80	30
Ethylbenzene	20.7	0.50	ug/L	20	103	70-130	5.16	30
Ethyl-tert-Butyl Ether (ETBE)	21.6	2.0	ug/L	20	108	70-130	5.76	30
Hexachlorobutadiene	19.8	1.0	ug/L	20	98.9	70-130	9.26	30
2-Hexanone (MBK)	52.8	10	ug/L	50	106	70-130	12.1	30
Isopropylbenzene	22.7	0.50	ug/L	20	114	70-130	7.81	30
4-Isopropyltoluene	22.7	1.0	ug/L	20	114	70-130	5.80	30
Methyl-tert-Butyl Ether (MTBE)	42.4	1.0	ug/L	40	106	70-130	9.83	30
Methylene Chloride	24.4	5.0	ug/L	20	122	70-130	1.79	30
4-Methyl-2-pentanone (MIBK)	49.0	10	ug/L	50	98.1	70-130	16.9	30
Naphthalene	24.7	2.0	ug/L	20	124	70-130	3.96	30
n-Propylbenzene	22.2	0.50	ug/L	20	111	70-130	6.62	30
Styrene	18.9	0.50	ug/L	20	94.4	70-130	2.03	30
1,1,1,2-Tetrachloroethane	19.1	0.50	ug/L	20	95.3	70-130	1.91	30
1,1,2,2-Tetrachloroethane	19.5	0.50	ug/L	20	97.6	70-130	10.4	30
Tetrachloroethylene (PCE)	19.2	0.50	ug/L	20	96.2	70-130	4.35	30
Toluene	20.3	0.50	ug/L	20	101	70-130	3.87	30
1,2,3-Trichlorobenzene	19.8	0.50	ug/L	20	98.8	70-130	1.21	30

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units		Source Result 9	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS -	Quality	/ Control								
Batch B6J1827 - EPA 5030B										
Matrix Spike Dup (B6J1827-MSD1	1) \$	Source: 6J1	0011-02	Prepare	ed: 10/18/1	16 Ana	alyzed: 10	0/19/16		
Continued										
1,2,4-Trichlorobenzene	19.6	0.50	ug/L	20		98.2	70-130	3.95	30	
1,1,1-Trichloroethane	21.8	0.50	ug/L	20		109	70-130	1.43	30	
1,1,2-Trichloroethane	19.8	0.50	ug/L	20		99.2	70-130	6.44	30	
Trichloroethylene (TCE)	20.2	0.50	ug/L	20		101	70-130	1.37	30	
Trichlorofluoromethane (R11)	20.8	0.50	ug/L	20		104	70-130	1.50	30	
1,2,3-Trichloropropane	18.7	0.50	ug/L	20		93.3	70-130	12.5	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)		0.50	ug/L	20		117	70-130	0.257	30	
1,3,5-Trimethylbenzene	22.3	0.50	ug/L	20		112	70-130	6.14	30	
1,2,4-Trimethylbenzene	22.4	0.50	ug/L	20		112	70-130	3.27	30	
Vinyl chloride	21.3	0.50	ug/L	20		106	70-130	7.50	30	
o-Xylene	19.7	0.50	ug/L	20		98.6	70-130	2.26	30	
m,p-Xylenes	39.8	1.0	ug/L	40		99.6	70-130	2.83	30	
Surrogate: 4-Bromofluorobenzene	<i>52.4</i>		ug/L	50		105	70-140			
Surrogate: Dibromofluoromethane	50.3		ug/L	50		101	70-140			
Surrogate: Toluene-d8	49.6		ug/L	50		99.3	70-140			
Diesel Range Organics by GC/FID	- Quality	/ Control								
Batch B6J1720 - EPA 3510C										
Blank (B6J1720-BLK1)				Prepare	ed & Analy	zed: 10	0/17/16			
Diesel Range Organics as Diesel	<0.10	0.10	mg/L							
Surrogate: o-Terphenyl	0.0510		mg/L	0.040		128	50-150			
LCS (B6J1720-BS1)			Ū	Prepare	ed & Analy	zed: 10	0/17/16			
Diesel Range Organics as Diesel	0.748	0.10	mg/L	0.80	-	93.6	75-125			
Surrogate: o-Terphenyl	0.0529		mg/L	0.040		132	50-150			
LCS Dup (B6J1720-BSD1)				Prepare	ed & Analy	zed: 10	0/17/16			
Diesel Range Organics as Diesel	0.757	0.10	mg/L	0.80	-	94.6	75-125	1.13	30	
Surrogate: o-Terphenyl	0.0532		mg/L	0.040		133	50-150			
Gasoline Range Organics by GC/FI	ID - Qua	lity Control								

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957

Date Received: 10/12/16

Date Reported: 10/21/16

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline Range Organics by GC/F	ID - Qual	ity Contro	ol							
Batch B6J1415 - EPA 5030B		•								
Blank (B6J1415-BLK1)				Prepare	d & Anal	yzed: 1	0/14/16			
Gasoline Range Organics (GRO)	<100	100	ug/L							
Surrogate: a,a,a-Trifluorotoluene	45.6		ug/L	50		91.3	80-120			
LCS (B6J1415-BS1)				Prepare	ed: 10/14/	/16 Ana	alyzed: 10	0/17/16		
Gasoline Range Organics (GRO)	421	100	ug/L	500		84.2	75-125			
Surrogate: a,a,a-Trifluorotoluene	47.2		ug/L	50		94.4	80-120			
LCS Dup (B6J1415-BSD1)				Prepare	ed: 10/14/	/16 Ana	alyzed: 10	0/17/16		
Gasoline Range Organics (GRO)	422	100	ug/L	500		84.5	75-125	0.331	30	
Surrogate: a,a,a-Trifluorotoluene	47.1		ug/L	50		94.2	80-120			
Matrix Spike (B6J1415-MS1)	S	ource: 6J	12011-08	Prepare	ed & Anal	yzed: 1	0/14/16			
Gasoline Range Organics (GRO)	428	100	ug/L	500	45.0	76.6	70-130			
Surrogate: a,a,a-Trifluorotoluene	46.7		ug/L	50		93.4	80-120			
Matrix Spike Dup (B6J1415-MSD	1) S	ource: 6J	12011-08	Prepare	ed & Anal	yzed: 1	0/14/16			
Gasoline Range Organics (GRO)	443	100	ug/L	500	45.0	79.6	70-130	3.43	30	
Surrogate: a,a,a-Trifluorotoluene	46.0		ug/L	50		91.9	80-120			

Client: The Source Group, Inc. (SH)

Project No: 04-NDLA-013

Project Name: DFSP Norwalk GW Sampling

AA Project No: A5331957 Date Received: 10/12/16 Date Reported: 10/21/16

Special Notes

® MERICAN ® MAERICAN AMALYTICS

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

70047090

10-11-16
Relinquished by Relinquished by

Note: By relinquishing samples to American Analytics, Client agrees to pay for the services requested on this chain of custody form and any additional client-requested analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

APPLICATION OF THE PROPERTY OF STREET

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017 Attn:

Daniel Jablonski

Phone:

(213) 228-8271

Fax:

(714) 424-2135

Date Received: 10/05/16

Job:

KMEP DFSP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

				Reporting	Date	Date
		Parameter	Concentration	Limit	Extracted	Analyzed
Client ID:	EB-1					
Lab ID :	CHH16100501-02A	TPH-E (DRO)	ND	$0.050~{ m mg/L}$	10/06/16 12:21	10/06/16 18:52
Date Sampled	10/04/16 15:15	Surr: Nonane	90	(53-145) %REC	10/06/16 12:21	10/06/16 18:52
•		TPH-P (GRO)	ND	0.050 mg/L	10/11/16 14:12	10/11/16 14:12
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 14:12	10/11/16 14:12
		Surr: Toluene-d8	97	(70-130) %REC	10/11/16 14:12	10/11/16 14:12
	•	Surr: 4-Bromofluorobenzene	107	(70-130) %REC	10/11/16 14:12	10/11/16 14:12
Client ID:	EXP-5					
Lab ID :	CHH16100501-03A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 20:12
Date Sampled	10/04/16 09:05	Surr: Nonane	89	(53-145) %REC	10/06/16 12:21	10/06/16 20:12
-		TPH-P (GRO)	ND	0.050 mg/L	10/11/16 14:36	10/11/16 14:36
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 14:36	10/11/16 14:36
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 14:36	10/11/16 14:36
		Surr: 4-Bromofluorobenzene	109	(70-130) %REC	10/11/16 14:36	10/11/16 14:36
Client ID:	EXP-4					
Lab ID:	CHH16100501-04A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 20:38
Date Sampled	10/04/16 09:53	Surr: Nonane	85	(53-145) %REC	10/06/16 12:21	10/06/16 20:38
		TPH-P (GRO)	ND	0.050 mg/L	10/11/16 14:59	10/11/16 14:59
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/11/16 14:59	10/11/16 14:59
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 14:59	10/11/16 14:59
		Surr: 4-Bromofluorobenzene	108	(70-130) %REC	10/11/16 14:59	10/11/16 14:59
Client ID:	WCW-2					
Lab ID:	CHH16100501-05A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 21:05
Date Sampled	10/04/16 10:37	Surr: Nonane	87	(53-145) %REC	10/06/16 12:21	10/06/16 21:05
Said Sainpiro	20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	TPH-P (GRO)	ND	$0.050~\mathrm{mg/L}$	10/11/16 15:23	10/11/16 15:23
	•	Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 15:23	10/11/16 15:23
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 15:23	10/11/16 15:23
		Surr: 4-Bromofluorobenzene	110	(70-130) %REC	10/11/16 15:23	10/11/16 15:23
Client ID:	WCW-4					
Lab ID :	CHH16100501-06A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 21:31
Date Sampled	10/04/16 12:07	Surr: Nonane	84	(53-145) %REC	10/06/16 12:21	10/06/16 21:31
2 a.c. Samprou	10,0001201	TPH-P (GRO)	ND	$0.050~\mathrm{mg/L}$	10/11/16 15:46	10/11/16 15:46
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/11/16 15:46	10/11/16 15:46
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 15:46	10/11/16 15:40
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/11/16 15:46	10/11/16 15:4
Client ID:	WCW-3					
Lab ID:	CHH16100501-07A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 21:5
	10/04/16 11:25	Surr: Nonane	87	(53-145) %REC	10/06/16 12:21	10/06/16 21:5
		TPH-P (GRO)	ND	0.050 mg/L	10/11/16 16:10	10/11/16 16:1
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 16:10	10/11/16 16:1
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 16:10	10/11/16 16:10
		Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/11/16 16:10	10/11/16 16:10

KMEP DFSP Norwalk

Page 1 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	WCW-14			_		10/05/14 6 00 04
Lab ID:	CHH16100501-08A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 22:24
Date Sampled	10/04/16 13:37	Surr: Nonane	81	(53-145) %REC	10/06/16 12:21	10/06/16 22:24
		TPH-P (GRO)	ND	$0.050~\mathrm{mg/L}$	10/11/16 16:34	10/11/16 16:34
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/11/16 16:34	10/11/16 16:34
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 16:34	10/11/16 16:34
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/11/16 16:34	10/11/16 16:34
Client ID:	WCW-8					
Lab ID:	CHH16100501-09A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 22:51
Date Sampled	10/04/16 12:50	Surr: Nonane	89	(53-145) %REC	10/06/16 12:21	10/06/16 22:51
,		TPH-P (GRO)	ND	0.050 mg/L	10/11/16 16:57	10/11/16 16:57
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 16:57	10/11/16 16:57
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 16:57	10/11/16 16:57
		Surr: 4-Bromofluorobenzene	117	(70-130) %REC	10/11/16 16:57	10/11/16 16:57
Client ID:	WCW-13					
Lab ID :	CHH16100501-10A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 23:18
	10/04/16 14:07	Surr: Nonane	91	(53-145) %REC	. 10/06/16 12:21	10/06/16 23:18
Date Samples	10/01/10 14.07	TPH-P (GRO)	ND	0.050 mg/L	10/11/16 17:21	10/11/16 17:21
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/11/16 17:21	10/11/16 17:21
	•	Surr: Toluene-d8	98	(70-130) %REC	10/11/16 17:21	10/11/16 17:21
		Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/11/16 17:21	10/11/16 17:21
Client ID:	WCW-12			, ,		
Lab ID :	CHH16100501-11A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/06/16 23:44
	10/04/16 14:57	Surr: Nonane	92	(53-145) %REC	10/06/16 12:21	10/06/16 23:44
Date Sampled	10/04/10 14.37	TPH-P (GRO)	ND	0.050 mg/L	10/11/16 17:45	10/11/16 17:45
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/11/16 17:45	10/11/16 17:45
		Surr: Toluene-d8	97	(70-130) %REC	10/11/16 17:45	10/11/16 17:45
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/11/16 17:45	10/11/16 17:45
Client ID:	EXP-3	Sun. 4-Diomondologicale	115	(75 155) 752		
Lab ID:	CHH16100501-12A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:21	10/07/16 01:30
		Surr: Nonane	88	(53-145) %REC	10/06/16 12:21	10/07/16 01:30
Date Sampled	10/04/16 09:00	TPH-P (GRO)	ND	0.050 mg/L	10/11/16 18:08	10/11/16 18:08
		Surr: 1,2-Dichloroethane-d4	ND 111	(70-130) %REC	10/11/16 18:08	10/11/16 18:08
		Surr: Toluene-d8	98	(70-130) %REC	10/11/16 18:08	10/11/16 18:08
	1	Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/11/16 18:08	10/11/16 18:08
Client ID:	EXP-2	Suit. 4-Biomondorobenzene	117	(70 150) / Walle	10/11/10 10:00	
		TRUE (DRO)	ND.	0.050 mg/L	10/06/16 12:21	10/07/16 01:57
Lab ID:	CHH16100501-13A	TPH-E (DRO)	ND	0.050 mg/L (53-145) %REC	10/06/16 12:21	10/07/16 01:57
Date Sampled	10/04/16 12:50	Surr: Nonane	92 ND	0.050 mg/L	10/00/16 12:21	10/11/16 18:32
		TPH-P (GRO)	ND	0.050 mg/L (70-130) %REC	10/11/16 18:32	10/11/16 18:32
	4	Surr: 1,2-Dichloroethane-d4	115	(70-130) %REC (70-130) %REC	10/11/16 18:32	10/11/16 18:32
	ļ	Surr: Toluene-d8	97	(70-130) %REC (70-130) %REC	10/11/16 18:32	10/11/16 18:32
		Surr: 4-Bromofluorobenzene	108	(70-130) 70KEC	10/11/10 10.32	10/11/10 10.32

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-01A

Client I.D. Number: TB-1

Attn: Daniel Jablonski (213) 228-8271 Phone:

(714) 424-2135 Fax:

Sampled: 10/04/16 07:00

Received: 10/05/16

Extracted: 10/11/16 13:48 Analyzed: 10/11/16 13:48

Volatile Organics by GC/MS EPA Method 624/8260

			Report	ing				Re	eporting
	Compound	Concentration	Limit	t		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μ g/L
2	Chloromethane	ND		μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND		μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND		μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	. ND		μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	NÐ	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyi acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND		μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND		μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND		μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND		μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND		μg/L	65	4-Isopropyitoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND		μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	. ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND ·	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	105	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND		μg/L					
36	trans-1,3-Dichloropropene	l ND	0.50	µg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					

ND = Not Detected

2-Hexanone

41

43

Dibromochloromethane

1,2-Dibromoethane (EDB) Tetrachloroethene

1,1,1,2-Tetrachioroethane

Roger Scholl

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

2.0 μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EB-1

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-02A

Attn:

Daniel Jablonski

Phone: Fax:

(213) 228-8271 (714) 424-2135

Sampled: 10/04/16 15:15

Received: 10/05/16

Extracted: 10/11/16 14:12

Analyzed: 10/11/16 14:12

Volatile Organics by GC/MS EPA Method 624/8260

		Reporting							porting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	l nd	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Totai	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND .	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μ g/L
22	Ethyl Tertiary Butyl Ether (ETBE)	Î ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	l ND	1.0	μg/L	67	n-Butyibenzene	ND	1.0	µg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachioride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)		1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	107	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
٠.				, -					

ND = Not Detected

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachioroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone Dibromochloromethane

Roger Scholl

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

0.50

1.0 5.0

μg/L

μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-03A

Client I.D. Number: EXP-5

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 09:05

Received: 10/05/16

Extracted: 10/11/16 14:36 Analyzed: 10/11/16 14:36

Volatile Organics by GC/MS EPA Method 624/8260

		Reporting					Reporting		
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1.2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butyibenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND	1.0	µg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1.4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND .	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND .	1.0	µg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1.2.4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	. 98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	109	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	μg/L			•		
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	I ND	10	µg/L					
35	cis-1,3-Dichloropropene	I ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1.1.2-Trichloroethane	ND	1.0	µg/L					
38		ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					
41	Dibromochloromethane	ND	1.0	µg/L					
71	District Control of the Control of t	1	1 1.0	⊬8					

ND = Not Detected

1,2-Dibromoethane (EDB)

Tetrachioroethene 1,1,1,2-Tetrachioroethane

Roger Scholl

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Section Site

10/14/16

Report Date

Paparting

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-04A

Client I.D. Number: EXP-4

Attn: Daniel Jablonski

Phone: (213) 228-8271 Fax: (714) 424-2135

Sampled: 10/04/16 09:53

Received: 10/05/16

Extracted: 10/11/16 14:59 Analyzed: 10/11/16 14:59

Volatile Organics by GC/MS EPA Method 624/8260

Reporting

			Repor	ting				r.e	porting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	I ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND.	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	10 9	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	108	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	µg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					
40	2-Hexanone	ND	5.0	μg/L					

ND = Not Detected

Dibromochloromethane 1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachioroethane

Tetrachloroethene

43

Roger Scholl

ND

Kan

Kandy Soulmer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Ro with

10/14/16 Report Date

Reporting

Page 1 of 1

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: WCW-2

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-05A

Attn: Phone: Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 10:37

Received: 10/05/16

Extracted: 10/11/16 15:23 Analyzed: 10/11/16 15:23

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	porting
	Compound	Concentration	Lim	ıit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	NĎ Ź	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Totai	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropyibenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	μ g/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butyibenzene	ND	1.0	µg/L
19	cis-1.2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chioroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND ·	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	110	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
		1							

ND = Not Detected

4-Methyl-2-pentanone (MIBK)

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1.3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

35

36

37

38

40

42

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

µg/L

μg/L

μg/L

µg/L

0.50

0.50

1.0

5.0

1.0

2.0 μg/L

1.0

1.0

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-06A

Client I.D. Number: WCW-4

Daniel Jablonski Attn:

Phone: (213) 228-8271 Fax:

(714) 424-2135

Sampled: 10/04/16 12:07

Received: 10/05/16

Extracted: 10/11/16 15:46 Analyzed: 10/11/16 15:46

Volatile Organics by GC/MS EPA Method 624/8260

		Repor	ting			Reporting			
	Compound	Concentration	Lim	iit	_	Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μ g/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μ g/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μ g/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND .	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

43

Roger Scholl

ND

ND

ND

ND

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

0.50

1.0

5.0

1.0 μg/L

μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16

Deporting

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: WCW-3

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-07A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 11:25

Received: 10/05/16

Extracted: 10/11/16 16:10 Analyzed: 10/11/16 16:10

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	eporting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m.p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	μ g/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND .	1.0	μg/L	57	4-Chlorotoluene	ND .	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μ g/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND ·	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μ g/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	0.74	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1.1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND ·	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	114 .	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1.1.2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1.3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					
	D1	ND	1 40	/!					

ND = Not Detected

Dibromochloromethane

Tetrachioroethene

43

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-08A

Client I.D. Number: WCW-14

Daniel Jablonski Attn: Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 13:37

Received: 10/05/16

Extracted: 10/11/16 16:34 Analyzed: 10/11/16 16:34

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichtoropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	l ND	0.50	μg/L	72	Surr, 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Arnyl Methyl Ether (TAME)	ND ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1.1.2-Trichloroethane	ND	1.0	μg/L				-	

ND = Not Detected

Toluene

2-Hexanone

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

39

40

41

43

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

μg/L

µg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16

Report Date

Page 1 of 1

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: WCW-8

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-09A

Attn: Phone: Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 12:50

Received: 10/05/16

Extracted: 10/11/16 16:57 Analyzed: 10/11/16 16:57

Volatile Organics by GC/MS EPA Method 624/8260

Reportin								Re	porting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μ g/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ИD	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μ g/ L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND .	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	. 60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND .	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND -	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butvibenzene	ND	1.0	µg/L
24	1.2-Dichloroethane	ND	0.50	µg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1.2.4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	117	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L			-		
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND ND	1.0	µg/L					

ND = Not Detected

4-Methyl-2-pentanone (MIBK)

cis-1,3-Dichloropropene

1.1.2-Trichloroethane

Dibromochloromethane

Tetrachioroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene 1,3-Dichloropropane

2-Hexanone

trans-1,3-Dichloropropene

35

36

37

38

39

40

Roger Scholl

ND

holl Kandy

μg/L

μg/L

µg/L

µg/L

μg/L

μg/L

0.50

1.0

0.50

1.0

5.0 μg/L

1.0 2.0

1.0

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

The state of the s

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: WCW-13

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-10A

Attn: Phone: (213) 228-8271

Daniel Jablonski

Fax:

(714) 424-2135

Sampled: 10/04/16 14:07

Received: 10/05/16

Extracted: 10/11/16 17:21 Analyzed: 10/11/16 17:21

Volatile Organics by GC/MS EPA Method 624/8260

		Reporting						Reporting	
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachlorcethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND .	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113 .	ND	10	μg/L	55	Bromobenzene	ND	1.0.	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μ g/L
19	cis-1,2-Dichloroethene	ND	1.0	μ g/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chioroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND ·	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	114	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					

ND = Not Detected

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachioroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

36 37

38

39

40

42

Roger Scholl

ND

ND

ND

ND

ND ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

0.50

1.0 μg/L

5.0 µg/L

1.0 µg/L

2.0

1.0

μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/14/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: WCW-12

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-11A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 14:57

Received: 10/05/16

Extracted: 10/11/16 17:45 Analyzed: 10/11/16 17:45

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	orting					Reporting		
	Compound	Concentration	Lim	it		Compound	Concentration		Limit		
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L		
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L		
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	ND	0.50	μ g/L		
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L		
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L		
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND .	1.0	µg/L		
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μ g/L		
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L		
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L		
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	µg/L		
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L		
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L		
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L		
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L		
15	1 1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L		
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L		
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L		
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L		
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L		
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L		
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L		
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L		
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L		
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μ g/L		
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L		
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L		
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L		
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC		
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC		
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC		
31	1,2-Dichloropropane	ND	1.0	μg/L							
32	Trichloroethene	ND	1.0	μg/L							
33	Bromodichloromethane	ND	1.0	μg/L							
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L							
35	cis-1,3-Dichloropropene	ND	0.50	μg/L							
36	trans-1,3-Dichloropropene	ND	0.50	μg/L							
37	1,1,2-Trichloroethane	ND	1.0	μg/L							
38	Toluene	ND	0.50	μg/L							
		1									

ND = Not Detected

1,3-Dichloropropane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

2-Hexanone Dibromochloromethane

40

43

Roger Scholl

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-12A

Client I.D. Number: EXP-3

Daniel Jablonski Attn: Phone: (213) 228-8271 Fax:

(714) 424-2135

Sampled: 10/04/16 09:00

Received: 10/05/16

Extracted: 10/11/16 18:08 Analyzed: 10/11/16 18:08

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting				Re	porting
	Compound	Concentration	Lim	Limit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	. 10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND .	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND ·	1.0	µg/L	62	sec-Butyibenzene	ND	1.0	μ g/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyttoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachioride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	114	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					

ND = Not Detected

4-Methyl-2-pentanone (MIBK)

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1.3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachioroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

35

36

37

38

39

40

41

42

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

µg/L

μg/L

µg/L

0.50

0.50

1.0 5.0 μg/L

1.0

2.0 μg/L

1.0

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EXP-2

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100501-13A

Attn: Phone:

Daniel Jablonski (213) 228-8271

Fax.

(714) 424-2135

Sampled: 10/04/16 12:50

Received: 10/05/16

Extracted: 10/11/16 18:32 Analyzed: 10/11/16 18:32

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting				Re	eporting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μ g/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND ·	1.0	μg/L
12	Carbon disulfide	ND	2.5	µg/L	56	n-Propylbenzene	ND	1.0	μ g/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μ g/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND -	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μ g/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	115	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	108	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachioroethene 1,1,1,2-Tetrachioroethane

Dibromochloromethane

1,2-Dibromoethane (EDB)

Toluene

2-Hexanone

36

37

38

39

40

42

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

Kandy Soulner

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

0.50

1.0

5.0 μg/L

1.0 µg/L

2.0

1.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16100501

Job:

KMEP DFSP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pН	
16100501-01A	TB-1	Aqueous	2	
16100501-02A	EB-1	Aqueous	2	
16100501-03A	EXP-5	Aqueous	2	
16100501-04A	EXP-4	Aqueous	2	
16100501-05A	WCW-2	Aqueous	2	
16100501-06A	WCW-4	Aqueous	2	
16100501-07A	WCW-3	Aqueous	2	
16100501-08A	WCW-14	Aqueous	2	
16100501-09A	WCW-8	Aqueous	2	
16100501-10A	WCW-13	Aqueous	2	
16100501-11A	WCW-12	Aqueous	2	
16100501-12A	EXP-3	Aqueous	2	
16100501-13A	EXP-2	Aqueous	2	

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	QC Summary Report								Work Order: 16100501		
Method Blan			Type N	Ва	est Code: EF	70	hod SW80		sis Date:	10/06/2016 18:26 10/06/2016 12:21	
Sample ID: Analyte	MBLK-37270	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	•		al %RPD(Limit)	Quai
TPH-E (DRO) Surr: Nonane		ND 0.125	0.05	0.15	,	83	35	151			<u> </u>
File ID: 1	Control Spike		Type L	Ва	est Code: Ef	70	hod SW80	Analys	sis Date:	10/06/2016 17:59 10/06/2016 12:21	
Sample ID: Analyte	LCS-37270	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep [UCL(ME)		/al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.87 0.149	0.05	5 2.5 0.15		115 99	73 35	135 151	:		
Sample Mat File ID: 4	rix Spike		Type N	-	est Code: Ei atch ID: 372		hod SW80	Analy	sis Date:	10/06/2016 19:19	
Sample ID: Analyte	16100501-02AMS	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep I UCL(ME)		10/06/2016 12:21 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.95 0.284	0.1	2.5 0.3	0	118 95	64 33	161 162		·	
Sample Mat	rix Spike Duplicate		Type I		est Code: El atch ID: 372		thod SW80			10/06/2016 19:46	
Sample ID: Analyte	16100501-02AMSD	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep I UCL(ME)		10/06/2016 12:21 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.96 0.298	0.1				64 33	161 162	2.949		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	Ç	Work Order: 16100501							
Method Blank		10/11/2016 11:50							
File ID: 41	11-14- #			atch ID: MS1		16	Prep Date:	10/11/2016 11:50	
Sample ID: MBLK MS15W1011B	Units : mg/L			ANUAL_161					Qual
Analyte	Result	PQL	SpkVal	SpkRefVal	%KEC	LCL(ME)	UCL(ME) RPDRef	/ai %RPD(Limit)	Quai
TPH-P (GRO)	ND	0.05			400	70	420		
Surr: 1,2-Dichloroethane-d4	0.0109		0.01		109	70 70	130 130		
Surr: Toluene-d8	0.00925		0.01		93 106	70 70	130		
Surr: 4-Bromofluorobenzene	0.0106		0.01						
Laboratory Control Spike		Type Lo	CS To	est Code: EF	A Met	hod SW80	15B/C / SW8260B		
File ID: 40			В	atch ID: MS1	5W101	1B	Analysis Date:	10/11/2016 11:03	
Sample ID: GLCS MS15W1011B	Units : mg/L			ANUAL_161			Prep Date:	10/11/2016 11:03	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	0.393	0.05	0.4		98	70	130		
Surr: 1,2-Dichloroethane-d4	0.0104		0.01		104	70	130		
Surr: Toluene-d8	0.00915		0.01		92	70	130		
Surr: 4-Bromofluorobenzene	0.0123		0.01		123	70	130		
Sample Matrix Spike		Type M	IS T	est Code: El	PA Met	hod SW80)15B/C / SW8260B		
File ID: 42			В	atch ID: MS1	5W101	11B	Analysis Date:	10/11/2016 21:17	
Sample ID: 16100501-03AGS	Units : mg/L			ANUAL_161			Prep Date:	10/11/2016 21:17	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	1.69	0.25	2	0	84	46	167		
Surr: 1,2-Dichloroethane-d4	0.0542		0.05		108	70	130		
Surr: Toluene-d8	0.0483		0.05		97	70	130		
Surr: 4-Bromofluorobenzene	0.0543	i	0.05		109	70	130		
Sample Matrix Spike Duplicate		Type N	ISD T	est Code: El	PA Met	hod SW8	015B/C / SW8260B		
File ID: 43			В	atch ID: MS	15W10	11B	Analysis Date:	10/11/2016 21:41	
Sample ID: 16100501-03AGSD	Units : mg/L	ı	Run ID: M	ANUAL_161	011D		Prep Date:	10/11/2016 21:41	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	1.84	0.25	2	0	92	54	143 1.68	6 8.5(23)	
Surr: 1,2-Dichloroethane-d4	0.0543		0.05		109	70	130		
Surr: Toluene-d8	0.0489		0.05		98	70	130		
Surr: 4-Bromofluorobenzene	0.0558		0.05		112	70	130		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

QC Summary Report 16100501 14-Oct-16 Type MBLK Test Code: EPA Method SW8260B **Method Blank** Analysis Date: 10/11/2016 11:50 Batch ID: MS15W1011A File ID: 3 Prep Date: 10/11/2016 11:50 Run ID: MANUAL 161011D Sample ID: **MBLK MS15W1011A** Units: µg/L SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual **PQL** Analyte Result Dichlorodifluoromethane ND 1 2 Chloromethane ND Vinyl chloride ND 0.5 Chloroethane ND 1 2 **Bromomethane** ND 10 Trichlorofluoromethane ND 10 Acetone ND 1,1-Dichloroethene ND 1 10 Tertiary Butyl Alcohol (TBA) ND Dichloromethane ND 5 ND 10 Freon-113 ND 2.5 Carbon disulfide trans-1,2-Dichloroethene ND 0.5 Methyl tert-butyl ether (MTBE) ND 1.1-Dichloroethane ND 1 Vinyl acetate ND 50 2-Butanone (MEK) ND 10 Di-isopropyl Ether (DIPE) ND cis-1,2-Dichloroethene ND ND Bromochloromethane Chloroform ND Ethyl Tertiary Butyl Ether (ETBE) ND 1 2,2-Dichloropropane ND 1 1,2-Dichloroethane ND 0.5 1,1,1-Trichloroethane ND 1 ND 1.1-Dichloropropene Carbon tetrachloride ND ND 0.5 Benzene Tertiary Amyl Methyl Ether (TAME) ND 1 Dibromomethane ND ND 1,2-Dichloropropane 1 Trichloroethene ND Bromodichloromethane ND 1 ND 10 4-Methyl-2-pentanone (MIBK) cis-1.3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene ND 0.5 ND 1,1,2-Trichloroethane Toluene ND 0.5 ND 1,3-Dichloropropane 1 5 2-Hexanone ND Dibromochloromethane ND 1 ND 2 1,2-Dibromoethane (EDB) ND Tetrachloroethene 1 ND 1,1,1,2-Tetrachloroethane 1 ND 1 Chlorobenzene Ethylbenzene ND 0.5 0.5 m,p-Xylene ND Bromoform ND Styrene ND 0.5 ND o-Xylene 1,1,2,2-Tetrachloroethane ND 2 ND 1,2,3-Trichloropropane ND Isopropylbenzene ND Bromobenzene ND n-Propylbenzene 4-Chlorotoluene ND 2-Chlorotoluene ND ND 1,3,5-Trimethylbenzene ND tert-Butylbenzene 1,2,4-Trimethylbenzene ND ND sec-Butylbenzene 1.3-Dichlorobenzene ND ND 1,4-Dichlorobenzene ND 4-Isopropyltoluene ND 1,2-Dichlorobenzene

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	(QC Sum	mary Re	eport			Work Order: 16100501
n-Butylbenzene	ND	1					
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	ND	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	10.9		10	109	70	130	
Surr: Toluene-d8	9.25		10	93	70	130	
Surr: 4-Bromofluorobenzene	10.6		10	106	70	130	

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

QC Summary Report 14-Oct-16 Test Code: EPA Method SW8260B Type LCS Laboratory Control Spike Analysis Date: 10/11/2016 10:34 Batch ID: MS15W1011A File ID: 1 Prep Date: 10/11/2016 10:34 Run ID: MANUAL 161011D Sample ID: LCS MS15W1011A Units: µg/L SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Result **PQL** Analyte Dichlorodifluoromethane 7.8 Chloromethane 11.3 Vinvl chloride 10.8 Chloroethane 13.5 **Bromomethane** 8.21 Trichlorofluoromethane 12.8 Acetone 1,1-Dichloroethene 11.3 Tertiary Butyl Alcohol (TBA) Dichloromethane 11.9 Freon-113 trans-1,2-Dichloroethene 11.7 Methyl tert-butyl ether (MTBE) 13.3 0.5 1,1-Dichloroethane 12.3 2-Butanone (MEK) L51 Di-isopropyl Ether (DIPE) cis-1.2-Dichloroethene 12.2 Bromochioromethane Chloroform 11.5 L51 Ethyl Tertiary Butyl Ether (ETBE) 13.6 2.2-Dichloropropane 13.7 12.9 1,2-Dichloroethane 1,1,1-Trichloroethane 12.4 1,1-Dichloropropene 12.6 12.5 Carbon tetrachloride 0.5 Benzene 11.6 Tertiary Amyl Methyl Ether (TAME) 13.3 Dibromomethane 12.8 1,2-Dichloropropane 12.7 Trichloroethene 11.6 Bromodichloromethane 4-Methyl-2-pentanone (MIBK) 32.2 2.5 L51 cis-1,3-Dichloropropene 13.4 trans-1,3-Dichloropropene 11.9 1,1,2-Trichloroethane 12.7 0.5 Toluene 10.9 1,3-Dichloropropane 11.3 2-Hexanone Dibromochloromethane 9.77 1.2-Dibromoethane (EDB) 22.3 Tetrachloroethene 10.3 10.8 1,1,1,2-Tetrachloroethane Chlorobenzene 10.8 0.5 10.3 Ethylbenzene m,p-Xylene 10.1 0.5 **Bromoform** 9.46 9.8 Styrene 9.89 0.5 o-Xylene 1,1,2,2-Tetrachloroethane 10.3 1,2,3-Trichloropropane 21.1 Isopropylbenzene Bromobenzene 11.5 11.9 n-Propvlbenzene 4-Chlorotoluene 11.6 2-Chlorotoluene 1,3,5-Trimethylbenzene 11.9 tert-Butylbenzene 11.4 1.2.4-Trimethylbenzene 11.6 sec-Butylbenzene 1,3-Dichlorobenzene 10.6 1 4-Dichlorobenzene 4-Isopropyltoluene 11.4 10.1 1,2-Dichlorobenzene n-Butylbenzene 11.6 L50 1,2-Dibromo-3-chloropropane (DBCP)

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	(QC Sum	ımary Re	port			Work Order: 16100501
1,2,4-Trichlorobenzene	4.54	2	10	45	62	131	L50
Naphthalene	4.44	2	10	44	39	149	
1,2,3-Trichlorobenzene	3.68	2	10	37	54	135	L50
Xvienes, Total	20	0.5	20	100	70	130	
Surr: 1,2-Dichloroethane-d4	10.9		10	109	70	130	
Surr: Toluene-d8	9.12		10	91	70	130	
Surr: 4-Bromofluorobenzene	11		10	110	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order: Date: OC Summary Report 14-Oct-16 Test Code: EPA Method SW8260B Type MS Sample Matrix Spike Analysis Date: 10/11/2016 20:30 Batch ID: MS15W1011A File ID: 4 10/11/2016 20:30 Prep Date: Units: µg/L Run ID: MANUAL 161011D Sample ID: 16100501-03AMS SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Result **PQL** Analyte Dichlorodifluoromethane 26.3 2.5 Chloromethane 38.9 Vinyl chloride 38.8 2.5 Chloroethane 2.5 **Bromomethane** 13.7 2.5 Trichlorofluoromethane 34.7 Acetone 40.9 2.5 1,1-Dichloroethene Tertiary Butyl Alcohol (TBA) Dichloromethane 43.4 2.5 40.5 Freon-113 trans-1,2-Dichloroethene 42.6 Methyl tert-butyl ether (MTBE) 1.3 1,1-Dichloroethane 45.8 2.5 2-Butanone (MEK) Di-isopropyl Ether (DIPE) 2.5 52.7 cis-1,2-Dichloroethene 44.9 2.5 2.5 Bromochloromethane 42.1 2.5 Chloroform 41.7 Ethyl Tertiary Butyl Ether (ETBE) 2.5 51 1 2,2-Dichloropropane 41.1 1,2-Dichloroethane 48.1 2.5 45.2 2.5 1 1 1-Trichloroethane 1,1-Dichloropropene 44.7 2.5 43.7 2.5 Carbon tetrachloride 42.6 1.3 Renzene 99.8 Tertiary Amyl Methyl Ether (TAME) 49.9 2.5 46.6 2.5 Dibromomethane 1.2-Dichloropropane 47 5 2.5 2.5 Trichloroethene 41.2 2.5 Bromodichloromethane 4-Methyl-2-pentanone (MIBK) cis-1,3-Dichloropropene 45.7 2.5 trans-1,3-Dichloropropene 41.7 2.5 46.4 2.5 1,1,2-Trichloroethane 1.3 Toluene 45.6 2.5 1,3-Dichloropropane 2-Hexanone 38.9 2.5 Dibromochloromethane 1.2-Dibromoethane (EDB) 90.4 2.5 Tetrachloroethene 39.2 1,1,1,2-Tetrachloroethane 43.5 2.5 43.4 2.5 Chlorobenzene 40.4 1.3 Ethylbenzene m,p-Xylene 39.7 1.3 2.5 n **Bromoform** 37.3 38.7 2.5 Styrene 39.5 o-Xylene 1,1,2,2-Tetrachloroethane 43.5 2.5 86.5 1,2,3-Trichloropropane Isopropylbenzene 47.6 2.5 2.5 49.1 Bromobenzene n-Propylbenzene 2.5 2.5 4-Chlorotoluene 49.2 2.5 2-Chlorotoluene 49.4 2.5 1.3.5-Trimethylbenzene 2.5 46.3 tert-Butylbenzene 49.5 2.5 1,2,4-Trimethylbenzene 2.5 46.5 sec-Butylbenzene 2.5 1,3-Dichlorobenzene 46 5 2.5 1.4-Dichlorobenzene 2.5 4-Isopropyltoluene 2.5 44.8 1,2-Dichlorobenzene n-Butylbenzene 46.9 2.5

0 72

1,2-Dibromo-3-chloropropane (DBCP)

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	(QC Sun	nmary R	epor	t			Work Order: 16100501
1.2.4-Trichlorobenzene	37	10	50	0	74	57	134	
Naphthalene	47.2	10	50	0	94	31	157	
1.2.3-Trichlorobenzene	46	10	50	0	92	52	138	
Xylenes, Total	79.2	1.3	100	0	79	70	130	
Surr: 1,2-Dichloroethane-d4	53.8		50		108	70	130	
Surr: Toluene-d8	47.9		50		96	70	130	
Surr: 4-Bromofluorobenzene	55.1		50		110	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order: Date: QC Summary Report 16100501 14-Oct-16 Test Code: EPA Method SW8260B Type MSD Sample Matrix Spike Duplicate Batch ID: MS15W1011A Analysis Date: 10/11/2016 20:53 File ID: 5 Prep Date: 10/11/2016 20:53 Sample ID: Run ID: MANUAL 161011D 16100501-03AMSD Units: µg/L SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Analyte Result **PQL** 150 26.25 6.7(38) 56 12 Dichlorodifluoromethane 28.1 2.5 50 82 26 146 38.9 5.0(31) 40.9 10 0 Chloromethane 38.84 7.5(25)50 0 84 46 142 Vinyl chloride 41.9 2.5 118.0(40) R5 108 25 164 13.99 Chloroethane 54 2.5 50 0 38.6(40) 0 40 10 172 13.68 Bromomethane 20.2 10 50 34.69 32.7(34) 32 97 164 Trichlorofluoromethane 48.3 2.5 50 0 0 91 10 188 830.2 8.7(39) 50 1000 906 Acetone 1.1-Dichloroethene 43.4 2.5 50 0 87 62 133 40.92 5.8(35) 405.5 8.8(33) 89 44 155 Tertiary Butyl Alcohol (TBA) 443 25 500 0 7.5(26) 0 94 69 130 43.39 46.8 10 Dichloromethane 50 6.7(40)0 87 56 144 40.48 Freon-113 43.3 2.5 50 90 67 131 42.58 5.1(27) trans-1,2-Dichloroethene 44.8 2.5 50 0 48.98 9.6(40)0 108 56 140 Methyl tert-butyl ether (MTBE) 53.9 1.3 50 6.9(20)0 98 67 130 45.8 1,1-Dichloroethane 49.1 2.5 50 183 921.4 8.7(22) 0 26 2-Butanone (MEK) 1010 50 1000 101 Di-isopropyl Ether (DIPE) 2.5 0 113 59 138 52.66 7.4(20)56.7 50 44.88 3.9(20)0 93 70 130 cis-1.2-Dichloroethene 46.7 50 9.3(20) 70 134 42.13 0 92 Bromochloromethane 46.2 2.5 50 2.5 0 90 130 41.68 7.1(22)44 8 50 Chloroform 51.11 8.8(40) Ethyl Tertiary Butyl Ether (ETBE) 2.5 0 112 62 135 55.8 50 0 87 44 149 41.11 5.7(23) 2,2-Dichloropropane 43.5 2.5 50 8.4(20) 0 105 64 139 48.09 1.2-Dichloroethane 52.3 2.5 50 65 139 45.24 7.1(20) 0 97 1,1,1-Trichloroethane 2.5 50 48.6 44.74 6.3(20)47 7 2.5 50 0 95 68 134 1,1-Dichloropropene 43.65 9.0(21)0 95 56 146 Carbon tetrachloride 47.7 2.5 50 42.62 5.7(21) 0 90 67 134 1.3 50 Benzene 45.1 49.89 8.3(31) 0 108 64 135 50 Tertiary Amyl Methyl Ether (TAME) 54.2 2.5 0 101 70 132 46.57 8.5(20)50.7 2.5 50 Dibromomethane 47.52 6.6(20)69 134 1.2-Dichloropropane 50.8 2.5 50 0 102 138 41.23 6.0(20)0 88 68 43.8 2.5 50 Trichloroethene 46.96 9.3(20)58 Bromodichloromethane 51.5 2.5 50 0 103 147 9.0(24)0 102 49 140 116.5 4-Methyl-2-pentanone (MIBK) 127 13 125 7.4(20) cis-1,3-Dichloropropene 2.5 50 0 98 61 130 45.7 49.2 41.67 7.7(21) 90 62 131 2.5 50 0 trans-1.3-Dichloropropene 45 46.36 8.0(20) 2.5 0 100 70 131 50.2 50 1,1,2-Trichloroethane 43.97 5.6(20) 46.5 1.3 50 0 93 38 130 Toluene 0 101 70 130 45.64 10.2(20) 1,3-Dichloropropane 50.6 2.5 50 467.2 9.4(23)0 103 25 157 513 25 500 2-Hexanone 38.93 10.4(20) 0 86 49 147 Dibromochloromethane 43.2 2.5 50 8.6(20) 70 131 90.4 1,2-Dibromoethane (EDB) 98.5 5 100 ٥ 98 39.19 7.9(20)2.5 0 85 63 134 Tetrachloroethene 42 4 50 10.0(20) 43.49 0 96 70 133 1,1,1,2-Tetrachloroethane 48.1 2.5 50 70 130 43 37 7.8(20) 0 94 Chlorobenzene 46.9 2.5 50 6.6(20) 0 86 70 130 40.35 43 1 1.3 50 Ethylbenzene 39.71 4.5(20)139 83 65 m,p-Xylene 41.5 1.3 50 0 0 83 60 144 37.26 10.8(21) 50 2.5 **Bromoform** 41.5 38.72 8.1(31) 0 84 53 144 42 2.5 50 Styrene 69 130 39.52 7.1(20)85 42.4 1.3 50 n o-Xylene 8.3(20) 67 134 43.48 2.5 50 0 94 47.2 1,1,2,2-Tetrachloroethane 130 86.51 8.2(20) 94 70 100 0 93.9 10 1,2,3-Trichloropropane 47.63 6.2(20)2.5 50 0 101 64 136 Isopropylbenzene 50.7 6.7(20) 49.07 105 69 130 52.5 2.5 50 Bromobenzene 6.5(40) 65 132 47.98 0 102 2.5 50 n-Propylbenzene 51.2 7.1(20) 69 132 47.03 0 101 2.5 50 4-Chiorotoluene 50.5 49.17 6.2(20)0 105 69 130 52.3 2.5 50 2-Chlorotoluene 49.38 5.6(21) 64 135 0 104 1,3,5-Trimethylbenzene 52.2 2.5 50 6.3(20)99 63 139 46.29 2.5 50 49.3 tert-Butylbenzene 5.6(24) 62 135 49.45 105 52.3 2.5 50 n 1 2 4-Trimethylbenzene 132 46.52 5.0(20)50 0 98 68 2.5 sec-Butylbenzene 48.9 7.4(20)46.5 130 50.1 2.5 50 100 70 1,3-Dichlorobenzene 5.1(20) 70 130 45.02 95 0 47.4 2.5 50 1.4-Dichlorobenzene 5.7(22) 97 40 161 45 96 48 7 2.5 50 0 4-Isopropyltoluene 70 130 44.75 4.2(20)0 93 46.7 2.5 50 1.2-Dichlorobenzene 4.6(24) 135 46.88 0 98 58 2.5 50 n-Butylbenzene 49.1 180.1 0.9(29)131 0 71 63 1,2-Dibromo-3-chloropropane (DBCP) 250 178

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	(QC Sun	nmary R	eport	t				Work Order: 16100501
1,2,4-Trichlorobenzene	35.9	10	50	0	72	57	134	36.96	3.0(30)
Naphthalene	45.1	10	50	0	90	31	157	47.24	4.6(40)
1.2.3-Trichlorobenzene	46.8	10	50	0	94	52	138	45.96	1.9(39)
Xylenes, Total	84	1.3	100	0	84	70	130	79.23	5.8(22)
Surr: 1,2-Dichloroethane-d4	54.9		50		110	70	130		
Surr: Toluene-d8	48.1		50		96	70	130		
Surr: 4-Bromofluorobenzene	55.2		50		110	70	130		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
- L50 = Analyte recovery was below acceptance limits for the LCS, but was acceptable in the MS/MSD.
- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.

Billing Information:

CHAIN-OF-CUSTODY RECORD

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

EMail Address

Phone Number

Report Attention

Alpha Analytical, Inc.

CA

Page: 1 of 2

WorkOrder: CHHL16100501

Report Due By: 5:00 PM On: 14-Oct-16

Sampled by: Daniel Mosso EDD Required: Yes Cooler Temp daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x Job: KMEP DFSP Norwalk Daniel Jablonski Matthew Mayry 1000 Wilshire Boulevard Los Angeles, CA 90017 Client's COC #: none QC Level: S3 == CH2M Hill 21st Floor

Date Printed 05-Oct-16 Samples Received 05-Oct-16 0°

QC Level: S3	= Final Rpt, MBLK, LCS, MS/MSD With Surrogates	S, MS/I	ASD With Su	rrogates						
									Requested Tests	
Alpha	Client		Collection No. of Bottles	No. of E	ottles	<u>. </u>	TPH/E_W TPH/P_W	⊢	voc_w	
Sample ID	Sample ID	Matri	Matrix Date	Alpha	Sub	 				Sample Remarks
CHH16100501-01A	TB-1	AQ	10/04/16 07:00	7	0	7			TPHE(0.05) +Vinyl acetate	Reno TB 7/29/16
CHH16100501-02A	EB-1	ΑQ	10/04/16 15:15	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl acetate		TPHE(0.05) +Vinyl acctate	
CHH16100501-03A	EXP-5	ΑQ	10/04/16 09:05	9	0		TPHE(0.05) TPHE(0.05) +Vinyl acetate acetate	_	TPHE(0.05) +Vinyl acetate	
CHH16100501-04A	EXP-4	AQ	10/04/16 09:53	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate		TPHE(0.05) +Vinyl acetate	
CHH16100501-05A WCW-2	WCW-2	AO	10/04/16 10:37	9	0	2	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate		TPHE(0.05) +Vinyl acetate	
CHH16100501-06A	WCW-4	AQ	10/04/16 12:07	9	0	2	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate		TPHE(0.05) +Vinyl acetate	
CHH16100501-07A WCW-3	WCW-3	AQ	10/04/16 11:25	9	0	2	TPHE(0.05) TPHE(0.05)	-	TPHE(0.05) +Vinyl acetate	
CHH16100501-08A	WCW-14	AQ	10/04/16	2	0		TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate		TPHE(0.05) +Vinyl acetate	 One voa received broken, one voa received cracked but still intact

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

Signature,	Print Name	3	Company	Date/Time
Logged in by:	Medin	an C.	Alpha Analytical, Inc.	0401 9/9/01

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Alpha Analytical, Inc.

S

2 of 2

Page:

WorkOrder: CHHL16100501

Report Due By: 5:00 PM On: 14-Oct-16

daniel.jablonski@ch2m.com matthew.mayry@ch2m.com EMail Address (213) 228-8271 x (213) 228-8271 x Phone Number Report Attention Daniel Jablonski Matthew Mayry 1000 Wilshire Boulevard Los Angeles, CA 90017

CH2M Hill

Client:

21st Floor

Job: KMEP DFSP Norwalk

Client's COC #: none

Sampled by: Daniel Mosso EDD Required: Yes

Date Printed 05-Oct-16 Samples Received 05-Oct-16 Cooler Temp 0°

Sample Remarks Requested Tests TPHE(0.05) +Vinyl acetate TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl Voc_w TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl rPHE(0.05) +Vinyl TPHE(0.05) +Vinyl acetate TPH/P_W +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl acetate TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPH/E_W acetate acetate Alpha Sub TAT Collection No. of Bottles 0 0 0 0 0 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates ဖ ဖ ဖ 9 ဖ 10/04/16 10/04/16 14:57 10/04/16 09:00 10/04/16 12:50 AQ 10/04/16 12:50 Matrix Date AQ ð ð g Sample ID CHH16100501-10A WCW-13 CHH16100501-11A WCW-12 CHH16100501-09A WCW-8 EXP-2 Client CHH16100501-12A EXP-3 CHH16100501-13A QC Level: S3 Sample ID Alpha

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

Signature	Print Name Com	Company	Date/Time
Logged in by:	WEGNAN C. Alpha Analytical,	Analytical, Inc.	0/2/10 104t

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

LAB SAMPLE # TIME // ਰੱ CONDITION Alpha Analytical COC Standard 8 STATUS 古 9 0-10500191HHU 1000 Wilshire Blvd 21st floor 1100 Town and CountryRd. Orange CA 95112 Los Angeles, CA 90017 Kinder Morgan Norwalk ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN Report to: Dan Jablonski Kinder Morgan **CH2MHILL** LAB RECEIVED BY RECEIVED BY RECEIVED BY COOLER # CONDUCT ANALYSIS TO DETECT 16 30 TIME 7000 VOC's & Oxygenates (EPA 8260B) (Mč108 A93) bH9T , gH9T 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 ર્કુ કુ CONTAINERS Preservation Type ア 15306 Norwalk Blvd, Norwalk PERFORMED BY h # 0 SAMPLING MATRIX AQ= Water FR Kinder Morgan **DFSP Norwalk** 1250 イント 1037 5260 1125 1337 <u>ુ</u> 7021 Solo 600 ∃ME TIME TECH SERVICES, INC. 9||<u>+</u>|0| DATE DATE BLAINE 14/4 CHAIN OF CUSTODY Kale Week 15cm-13 RELEASED BY RELEASED BY RELEASED BY 2,23 SHIPPED VIA Ncw-3 としている COMPLETED Wcw-8 Fxp.4 SAMPLE I.D. Exp? SAMPLING EB-1 18/ CLIENT SITE

TIME 3 D LAB SAMPLE # ਰ CONDITION Alpha Analytical COC DATE 3 Standard STATUS CHH ICIDOBAII-1000 Wilshire Blvd 21st floor 1100 Town and CountryRd. Orange CA 95112 Los Angeles, CA 90017 Kinder Morgan Norwalk ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN Report to: Dan Jablonski CH2MHILL Kinder Morgan RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT 549 TIME SENT TIME // 30 1055° VOC's & Oxygenates (EPA 8260B) TPHg, TPHd (EPA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 Ś Preservation | Type CONTAINERS 3 15306 Norwalk Blvd, Norwalk PERFORMED BY હ SAMPLING MATRIX AQ= Water 4 Kinder Morgan **DFSP Norwalk** Oges 1250 <u>Š</u> EST. TIME IME TECH SERVICES, INC. 15/4/15 21/h/0 7/2/cl DATE **BLAINE** CHAIN OF CUSTODY RELEASED BY RELEASED BY RELEASED BY WCU-12 COMPLETED SHIPPED VIA ルらと以 ガメアン SAMPLE I.D. SAMPLING CLIENT SITE

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017 Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Date Received: 10/05/16

Job: KMEP DFSP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

Client ID: GMW-O-5 Lab ID: CHH16100502 Date Sampled 10/04/16 09:50 Client ID: GMW-O-17 Lab ID: CHH16100502 Date Sampled 10/04/16 10:45 Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-13 Client ID: CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502	_		Reporting	Date	Date
Client ID : GMW-O-5	Parameter	Concentration	Limit	Extracted	Analyzed
Client ID: GMW-O-5 Lab ID: CHH16100502 Date Sampled 10/04/16 09:50 Client ID: GMW-O-17 Lab ID: CHH16100502 Date Sampled 10/04/16 10:45 Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-13 Lab ID: CHH16100502 CHH16100502 CHH16100502 CHH16100502 CHH16100502				10/06/16/19 00	10/07/17 01:30
Client ID: GMW-O-5 Lab ID: CHH16100502 Date Sampled 10/04/16 09:50 Client ID: GMW-O-17 Lab ID: CHH16100502 Date Sampled 10/04/16 10:45 Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	CHH16100502-01A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 01:39
Client ID : GMW-0-17	ed 10/04/16 09:08 Surr: Nonane	89	(53-145) %REC	10/06/16 12:33	10/07/16 01:39
Client ID : GMW-0-17	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 15:43	10/06/16 15:43
Client ID : GMW-0-17	Surr: 1,2-Dichloroethane-d4	116	(70-130) %REC	10/06/16 15:43	10/06/16 15:43
Client ID : GMW-0-17	Surr: Toluene-d8	93	(70-130) %REC	10/06/16 15:43	10/06/16 15:43
Lab ID : CHH16100502 Date Sampled 10/04/16 09:50 Client ID : GMW-O-17 Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : GMW-37 Lab ID : CHH16100502	Surr: 4-Bromofluorobenzene	: 112	(70-130) %REC	10/06/16 15:43	10/06/16 15:43
Client ID : GMW-0-17	GMW-O-5				
Client ID: GMW-O-17 Lab ID: CHH16100502 Date Sampled 10/04/16 10:45 Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	CHH16100502-02A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 02:05
Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : GMW-37 Cab ID : CHH16100502	ed 10/04/16 09:50 Surr: Nonane	96	(53-145) %REC	10/06/16 12:33	10/07/16 02:05
Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	TPH-P (GRO)	ND	$0.050~\mathrm{mg/L}$	10/06/16 16:07	10/06/16 16:07
Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : GMW-37 Cab ID : CHH16100502	Surr: 1,2-Dichloroethane-d4	118	(70-130) %REC	10/06/16 16:07	10/06/16 16:07
Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : GMW-37 Cab ID : CHH16100502	Surr: Toluene-d8	95	(70-130) %REC	10/06/16 16:07	10/06/16 16:07
Lab ID : CHH16100502 Date Sampled 10/04/16 10:45 Client ID : GMW-38 Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : GMW-37 Cab ID : CHH16100502	Surr: 4-Bromofluorobenzene	102	(70-130) %REC	10/06/16 16:07	10/06/16 16:07
Client ID : GMW-38	GMW-O-17				-
Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	CHH16100502-03A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 02:32
Client ID: GMW-38 Lab ID: CHH16100502 Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	ed 10/04/16 10:45 Surr: Nonane	91	(53-145) %REC	10/06/16 12:33	10/07/16 02:32
Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : CHH16100502	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 16:30	10/06/16 16:30
Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : CHH16100502	Surr: 1,2-Dichloroethane-d4	114	(70-130) %REC	10/06/16 16:30	10/06/16 16:30
Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : CHH16100502	Surr: Toluene-d8	93	(70-130) %REC	10/06/16 16:30	10/06/16 16:30
Lab ID : CHH16100502 Date Sampled 10/04/16 11:30 Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502 Client ID : CHH16100502	Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/06/16 16:30	10/06/16 16:30
Date Sampled 10/04/16 11:30 Client ID: GMW-13 Lab ID: CHH16100502 Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	GMW-38				
Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	CHH16100502-04A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 02:58
Client ID : GMW-13 Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502		91	(53-145) %REC	10/06/16 12:33	10/07/16 02:58
Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 16:54	10/06/16 16:54
Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	Surr: 1,2-Dichloroethane-d4	117	(70-130) %REC	10/06/16 16:54	10/06/16 16:54
Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	Surr: Toluene-d8	84	(70-130) %REC	10/06/16 16:54	10/06/16 16:54
Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	Surr: 4-Bromofluorobenzene	e 116	(70-130) %REC	10/06/16 16:54	10/06/16 16:54
Lab ID : CHH16100502 Date Sampled 10/04/16 11:59 Client ID : GMW-37 Lab ID : CHH16100502	GMW-13				
Date Sampled 10/04/16 11:59 Client ID: GMW-37 Lab ID: CHH16100502	CHH16100502-05A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 03:24
Client ID : GMW-37 Lab ID : CHH16100502		96	(53-145) %REC	10/06/16 12:33	10/07/16 03:24
Lab ID: CHH16100502	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 17:17	10/06/16 17:17
Lab ID: CHH16100502	Surr: 1,2-Dichloroethane-d4		(70-130) %REC	10/06/16 17:17	10/06/16 17:17
Lab ID: CHH16100502	Surr: Toluene-d8	88	(70-130) %REC	10/06/16 17:17	10/06/16 17:17
Lab ID: CHH16100502	Surr: 4-Bromofluorobenzen		(70-130) %REC	10/06/16 17:17	10/06/16 17:17
Lab ID: CHH16100502					
	CHH16100502-06A TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 03:50
Date Sampled 10/04/10 12.31	` '	99	(53-145) %REC	10/06/16 12:33	10/07/16 03:50
	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 17:41	10/06/16 17:41
	Surr: 1,2-Dichloroethane-d4		(70-130) %REC	10/06/16 17:41	10/06/16 17:41
	Surr: Toluene-d8	96	(70-130) %REC	10/06/16 17:41	10/06/16 17:41
	Surr: 4-Bromofluorobenzen		(70-130) %REC	10/06/16 17:41	10/06/16 17:41

KMEP DFSP Norwalk

Page 1 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	GMW-O-24					
Lab ID:	CHH16100502-07A	TPH-E (DRO)	ND	$0.050~\mathrm{mg/L}$	10/06/16 12:33	10/07/16 04:17
Date Sampled	10/04/16 13:20	Surr: Nonane	105	(53-145) %REC	10/06/16 12:33	10/07/16 04:17
•		TPH-P (GRO)	ND	0.050 mg/L	10/06/16 18:05	10/06/16 18:05
		Surr: 1,2-Dichloroethane-d4	121	(70-130) %REC	10/06/16 18:05	10/06/16 18:05
		Surr: Toluene-d8	93	(70-130) %REC	10/06/16 18:05	10/06/16 18:05
		Surr: 4-Bromofluorobenzene	105	(70-130) %REC	10/06/16 18:05	10/06/16 18:05
Client ID:	GMW-O-10					
Lab ID :	CHH16100502-08A	TPH-E (DRO)	ND	$0.050~\mathrm{mg/L}$	10/06/16 12:33	10/07/16 04:42
	10/04/16 14:15	Surr: Nonane	92	(53-145) %REC	10/06/16 12:33	10/07/16 04:42
Dute Sumples	10/0 //10 11.13	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 18:28	10/06/16 18:28
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/06/16 18:28	10/06/16 18:28
		Surr: Toluene-d8	96	(70-130) %REC	10/06/16 18:28	10/06/16 18:28
		Surr: 4-Bromofluorobenzene	116	(70-130) %REC	10/06/16 18:28	10/06/16 18:28
Client ID:	GMW-O-1			, ,		
Lab ID :	CHH16100502-09A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 05:08
	10/04/16 15:15	Surr: Nonane	105	(53-145) %REC	10/06/16 12:33	10/07/16 05:08
Date Sampled	10/04/10 15.15	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 18:52	10/06/16 18:52
		Surr: 1,2-Dichloroethane-d4	114	(70-130) %REC	10/06/16 18:52	10/06/16 18:52
		Surr: Toluene-d8	96	(70-130) %REC	10/06/16 18:52	10/06/16 18:52
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/06/16 18:52	10/06/16 18:52
Client ID:	EB-2					
Lab ID :	CHH16100502-10A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 00:19
	10/04/16 15:30	Surr: Nonane	102	(53-145) %REC	10/06/16 12:33	10/07/16 00:19
Date Sampled	10/04/10 13.30	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 19:16	10/06/16 19:16
		Surr: 1,2-Dichloroethane-d4	117	(70-130) %REC	10/06/16 19:16	10/06/16 19:16
		Surr: Toluene-d8	95	(70-130) %REC	10/06/16 19:16	10/06/16 19:16
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/06/16 19:16	10/06/16 19:16
Client ID:	DUP-1	Suit. I Diomonation	•••	(4.2.4.)		
Lab ID:	CHH16100502-11A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 06:52
	10/04/16 00:00	Surr: Nonane	97	(53-145) %REC	10/06/16 12:33	10/07/16 06:52
Date Sampled	10/04/10 00:00	TPH-P (GRO)	ND ND	0.050 mg/L	10/06/16 19:39	10/06/16 19:39
		Surr: 1,2-Dichloroethane-d4	114	(70-130) %REC	10/06/16 19:39	10/06/16 19:39
		Surr: Toluene-d8	95	(70-130) %REC	10/06/16 19:39	10/06/16 19:39
		Surr: 4-Bromofluorobenzene	115	(70-130) %REC	10/06/16 19:39	10/06/16 19:39
Client ID:	DUP-2	Suit. 4-Diomonationochizene	113	(70 200)		
Lab ID:	CHH16100502-12A	TPH-E (DRO)	ND	0.050 mg/L	10/06/16 12:33	10/07/16 07:17
		Surr: Nonane	106	(53-145) %REC	10/06/16 12:33	10/07/16 07:17
Date Sampled	10/04/16 00:00	TPH-P (GRO)	ND	0.050 mg/L	10/06/16 20:03	10/06/16 20:03
		Surr: 1,2-Dichloroethane-d4	116	(70-130) %REC	10/06/16 20:03	10/06/16 20:03
		Surr: Toluene-d8	95	(70-130) %REC	10/06/16 20:03	10/06/16 20:03
		Surr: 4-Bromofluorobenzene	112	(70-130) %REC	10/06/16 20:03	10/06/16 20:03
		Sail. 4-DiomondoloudizeRe	114	(

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13 ND = Not Detected

Roger Scholl

Kandy Sandner

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

TOR

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-01A

Client I.D. Number: GMW-O-2

Daniel Jablonski Attn: (213) 228-8271 Phone:

(714) 424-2135 Fax:

Sampled: 10/04/16 09:08

Received: 10/05/16

Extracted: 10/06/16 15:43 Analyzed: 10/06/16 15:43

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	iit .		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μ g/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μ g/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0.	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND ·	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	116	(70-130)	%REC
29	Tertiary Amyi Methyi Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	93	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	112	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

1,1,2-Trichloroethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

Toluene 1.3-Dichloropropane

2-Hexanone Dibromochloromethane

38

Roger Scholl

ND ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

µg/L

µg/L

μg/L

1.0 5.0

1.0

1.0

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Ioh:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-02A

Client I.D. Number: GMW-O-5

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 09:50

Received: 10/05/16

Extracted: 10/06/16 16:07 Analyzed: 10/06/16 16:07

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND .	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND ·	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μ g/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	. 58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	. ND	1.0	µg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	118	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	102	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
	t t	I							

ND = Not Detected

Toluene
1,3-Dichloropropane

2-Hexanone

Dibromochloromethane 1,2-Dibromoethane (EDB) Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

5.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Client I.D. Number: GMW-O-17

Alpha Analytical Number: CHH16100502-03A

Attn:

Daniel Jablonski

Phone:

(213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 10:45

Received: 10/05/16

Extracted: 10/06/16 16:30 Analyzed: 10/06/16 16:30

Volatile Organics by GC/MS EPA Method 624/8260

		Repo	rting				Re	eporting
Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1 Dichlorodifluoromethane	ND ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μ g/L
2 Chloromethane	ND ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3 Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4 Chloroethane	ND ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5 Bromomethane	, ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6 Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7 Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8 1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9 Tertiary Butyl Alcohol (TB.	A) ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10 Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11 Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12 Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13 trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14 Methyl tert-butyl ether (MT	rbe) ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15 1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16 Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17 2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18 Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19 cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20 Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21 Chioroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	μg/L
22 Ethyl Tertiary Butyl Ether	(ETBE) ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0.	μg/L
23 2,2-Dichloropropane	ND ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24 1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25 1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26 1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27 Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28 Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	114	(70-130)	%REC
29 Tertiary Amyl Methyl Ethe	r (TAME) ND	1.0	μg/L	73	Surr: Toluene-d8	93	(70-130)	%REC
30 Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	114	(70-130)	%REC
31 1,2-Dichloropropane	ND	1.0	μg/L					
32 Trichloroethene	ND	1.0	μg/L					
33 Bromodichloromethane	· ND	1.0	μg/L					
34 4-Methyl-2-pentanone (Mi	IBK) ND	10	μg/L					
35 cis-1,3-Dichloropropene	, ND	0.50	μg/L					
36 trans-1,3-Dichloropropene	e ND	0.50	μg/L					
37 1,1,2-Trichloroethane	ND	1.0	μg/L					
38 Toluene	ND	0.50	μg/L					
39 1.3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

2-Hexanone

Dibromochloromethane

Tetrach|oroethene 1,1,1,2-Tetrachioroethane

1,2-Dibromoethane (EDB)

Roger Scholl

ND

ND ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

μg/L

μg/L

2.0

10/14/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-04A

Client I.D. Number: GMW-38

Attn: Daniel Jablonski Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/04/16 11:30

Received: 10/05/16

Extracted: 10/06/16 16:54 Analyzed: 10/06/16 16:54

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND .	1.0	μg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μ g/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND ·	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0.	· µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	117	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	84	(70-130)	%REC
30	Dibromomethane	l _{ND}	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	116	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1.3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
	• •	I							

ND = Not Detected

2-Hexanone Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

40

Roger Scholl

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

1.0

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-05A

Client I.D. Number: GMW-13

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 11:59

Received: 10/05/16

Extracted: 10/06/16 17:17 Analyzed: 10/06/16 17:17

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting			Rep		
_	Compound	Concentration	Lim	nit	_	Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND ·	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	-μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	115	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	88	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	118	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND ·	1.0	μg/L					
38	Toluene	ND .	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L			•		
	<u> </u>	I	1	. •					

ND = Not Detected

Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

Roger Scholl

ND

ND

Kandy Saulmer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

2.0 µg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

A STATE OF THE STA

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-06A

Client I.D. Number: GMW-37

Daniel Jablonski Attn: (213) 228-8271 Phone:

(714) 424-2135 Fax:

Sampled: 10/04/16 12:31

Received: 10/05/16

Extracted: 10/06/16 17:41 Analyzed: 10/06/16 17:41

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
-6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachlorcethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μ g/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	μ g/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	106	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

trans-1,3-Dichloropropene 1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

37

38

39

40

Toluene 1.3-Dichloropropane

2-Hexanone

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

0.50

1.0

5.0 μg/L

1.0 μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-07A

Client I.D. Number: GMW-O-24

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 13:20

Received: 10/05/16

Extracted: 10/06/16 18:05 Analyzed: 10/06/16 18:05

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1.2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1.4-Dichlorobenzene	ND	.1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND ·	5.0	μg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	121	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	93	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	105	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	μg/L			•	• .	
32	Trichloroethene	ND ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L μg/L					
40	Z-116X41(U)16	ן מט	1 3.0	µg/∟					

ND = Not Detected

Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

Roger Scholl

ND

KandySa

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-08A

Client I.D. Number: GMW-O-10

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/04/16 14:15

Received: 10/05/16

Extracted: 10/06/16 18:28 Analyzed: 10/06/16 18:28

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting		Reporting			
	Compound	Concentration	Lim	Limit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μ g/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μ g/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	2.4	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/ L
17	2-Butanone (MEK)	ND	10	μ g/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND .	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L %REC
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	116	(70-130)	%KEC
31	1,2-Dichloropropane	ND	1.0	µg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	µg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					

ND = Not Detected

2-Hexanone
Dibromochloromethane

1,2-Dibromoethane (EDB)

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

ND

Kandy Sadner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

ACCEPTED TO THE PROPERTY OF TH

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-09A

Client I.D. Number: GMW-O-1

Attn: Daniel Jablonski Phone: (213) 228-8271

ax: (714) 424-2135

Sampled: 10/04/16 15:15

Received: 10/05/16

Extracted: 10/06/16 18:52 Analyzed: 10/06/16 18:52

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	eporting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND ·	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethy!benzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μ g/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	l ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	1 ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1.1-Dichloropropene	l ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	114	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	ua/L					

ND = Not Detected

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene
1,1,1,2-Tetrachloroethane

Dibromochloromethane

1,2-Dibromoethane (EDB)

Toluene

2-Hexanone

trans-1.3-Dichloropropene

35

36

Roger Scholl

ND

ND

NΩ

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

0.50

0.50

0.50

10

1.0

5.0

1.0

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EB-2

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-10A

Daniel Jablonski

Attn: Fax:

Phone: (213) 228-8271

(714) 424-2135

Sampled: 10/04/16 15:30

Received: 10/05/16

Extracted: 10/06/16 19:16

Analyzed: 10/06/16 19:16

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Reporting
	Compound	Concentration	Lim	it		Compound	Concentration	Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0 µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50 µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50 μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0 μg/L
5	Bromomethane	ND ·	2.0	μg/L	49	Xylenes, Total	ND	0.50 μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND -	1.0 μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50 μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0 μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0 μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0 μg/L
12	Carbon disulfide	ND .	2.5	μg/L	56	n-Propylbenzene	ND	1.0 µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0 μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0 μg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1,3,5-Trimethylbenzene	ND	1.0 μ g/L
16	Vinyl acetate	ND	. 50	μg/L	60	tert-Butylbenzene	ND	1.0 μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0 µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0 μg/L
. 19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0 μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0 µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0 μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0 μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0 μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0 μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0 μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10 μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0 μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	117	(70-130) %REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130) %REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr. 4-Bromofluorobenzene	111	(70-130) %REC
31	1,2-Dichloropropane	ND	1.0	µg/L				
32	Trichloroethene	ND	1.0	μg/L				
33	Bromodichloromethane	ND .	1.0	μg/L				
34	4-Methyi-2-pentanone (MIBK)	ND	10	μg/L				
35	cis-1,3-Dichloropropene	ND	0.50	μg/L				
36	trans-1,3-Dichloropropene	ND	0.50	μg/L				
37	1,1,2-Trichloroethane	ND	1.0	μg/L				
38	Toluene	ND	0.50	μg/L				
39	1,3-Dichloropropane	ND	1.0	μg/L				
40	2-Hexanone	ND	5.0	μg/L				
41	Dibromochloromethane	ND	1.0	μg/L				
42	1.2-Dibromoethane (EDB)	ND	2.0	µg/L				
43		ND	1.0	μg/L				
73	, Galacino Galiana	1	1	Pg-				

ND = Not Detected

1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-1

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-11A

Attn: Phone: Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/04/16 00:00

Received: 10/05/16

Extracted: 10/06/16 19:39 Analyzed: 10/06/16 19:39

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	eporting
	Compound	Concentration	Lim	•		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μ g/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND .	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1.1.1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	114	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	115	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					

ug/L

μg/L

μg/L

μg/L

µg/L

10

0.50

0.50

1.0

0.50

10

5.0

1.0

2.0

1.0

ND = Not Detected

Trichloroethene

Toluene

2-Hexanone

Bromodichloromethane

cis-1.3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

32

33

34

35

36

37

38

Roger Scholl

ND

ND

ND

ND

ND

NΩ

ND

ND

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity; Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

STORY OF THE PROPERTY OF THE P

10/14/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-2

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100502-12A

Daniel Jablonski Attn: (213) 228-8271 Phone:

Fax:

(714) 424-2135

Sampled: 10/04/16 00:00

Received: 10/05/16

Extracted: 10/06/16 20:03 Analyzed: 10/06/16 20:03

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	ting				Re	porting
	Compound	Concentration	Lim	ıit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μ g/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	2.5	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	116	(70-130)	%REC
29	Tertiary Amyi Methyi Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	112	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND .	1.0	μg/L					

ND = Not Detected

Bromodichloromethane

cis-1,3-Dichloropropene

1.1.2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

33

35

36

37

38

40

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

10 μg/L

0.50

0.50

1.0 0.50

1.0

5.0

1.0 µg/L

2.0

1.0

μg/L

μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16100502

Job:

KMEP DFSP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
16100502-01A	GMW-O-2	Aqueous	2	
16100502-02A	GMW-O-5	Aqueous	2	
16100502-03A	GMW-O-17	Aqueous	2	
16100502-04A	GMW-38	Aqueous	2	
16100502-05A	GMW-13	Aqueous	2	
16100502-06A	GMW-37	Aqueous	2	
16100502-07A	GMW-O-24	Aqueous	2	
16100502-08A	GMW-O-10	Aqueous	2	
. 16100502-09A	GMW-O-1	Aqueous	2	
16100502-10A	EB-2	Aqueous	2	
16100502-11A	DUP-1	Aqueous	2	
16100502-12A	DUP-2	Aqueous	2	

10/14/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16		C	C S	ımmar	y Repor	t				Work Orde 16100502	
Method Blar File ID: 12 Sample ID: Analyte	nk MBLK-37271	Units : mg/L Result	Type M	Ba Run ID: M	est Code: EF atch ID: 3727 ANUAL_160 SpkRefVal	'1 506A		Analy Prep	rsis Date: Date:	10/06/2016 23:26 10/06/2016 12:33 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		ND 0.14	0.05	0.15		93	35	151			
Laboratory (File ID: 13 Sample ID:	Control Spike	Units : mg/L	Type L	В	est Code: EF atch ID: 3727 ANUAL_160	71	hod SW80		sis Date:	10/06/2016 23:53 10/06/2016 12:33	
Analyte TPH-E (DRO) Surr: Nonane		Result 2.94 0.154	PQL 0.05	SpkVal	_		73 35			/al %RPD(Limit)	Qual
Sample Materials File ID: 15	•	· · · · · · · · · · · · · · · · · · ·	Type N	IS To	est Code: EF	71	hod SW80	Analy	sis Date:	10/07/2016 00:46	
Sample ID: Analyte	16100502-10AMS	Units : mg/L Result	PQL		ANUAL_160 SpkRefVal		LCL(ME)	Prep UCL(ME)		10/06/2016 12:33 Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.99 0.287	0.1	2.5 0.3	0	120 96	64 33	161 162			
Sample Mat	rix Spike Duplicate		Type N		est Code: EF atch ID: 3727		hod SW80			10/07/2016 01:12	
Sample ID: Analyte	16100502-10AMSD	Units : mg/L Result	PQL		ANUAL_160 SpkRefVal		LCL(ME)	Prep UCL(ME)		10/06/2016 12:33 Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.93 0.602	0.1	2.5 0.6	0	117 100	64 33	161 162	2.994	4 2.3(40)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16	QC Summary Report								
Method Blank		Туре М	BLK T	est Code: EPA Me	ethod SW8	015B/C / SW8260B			
File ID: 68			Ва	atch ID: MS15W1	006B	Analysis Date:	10/06/2016 12:11		
Sample ID: MBLK MS15W1006	A Units : mg/L		Run ID: M.	ANUAL_161006D		Prep Date:	10/06/2016 12:11		
Analyte	Result	PQL				UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	ND	0.05							
Surr: 1,2-Dichloroethane-d4	0.0107		0.01	107		130			
Surr: Toluene-d8	0.00936		0.01	94	70	130			
Surr: 4-Bromofluorobenzene	0.0116		0.01	116	70	130			
Laboratory Control Spike		Type LCS Test Code: EPA Method SW8015B/C / SW8260B							
File ID: 41			В	atch ID: MS15W1	006B	Analysis Date:	10/06/2016 11:24		
Sample ID: GLCS MS15W1006	B Units : mg/L		Run ID: M.	ANUAL_161006D)	Prep Date:	10/06/2016 11:24		
Analyte	Result	PQL	SpkVal	SpkRefVal %RE	C LCL(ME	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	0.412	0.05	0.4	103	3 70	130			
Surr: 1,2-Dichloroethane-d4	0.0111		0.01	111		130			
Surr: Toluene-d8	0.0108		0.01	108		130			
Surr: 4-Bromofluorobenzene	0.0107		0.01	107	7 70	130	·		
Sample Matrix Spike		Type M	S T	est Code: EPA M	ethod SW8	015B/C / SW8260B			
File ID: 44			В	atch ID: MS15W1	006B	•	10/06/2016 21:14		
Sample ID: 16100502-01AGS	Units: mg/L			ANUAL_161006E		Prep Date:	10/06/2016 21:14		
Analyte	Result	PQL	SpkVal	SpkRefVal %RE	C LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	1.74	0.25	2	0 87		167			
Surr: 1,2-Dichloroethane-d4	0.0563		0.05	113		130			
Surr: Toluene-d8	0.0471		0.05	94		130			
Surr: 4-Bromofluorobenzene	0.0566		0.05	113		130	· · · · · · · · · · · · · · · · · · ·		
Sample Matrix Spike Duplicat	e	Type N	ISD T	est Code: EPA M	ethod SW8	015B/C / SW8260B			
File ID: 45			В	atch ID: MS15W1	006B	Analysis Date:	10/06/2016 21:38		
Sample ID: 16100502-01AGSD	Units : mg/L			ANUAL_161006		Prep Date:	10/06/2016 21:38		
Analyte	Result	PQL	SpkVal	SpkRefVal %RE	C LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	1.95	0.25				143 1.74	2 11.4(23)		
Surr: 1,2-Dichloroethane-d4	0.057		0.05	114		130			
Surr: Toluene-d8	0.0471		0.05	94		130			
Surr: 4-Bromofluorobenzene	0.055		0.05	110	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

Date: **QC Summary Report** 11-Oct-16 16100502 Type MBLK Test Code: EPA Method SW8260B Method Blank Analysis Date: 10/06/2016 12:11 File ID: 29 Batch ID: MS15W1006A Prep Date: 10/06/2016 12:11 Sample ID: **MBLK MS15W1006B** Units: µg/L Run ID: MANUAL 161006D SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Analyte Result **PQL** Dichlorodifluoromethane ND Chloromethane ND 2 Vinvl chloride ND 0.5 Chloroethane ND 1 Bromomethane ND 2 Trichlorofluoromethane ND 10 Acetone ND 10 1,1-Dichloroethene ND Tertiary Butyl Alcohol (TBA) ND 10 Dichloromethane ND 5 Freon-113 ND 10 Carbon disulfide ND 2.5 trans-1,2-Dichloroethene ND Methyl tert-butyl ether (MTBE) 0.5 ND 1,1-Dichloroethane ND 1 Vinyl acetate 50 ND 2-Butanone (MEK) ND 10 Di-isopropyl Ether (DIPE) ND 1 cis-1,2-Dichloroethene ND Bromochloromethane ND Chloroform ND Ethyl Tertiary Butyl Ether (ETBE) ND 1 2,2-Dichloropropane ND 1,2-Dichloroethane ND 0.5 1,1,1-Trichloroethane ND 1.1-Dichloropropene ND 1 Carbon tetrachloride ND Benzene ND 0.5 Tertiary Amyl Methyl Ether (TAME) ND ND Dibromomethane 1,2-Dichloropropane ND Trichloroethene ND Bromodichloromethane ND 4-Methyl-2-pentanone (MIBK) ND 10 cis-1,3-Dichloropropene ND 0.5 trans-1,3-Dichloropropene 0.5 ND 1,1,2-Trichloroethane ND 1 Toluene ND 0.5 1,3-Dichloropropane ND 1 5 2-Hexanone ND Dibromochloromethane ND 1 1.2-Dibromoethane (EDB) ND 2 Tetrachloroethene ND 1,1,1,2-Tetrachloroethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 0.5 m,p-Xylene ND 0.5 Bromoform ND Styrene ND ND 0.5 o-Xvlene 1,1,2,2-Tetrachioroethane ND ND 1,2,3-Trichloropropane 2 Isopropylbenzene ND Bromobenzene ND n-Propylbenzene ND 4-Chlorotoluene ND ND 2-Chlorotoluene 1,3,5-Trimethylbenzene ND tert-Butylbenzene ND 1,2,4-Trimethylbenzene ND ND sec-Butvlbenzene 1,3-Dichlorobenzene ND ND 1,4-Dichlorobenzene 4-isopropyltoluene ND ND 1,2-Dichlorobenzene

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16	. (Work Order: 16100502					
n-Butylbenzene	ND	1 1					
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	ND	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	10.7		10	107	70	130	
Surr: Toluene-d8	9.36		10	94	70	130	
Surr: 4-Bromofluorobenzene	11.6		10	116	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16

QC Summary Report

Work Order: 16100502

11-Oct-16 Laboratory Control Spike								
File ID: 1		Date: 10/06/2016 11:00						
Sample ID: LCS MS15W1006A	Units : µg/L	í	Run ID: MANUA	D: MS15W1006A	•	Prep Da		
Analyte	Result	PQL			CL/MEN	•	PDRefVal %RPD(Limit)	Qua
							Diterval forti D(Cirrit)	
Dichlorodifluoromethane Chloromethane	5.52 9.74	1	10 10	55 97	32 40	145 145		
Vinyl chloride	9.74 8.77	2 1	10	88	70	130		
Chloroethane	12.3	1	10	123	38	156		
Bromomethane	8.54	2	10	85	13	162		
Trichlorofluoromethane	11.5	1	10	115	46	154		
Acetone	169	10	200	85	22	188		
1,1-Dichloroethene	8.94	1	10	89	70	130		
Tertiary Butyl Alcohol (TBA)	89.9	10	100	90	48	148		
Dichloromethane	8.97	2	10	90	69	130		
Freon-113	9.53	1	10	95	70	136		
trans-1,2-Dichloroethene	9.22	1	10	92	70	130		
Methyl tert-butyl ether (MTBE)	10.5	0.5	10	105	63	137		
1,1-Dichloroethane	10	1	10	100 94	70 26	130 183		
2-Butanone (MEK) Di-isopropyl Ether (DIPE)	189 11.8	10	200 10	9 4 118	69	133		
cis-1,2-Dichloroethene	10.3	1	10	103	70	130		
Bromochloromethane	10.3	1	10	103	70	133		
Chloroform	10.1	1	10	101	70	130		
Ethyl Tertiary Butyl Ether (ETBE)	10.6	i	10	106	66	135		
2,2-Dichloropropane	12.3	1	10	123	70	149		
1,2-Dichloroethane	11.5	1	10	115	70	133		
1,1,1-Trichloroethane	10.3	1	10	103	70	135		
1,1-Dichloropropene	10	1	10	100	70	130		
Carbon tetrachloride	10.8	1	10	108	63	143		
Benzene	8.88	0.5	10	89	70	130		
Tertiary Amyl Methyl Ether (TAME)	11.7	1	10	117	70	133		
Dibromomethane	10.1	1	10	101	70	130		
1,2-Dichloropropane	9.85	1	10	99	70	130 138		
Trichloroethene	9.85 11.3	1	10 10	99 113	68 58	147		
Bromodichloromethane 4-Methyl-2-pentanone (MIBK)	23.2	1 2.5	25	93	59	140		
cis-1,3-Dichloropropene	11.7	2.3	10	117	70	130		
trans-1,3-Dichloropropene	9.45	• 1	10	95	70	131		
1,1,2-Trichloroethane	9.56	i	10	96	70	130		
Toluene	10.7	0.5	10	107	70	130		
1,3-Dichloropropane	11.7	1	10	117	70	130		
2-Hexanone	97.9	5	100	98	48	157		
Dibromochloromethane	10.5	1	10	105	49	147		
1,2-Dibromoethane (EDB)	21.4	2	20	107	70	131		
Tetrachloroethene	10.3	1	10	103	70	130		
1,1,1,2-Tetrachloroethane	11.5	1	10	115	70 70	130	•	
Chlorobenzene	10.4	1	10	104	70 70	130 130		
Ethylbenzene	9.81	0.5		98 100	70 65	130 139		
m,p-Xylene Bromoform	10 9.83	0.5 1	10 10	98	60	144		
Styrene Styrene	9.83 10.5	1	10	105	55	144		
o-Xylene	9.37	0.5		94	70	130		
1,1,2,2-Tetrachloroethane	10.4	0.3	10	104	70	130		
1,2,3-Trichloropropane	21.1	2		106	70	130		
Isopropylbenzene	12	1	10	120	69	136		
Bromobenzene	12.6	1	10	126	70	130		
n-Propylbenzene	13.1	1	10	131	70	132		
4-Chlorotoluene	11.8	1	10	118	70	132		
2-Chlorotoluene	12.7	1	10	127	70	130		
1,3,5-Trimethylbenzene	12.8	1	10	128	70	134		
tert-Butylbenzene	11.4	1	10	114	63	139 133		
1,2,4-Trimethylbenzene	11.9	1	10	119 124	70 70	133 132		
sec-Butylbenzene	12.4	1	10 10	124 109	70 70	132		
1,3-Dichlorobenzene	10.9 10.2	1	10 10	109 102	70 70	130		
1,4-Dichlorobenzene	10.2 11.9	1	10	119	40	161		
4-Isopropyltoluene 1,2-Dichlorobenzene	10.4	1	10	104	70	130		
n-Butylbenzene	10.4	1	10	109	69	134		
1,2-Dibromo-3-chloropropane (DBCP)	31.8	3		64	67	130		L2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16	(Work Order: 16100502					
1,2,4-Trichlorobenzene	3.93	2 10		39		131	L
Naphthalene	3.6	2	10	36	39	149	· L
1,2,3-Trichlorobenzene	3.25	2	10	33	54	135	L
Xylenes, Total	19.4	0.5	20	97	70	130	
Surr: 1,2-Dichloroethane-d4	11		10	110	70	130	
Surr: Toluene-d8	10.1		10	101	70	130	
Surr: 4-Bromofluorobenzene	12.2		10	122	70	130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16	QC Summary Report								Work Order: 16100502		
Sample Matrix Spike											
File ID: 3			Ba	itch ID: MS1	5W100	6A	Analys	is Date:	10/06/2016 20:26		
Sample ID: 16100502-01AMS	Units : µg/L		Run ID: MA	ANUAL_1610	06D		Prep D	ate:	10/06/2016 20:26		
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)) UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual	
Dichlorodifluoromethane	11.3	2.5	50	0	23	12	150				
Chloromethane	38.1	10	50	0	76	26	146				
Vinyl chloride	33.8	2.5	50	0	68	46	142				
Chloroethane	54.6	2.5	50	0	109	25	164				
Bromomethane Trichlorofluoromethane	19.7 45.1	10	50 50	0	39	10 32	172 164				
Acetone	1060	2.5 50	50 1000	0	90 106	32 10	188				
1,1-Dichloroethene	42.4	2.5	50	0	85	62	133				
Tertiary Butyl Alcohol (TBA)	522	25	500	Ŏ	104	44	155				
Dichloromethane	51.2	10	50	0	102	69	130				
Freon-113	37.9	2.5	50	0	76	56	144				
trans-1,2-Dichloroethene	47	2.5	50	0	94	67	131				
Methyl tert-butyl ether (MTBE)	62.5	1.3	50	0	125	56	140				
1,1-Dichloroethane	54.8 4460	2.5	50	0	110	67 26	130				
2-Butanone (MEK) Di-isopropyl Ether (DIPE)	1160 66.2	50 2.5	1000 50	0 0	116 132	26 59	183 138				
cis-1,2-Dichloroethene	51	2.5		0	102	70	130				
Bromochloromethane	49.8	2.5	50	0	99.5	70 70	134				
Chloroform	52.7	2.5	50	0	105	69	130				
Ethyl Tertiary Butyl Ether (ETBE)	64.9	2.5	50	0	130	62	135				
2,2-Dichloropropane	49.6	2.5	50	0	99	44	149				
1,2-Dichloroethane	62.2	2.5		0	124	64	139				
1,1,1-Trichloroethane	53.6	2.5	50	0	107	65	139				
1,1-Dichloropropene	49.3	2.5	50	0	99	68	134				
Carbon tetrachloride Benzene	50.4 49.5	2.5	50 50	0	101 99	56 67	146 134				
Tertiary Amyl Methyl Ether (TAME)	49.5 64.5	1.3 2.5		0	99 129	64	135				
Dibromomethane	58.1	2.5	50 50	0	116	70	132				
1,2-Dichloropropane	57.6	2.5	50	ŏ	115	69	134				
Trichloroethene	47.3	2.5		Ö	95	68	138				
Bromodichloromethane	60.4	2.5	50	0	121	58	147				
4-Methyl-2-pentanone (MIBK)	153	13	125	0	123	49	140				
cis-1,3-Dichloropropene	55	2.5	50	Ō	110	61	130				
trans-1,3-Dichloropropene	51.2	2.5	50	0	102	62	131				
1,1,2-Trichloroethane	58.3	2.5	50	0	117 97	70 38	131 130				
Toluene 1,3-Dichloropropane	48.3 54.6	1.3 2.5		0	109	70	130				
2-Hexanone	579	2.5 25	500	0	116	25	157				
Dibromochloromethane	47.5	2.5		ŏ	95	49	147				
1,2-Dibromoethane (EDB)	106	5		Ō	106	70	131				
Tetrachloroethene	40	2.5	50	0	80	63	134				
1,1,1,2-Tetrachloroethane	50.7	2.5		0	101	70	133				
Chlorobenzene	47.6	2.5		0	95	70	130				
Ethylbenzene	43.5	1.3		0	87 84	70 65	130 139				
m,p-Xylene Bromoform	42.1 44.5	1.3 2.5		0	89	60	144				
Styrene	44.5 41.8	2.5 2.5		0	84	53	144				
o-Xylene	42.7	1.3		0	85	69	130				
1,1,2,2-Tetrachloroethane	48.6	2.5		ŏ	97	67	134				
1,2,3-Trichloropropane	101	10	100	0	101	70	130				
Isopropylbenzene	50.2	2.5		0	100	64	136				
Bromobenzene	53.7	2.5		0	107	69 65	130				
n-Propylbenzene	48.7	2.5		0	97 08	65 69	132 132				
4-Chlorotoluene	49.2 52	2.5 2.5		0	98 104	69	132				
2-Chlorotoluene 1,3,5-Trimethylbenzene	5∠ 51.1	2.5 2.5		0	102	64	135				
tert-Butylbenzene	46.9	2.5		0	94	63	139				
1,2,4-Trimethylbenzene	51.2	2.5		ŏ	102	62	135				
sec-Butylbenzene	44.5	2.5		Ŏ	89	68	132				
1,3-Dichlorobenzene	45.8	2.5	50	0	92	70	130				
1,4-Dichlorobenzene	44.7	2.5		0	89	70	130				
4-Isopropyltoluene	44	2.5		0	88	40 70	161				
1,2-Dichlorobenzene	41.9	2.5		0	84 85	70 58	130 135				
n-Butylbenzene	42.3 108	2.5		0	85 43	58 63	135			M57	
1,2-Dibromo-3-chloropropane (DBCP)	108	15	250	U	43	UJ	101				

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16 QC Summary Report							Work Order: 16100502	
1,2,4-Trichlorobenzene	7.64	10	50	0	15	57	134	M57
Naphthalene	3.9	10	50	0	7.8	31	157	M57
1,2,3-Trichlorobenzene	. 3.1	10	50	0	6.2	52	138	M57
Xylenes, Total	84.7	1.3	100	0	85	70	130	
Surr: 1,2-Dichloroethane-d4	58.1		50		116	70	130	
Surr: Toluene-d8	46.6		50		93	70	130	
Surr: 4-Bromofluorobenzene	56.2		50		112	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: **QC Summary Report** 11-Oct-16 16100502 Type MSD Test Code: EPA Method SW8260B Sample Matrix Spike Duplicate File ID: 4 Batch ID: MS15W1006A Analysis Date: 10/06/2016 20:50 Sample ID: Prep Date: 10/06/2016 20:50 16100502-01AMSD Units: µg/L Run ID: MANUAL 161006D Analyte **PQL** SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Result Dichlorodifluoromethane 150 11.31 5.7(38) 10.7 2.5 50 21 12 Chloromethane 37.5 10 50 0 75 26 146 38.05 1.4(31) Vinyl chloride 34.4 2.5 50 0 69 46 142 33.8 1.8(25)4.9(40) Chloroethane 2.5 104 25 164 54.56 52 50 0 36.6(40) **Bromomethane** 28.6 10 50 0 57 10 172 19.72 Trichlorofluoromethane 43.8 2.5 0 88 32 164 45.08 3.0(34)50 Acetone 103 10 188 1063 2.8(39)1030 50 1000 n 1,1-Dichloroethene 42.1 2.5 0 84 62 133 42.38 0.6(35)50 Tertiary Butyl Alcohol (TBA) 521 25 500 0 104 44 155 522.2 0.3(33)Dichloromethane 69 51.15 0.8(26)50.8 10 130 50 0 102 Freon-113 36.2 2.5 50 n 72 56 144 37.87 4.6(40)trans-1,2-Dichloroethene 46.8 2.5 94 67 131 47.03 0.5(27)50 Methyl tert-butyl ether (MTBE) 121 56 62.48 2.9(40) 60.71.3 50 n 140 1,1-Dichloroethane 0.5(20)54.5 2.5 50 0 109 67 130 54.81 2-Butanone (MEK) 1130 50 1000 113 26 183 1161 3.0(22)Di-isopropyl Ether (DIPE) 66.18 0.7(20)65.8 2.5 132 59 138 50 0 cis-1,2-Dichloroethene 51.04 2.9(20) 52.6 2.5 50 0 105 70 130 Bromochloromethane 49.9 2.5 50 0 99.7 70 134 49.77 0.2(20)Chloroform 69 130 52.65 1.5(22)51 9 2.5 50 Λ 104 Ethyl Tertiary Butyl Ether (ETBE) 62 135 64.92 2.0(40)63.6 2.5 50 0 127 49.58 2.2(23) 2,2-Dichloropropane 44 149 48.5 2.5 50 0 97 1.2-Dichloroethane 60.5 121 64 139 62.17 2.7(20)2.5 50 O 1.0(20)1,1,1-Trichloroethane 53.1 2.5 50 106 65 139 53.6 68 1.6(20) 1,1-Dichloropropene 2.5 50 134 49.31 48.5 0 97 Carbon tetrachloride 49.5 2.5 50 0 99 56 146 50.35 1.7(21) Benzene 99 67 134 49.53 0.1(21)49.5 1.3 50 O Tertiary Amyl Methyl Ether (TAME) 135 64.5 2.8(31) 62 7 2.5 50 0 125 64 1.6(20) Dibromomethane 2.5 0 114 70 132 58.08 57.2 50 0.7(20)1,2-Dichloropropane 50 0 114 69 134 57.62 57.2 2.5 47.25 0.9(20)Trichloroethene 94 គន 138 46.8 2.5 50 0 60.41 1.3(20)Bromodichloromethane 59.7 2.5 50 0 119 58 147 3.4(24) 4-Methyl-2-pentanone (MIBK) 148 13 125 0 119 49 140 153.5 109 61 130 54.99 0.6(20)cis-1,3-Dichloropropene 54.7 2.5 0 50 trans-1,3-Dichloropropene 50.4 2.5 50 0 101 62 131 51.15 1.5(21) 58.32 70 3.1(20)1,1,2-Trichloroethane 56.5 2.5 50 0 113 131 0 96 38 130 48.32 0.9(20)Toluene 47 9 1.3 50 1,3-Dichloropropane 109 70 130 54.64 0.4(20)54.4 2.5 50 0 25 157 578.8 1.5(23) 2-Hexanone 25 500 570 0 114 47.48 0.9(20)Dibromochloromethane 47.1 2.5 50 0 94 49 147 1.1(20) 70 106.3 1,2-Dibromoethane (EDB) 105 100 0 105 131 5 63 40.01 0.1(20)Tetrachloroethene 2.5 0 80 134 40.1 50 70 133 50.65 0.3(20)1.1.1.2-Tetrachloroethane 50.8 2.5 50 0 102 70 47.64 0.8(20)Chlorobenzene 48 2.5 50 0 96 130 70 130 43.51 0.1(20)43.6 0 87 Ethylbenzene 1.3 50 0 65 139 42.05 1.5(20)m,p-Xylene 41.4 1.3 50 83 0 89 60 144 44 47 0.0(21)**Bromoform** 44.5 2.5 50 41.81 1.2(31) 2.5 50 0 85 53 144 Styrene 42.3 0.3(20)o-Xylene 42.8 1.3 50 0 86 69 130 42.65 48.62 1.0(20)96 67 134 1,1,2,2-Tetrachloroethane 2.5 O 48.1 50 1.2.3-Trichloropropane 99.6 10 100 0 99.6 70 130 101.2 1.6(20)4.1(20) 50.23 136 Isopropylbenzene 52.4 2.5 50 0 105 64 3.7(20) Bromobenzene 50 0 111 69 130 53.71 55.7 2.5 48.67 4.3(40) n-Propylbenzene 50.8 0 102 65 132 2.5 50 0 104 69 132 49.2 5.7(20) 4-Chlorotoluene 52.1 2.5 50 130 51.98 4.5(20)54.4 50 0 109 69 2-Chlorotoluene 2.5 64 135 51.06 4.5(21) 53.4 2.5 50 0 107 1,3,5-Trimethylbenzene 63 139 46.87 4.3(20)0 98 tert-Butylbenzene 48.9 2.5 50 1,2,4-Trimethylbenzene 107 62 135 51.17 4.6(24)53.6 2.5 50 n 44.53 4.0(20) 132 sec-Butylbenzene 46.3 2.5 50 0 93 68 45.77 7.8(20) 0 99 70 130 2.5 50 1,3-Dichlorobenzene 49.5 4.5(20) 44.68 130 1,4-Dichlorobenzene 46.8 25 50 0 94 70 43.96 5.7(22) 0 93 40 161 4-Isopropyltoluene 46.6 2.5 50 9.6(20) 41.89 46.1 2.5 50 0 92 70 130 1.2-Dichlorobenzene 135 42.26 6.1(24)0 90 58 44.9 2.5 50 n-Butylbenzene **R58** 1,2-Dibromo-3-chloropropane (DBCP) 250 0 67 131 108.1 43.0(29) 15 167

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 11-Oct-16		QC Sun	nmary R	Repor	t				Work C 16100	
1,2,4-Trichlorobenzene	17.2	10	50	0	34	57	134	7.64	77.1(30)	M57R58
Naphthalene	17.3	10	50	0	35	31	157	3.9	126.0(40)	R58
1,2,3-Trichlorobenzene	14.1	10	50	0	28	52	138	3.1	128.0(39)	M57R58
Xylenes, Total	84.2	1.3	100	0	84	70	130	84.7	0.6(22)	
Surr: 1,2-Dichloroethane-d4	56.4		50		113	70	130		` '	
Surr: Toluene-d8	46.9		50		94	70	130			
Surr: 4-Bromofluorobenzene	58.4		50		117	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

R58 = MS/MSD RPD exceeded the laboratory control limit.

L2 = The associated blank spike recovery was below laboratory acceptance limits.

M57 = Matrix spike recovery was below laboratory acceptance limits.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention

Client:

CA

Page: 1 of 2

WorkOrder: CHHL16100502

Report Due By: 5:00 PM On: 14-Oct-16 **EMail Address** Phone Number

05-Oct-16 EDD Required: Yes Cooler Temp $^{\circ}$ 0 daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x Job: KMEP DFSP Norwalk Daniel Jablonski Matthew Mayry 1000 Wilshire Boulevard Los Angeles, CA 90017 21st Floor CH2M Hill

Date Printed 05-Oct-16 Samples Received Sampled by: Kevin Thompson

Final Rpt, MBLK, LCS, MS/MSD With Surrogates Client's COC #: none QC Level: S3 =

										Kedne	Requested lests	'n		
Alpha	Client		Collection No. of Bottles	No. of	Bottles		TPH/E_W	W_q/HqT	VOC_W					
Sample ID	Sample ID	Mat	Matrix Date	Alpha Sub	Sub	TAT								Sample Remarks
CHH16100502-01A GMW-O-2	GMW-O-2	AQ	10/04/16 09:08	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-02A GMW-O-5	GMW-O-5	ΑQ	10/04/16 09:50	9	0		TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-03A GMW-O-17	GMW-0-17	ΑQ	10/04/16 10:45	9	0		TPHE(0.05) Yellow	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-04A GMW-38	GMW-38	ΑQ	10/04/16 11:30	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-05A GMW-13	GMW-13	AQ	10/04/16 11:59	9	0	2	TPHE(0.05) Yellow	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-06A GMW-37	GMW-37	ΑQ	10/04/16	9	0	2	TPHE(0.05) Y	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-07A GMW-O-24	GMW-0-24	ΑQ	10/04/16 13:20	ဖ	0		TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate					
CHH16100502-08A	GMW-O-10	AO	10/04/16 14:15	9	0	7	TPHE(0.05) Y	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate	-				

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

	Signature,	Print Name	Company	Date/Time
Logged in by:		Meghan C.	Alpha Analytical, Inc.	10/5/16 1055

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: CHHL16100502 CA

Page: 2 of 2

Report Due By: 5:00 PM On: 14-Oct-16 **EMail Address** Phone Number Report Attention Daniel Jablonski

EDD Required: Yes daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x

Matthew Mayry

1000 Wilshire Boulevard

CH2M Hill

Client:

Los Angeles, CA 90017

21st Floor

Sampled by: Kevin Thompson

Samples Received

05-Oct-16 Date Printed

05-Oct-16 Cooler Temp ၁ ၀ Job: KMEP DFSP Norwalk = Final Rot MBLK LCS MS/MSD With Surrogates Client's COC #: none

CC Level . So	- Fillal Api, Mider, Eco, Morniod value dellogaco	Š		2									
									Redn	Requested Tests	sts		ï
Alpha	Client	7	Collection No. of Bottles	No. of Bottle	Bottles	 	TPH/E_W TPH/P_W	W_WH/P_W	w_cov_w				Sample Remarks
Sample ID	sample ID	Mar	Mainx Date	Alphia	ano	3							
CHH16100502-09A GMW-O-1	GMW-O-1	ΑQ	AQ 10/04/16 15:15	9	0	2	TPHE(0.05) TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate acetate	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate				
CHH16100502-10A EB-2	EB-2	AQ	AQ 10/04/16 15:30	ဖ	0	2	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate				
CHH16100502-11A DUP-1	DUP-1	ΑQ	AQ 10/04/16 00:00	မ	0	2	TPHE(0.05)	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate				
CHH16100502-12A DUP-2	DUP-2	ΑQ	AQ 10/04/16 00:00	9	0	2	TPHE(0.05) TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate acetate	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate				

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

Date/I me	<u> </u>
Company	Alpha Analytical, Inc.
Print Name	OUC.
- Pri	Megr
Signature	
	Logged in by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

LAB SAMPLE # CONDITION Alpha Analytical COC DATE Standard STATUS හි さ ध 8 5 0-8 0 CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 1100 Town and CountryRd. Orange CA 95112 CHH16,100502 Kinder Morgan Norwalk ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN Kinder Morgan Dan Jablonski Report to: Æ RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT TIME SENT VOC's & Oxygenates X X (EPA 8260B) メ X (Nomposor X D X X Y (M2108 A93) bH9T (ePPA Y 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 **Ve :** 5 Type CONTAINERS Kerin Preservation <u>ま</u> 15306 Norwalk Blvd, Norwalk 1625 PERFORMED BY e. SAMPLING MATRIX AQ= Water Kinder Morgan **DFSP Norwalk S** 6450 22 TIME 159 1231 **15**15/ 1530 TIME 24 F 10.4.16 TECH SERVICES, INC. 3.4.0 DATE DATE BLAINE CHAIN OF CUSTODY BMW-0-24 G MW-0-10 5.0-WM G MW-0-1 2-0-MM 15-mm/8 G MW-13 11-0-MW 5 RELEASED BY RELEASED BY RELEASED BY G WW-38 COMPLETED SHIPPED VIA SAMPLE I.D. EB-2 SAMPLING CLIENT SITE

LAB SAMPLE # J ð Alpha Analytical COC 7 CONDITION STATUS Standard CHH 16100502-1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk Report to: Dan Jablonski ADD'L INFORMATION RESULTS NEEDED Billing Information: **NO LATER THAN** Kinder Morgan CHZMHILL Ź RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT 625 IME SENT VOC's & Oxygenates X (B0928 A93) Vevin Thompson X (M2108 A93) bH9T (ePA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 VOO3 CONTAINERS Preservation Type 로 15306 Norwalk Blvd, Norwalk PERFORMED BY •3 و SAMPLING MATRIX Water 3 =Ø∀ Kinder Morgan **DFSP Norwalk ۱۹۶**۲ المالا TIME 21.7.0 TECH SERVICES, INC. 10 H.16 DATE DATE **BLAINE** CHAIN OF CUSTODY RELEASED BY 2-000 RELEASED BY RELEASED BY COMPLETED SHIPPED VIA SAMPLE I.D. 1- dag SAMPLING CLIENT SITE

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017

Attn: Daniel Jablonski Phone: (213) 228-8271 Fax: (714) 424-2135

Date Received: 10/06/16

Job: KMEP DFSP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

		Doromotor	Company	Reporting	Date	Date
Client ID :	MW-7	Parameter	Concentration	Limit	Extracted	Analyzed
Lab ID:	CHH16100605-01A	TRUE (DRO)		0.050	10/07/16 12:09	10/07/16 19:59
		TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08 10/07/16 12:08	10/07/16 19:59
Date Sampled	10/05/16 11:37	Surr: Nonane	97 ND	(53-145) %REC 0.050 mg/L		10/07/16 19:39
		TPH-P (GRO)	ND		10/15/16.02:50 10/15/16.02:50	10/15/16 02:50
		Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	113 96	(70-130) %REC (70-130) %REC	10/15/16 02:50	10/15/16 02:50
		Surr: 4-Bromofluorobenzene	96 109	` '	10/15/16 02:50	10/15/16 02:50
Client ID:	MW-19(MID)	Sun. 4-Biomondolobenzene	109	(70-130) %REC	10/13/10 02.30	10/15/10 02.50
Lab ID:	CHH16100605-02A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 20:26
	10/05/16 10:55	Surr: Nonane	94	(53-145) %REC	10/07/16 12:08	10/07/16 20:26
Date Sampled	10/03/10 10.33	TPH-P (GRO)	0.054	0.050 mg/L	10/15/16 03:14	10/15/16 03:14
		Surr: 1,2-Dichloroethane-d4	105	(70-130) %REC	10/15/16 03:14	10/15/16 03:14
		Surr: Toluene-d8	98	(70-130) %REC	10/15/16 03:14	10/15/16 03:14
		Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/15/16 03:14	10/15/16 03:14
Client ID:	MW-6			(
Lab ID:	CHH16100605-03A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 20:52
Date Sampled	10/05/16 10:17	Surr: Nonane	93	(53-145) %REC	10/07/16 12:08	10/07/16 20:52
Daile Sampred	10/00/10 10:1/	TPH-P (GRO)	ND	0.050 mg/L	10/15/16 03:39	10/15/16 03:39
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/15/16 03:39	10/15/16 03:39
		Surr: Toluene-d8	97	(70-130) %REC	10/15/16 03:39	10/15/16 03:39
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/15/16 03:39	10/15/16 03:39
Client ID:	EB-3					
Lab ID:	CHH16100605-04A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 18:39
Date Sampled	10/05/16 15:25	Surr: Nonane	87	(53-145) %REC	10/07/16 12:08	10/07/16 18:39
-		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 04:03	10/15/16 04:03
		Surr: 1,2-Dichloroethane-d4	116	(70-130) %REC	10/15/16 04:03	10/15/16 04:03
		Surr: Toluene-d8	95	(70-130) %REC	10/15/16 04:03	10/15/16 04:03
		Surr: 4-Bromofluorobenzene	112	(70-130) %REC	10/15/16 04:03	10/15/16 04:03
Client ID:	GMW-8					
Lab ID:	CHH16100605-05A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 21:19
Date Sampled	10/05/16 14:20	Surr: Nonane	85	(53-145) %REC	10/07/16 12:08	10/07/16 21:19
		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 04:28	10/15/16 04:28
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/15/16 04:28	10/15/16 04:28
		Surr: Toluene-d8	95	(70-130) %REC	10/15/16 04:28	10/15/16 04:28
		Surr: 4-Bromofluorobenzene	119	(70-130) %REC	10/15/16 04:28	10/15/16 04:28
Client ID:	MW-21(MID)					
Lab ID:	CHH16100605-06A	TPH-E (DRO)	0.082	0.050 mg/L	10/07/16 12:08	10/07/16 21:45
Date Sampled	10/05/16 15:07	Surr: Nonane	93	(53-145) %REC	10/07/16 12:08	10/07/16 21:45
		TPH-P (GRO)	0.057	0.050 mg/L	10/15/16 04:53	10/15/16 04:53
		Surr: 1,2-Dichloroethane-d4	111	(70-130) %REC	10/15/16 04:53	10/15/16 04:53
		Surr: Toluene-d8	96	(70-130) %REC	10/15/16 04:53	10/15/16 04:53
		Surr: 4-Bromofluorobenzene	122	(70-130) %REC	10/15/16 04:53	10/15/16 04:53

KMEP DFSP Norwalk

Page 1 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	PW-3					
Lab ID:	CHH16100605-07A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 22:12
Date Sampled	10/05/16 12:33	Surr: Nonane	91	(53-145) %REC	10/07/16 12:08	10/07/16 22:12
•		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 05:18	10/15/16 05:18
		Surr: 1,2-Dichloroethane-d4	114	(70-130) %REC	10/15/16 05:18	10/15/16 05:18
		Surr: Toluene-d8	97	(70-130) %REC	10/15/16 05:18	10/15/16 05:18
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/15/16 05:18	10/15/16 05:18
Client ID:	MW-9					
Lab ID :	CHH16100605-08A	TPH-E (DRO)	0.28 K	0.050 mg/L	10/07/16 12:08	10/07/16 22:38
Date Sampled	10/05/16 13:17	Surr: Nonane	92	(53-145) %REC	10/07/16 12:08	10/07/16 22:38
•		TPH-P (GRO)	0.085	0.050 mg/L	10/15/16 05:42	10/15/16 05:42
		Surr: 1,2-Dichloroethane-d4	115	(70-130) %REC	10/15/16 05:42	10/15/16 05:42
		Surr: Toluene-d8	97	(70-130) %REC	10/15/16 05:42	10/15/16 05:42
	*	Surr: 4-Bromofluorobenzene	120	(70-130) %REC	10/15/16 05:42	10/15/16 05:42
Client ID:	WCW-5					
Lab ID:	CHH16100605-09A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 23:05
Date Sampled	10/05/16 09:16	Surr: Nonane	96	(53-145) %REC	10/07/16 12:08	10/07/16 23:05
-		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 06:07	10/15/16 06:07
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/15/16 06:07	10/15/16 06:07
		Surr: Toluene-d8	97	(70-130) %REC	10/15/16 06:07	10/15/16 06:07
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/15/16 06:07	10/15/16 06:07
Client ID:	MW-20(MID)					
Lab ID:	CHH16100605-10A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/07/16 23:31
Date Sampled	10/05/16 09:46	Surr: Nonane	94	(53-145) %REC	10/07/16 12:08	10/07/16 23:31
		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 06:32	10/15/16 06:32
		Surr: 1,2-Dichloroethane-d4	111	(70-130) %REC	10/15/16 06:32	10/15/16 06:32
		Surr: Toluene-d8	96	(70-130) %REC	10/15/16 06:32	10/15/16 06:32
		Surr: 4-Bromofluorobenzene	117	(70-130) %REC	10/15/16 06:32	10/15/16 06:32
Client ID:	WCW-7					
Lab ID:	CHH16100605-11A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/08/16 01:18
Date Sampled	10/05/16 08:01	Surr: Nonane	91	(53-145) %REC	10/07/16 12:08	10/08/16 01:18
		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 06:57	10/15/16 06:57
		Surr: 1,2-Dichloroethane-d4	115	(70-130) %REC	10/15/16 06:57	10/15/16 06:57
		Surr: Toluene-d8	97	(70-130) %REC	10/15/16 06:57	10/15/16 06:57
		Surr: 4-Bromofluorobenzene	116	(70-130) %REC	10/15/16 06:57	10/15/16 06:57
Client ID:	WCW-6			·		
Lab ID:	CHH16100605-12A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/08/16 01:45
Date Sampled	10/05/16 08:40	Surr: Nonane	93	(53-145) %REC	10/07/16 12:08	10/08/16 01:45
		TPH-P (GRO)	ND	0.050 mg/L	10/15/16 07:22	10/15/16 07:22
		Surr: 1,2-Dichloroethane-d4	116	(70-130) %REC	10/15/16 07:22	10/15/16 07:22
		Surr: Toluene-d8	95	(70-130) %REC	10/15/16 07:22	10/15/16 07:22
		Surr: 4-Bromofluorobenzene	117	(70-130) %REC	10/15/16 07:22	10/15/16 07:22

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13

K = DRO concentration may include contributions from lighter-end hydrocarbons that elute in the DRO range.

ND = Not Detected

Roger Scholl

KandySaulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16

Report Date

KMEP DFSP Norwalk Page 2 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: MW-7

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-01A

Attn:

Daniel Jablonski

Phone: Fax:

(213) 228-8271

(714) 424-2135

Sampled: 10/05/16 11:37

Received: 10/06/16

Extracted: 10/15/16 02:50 Analyzed: 10/15/16 02:50

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND .	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND .	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1.3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyttoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	1.1	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1.2.4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	113	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	109	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•			
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND ND	0.50	μg/L					
	• "	1		L 2					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

40

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0

1.0

5.0

1.0

2.0

0.50

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-02A

Client I.D. Number: MW-19(MID)

Attn: Daniel Jablonski

Phone: (213) 228-8271 Fax: (714) 424-2135

Sampled: 10/05/16 10:55

Received: 10/06/16

Extracted: 10/15/16 03:14 Analyzed: 10/15/16 03:14

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chioromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0:50	µg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	220	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	0.68	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	19	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	3.8	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	105	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	114	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
			1	-					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1.2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

36

37

38

39

40

41

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

Kandy Saulmer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

0.50

5.0

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-03A

Client I.D. Number: MW-6

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 10:17

Received: 10/06/16

Extracted: 10/15/16 03:39 Analyzed: 10/15/16 03:39

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	•				Re	eporting
_	Compound	Concentration	Lin	nit		Compound	Concentration	·	Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xviene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND .	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.2	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butvibenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND .	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	0.96	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•		• • • • • • • • • • • • • • • • • • • •	
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	na/l					

ND = Not Detected

4-Methyl-2-pentanone (MIBK)

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

35

36

37

38

39

40

42

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . . Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

10

0.50

0.50

1.0

0.50

1.0

5.0

1.0 μg/L

2.0

1.0

μg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EB-3

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-04A

Attn: Phone:

Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 15:25

Received: 10/06/16

Extracted: 10/15/16 04:03 Analyzed: 10/15/16 04:03

Volatile Organics by GC/MS EPA Method 624/8260

	-		Repo	rting			1	R	eporting
_	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	.ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	. 10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	·ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	. 10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	. 1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND .	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND .	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND .	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	116	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND:	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	112	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		·			
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1 3-Dichloropropene	ND	0.50	ua/L					

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

38

39

40

41

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

NΩ

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0 μg/L

5.0

1.0 μg/L

2.0 μg/L

1.0

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-05A

Client I.D. Number: GMW-8

Attn: Daniel Jablonski Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/05/16 14:20

Received: 10/06/16

Extracted: 10/15/16 04:28 Analyzed: 10/15/16 04:28

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND .	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μ g/ L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND .	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	0.55	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	NĎ	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND .	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	1.9	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethame	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	119	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•			
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
		I .	1						

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

42

43

2-Hexanone

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . . Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

1.0 μg/L

5.0 μg/L

1.0 μg/L

2.0 μg/L

μg/L

0.50

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Client I.D. Number: MW-21(MID)

Alpha Analytical Number: CHH16100605-06A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 15:07

Received: 10/06/16

Extracted: 10/15/16 04:53 Analyzed: 10/15/16 04:53

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
_	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	. 50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propvibenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.2	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1.4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butvlbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	3.2	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	122	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

38

39

40

41

42

Roger Scholl

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

μg/L

μg/L

μg/L

5.0

1.0 μg/L

2.0

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: PW-3

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-07A

Attn: Phone:

Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 12:33

Received: 10/06/16

Extracted: 10/15/16 05:18 Analyzed: 10/15/16 05:18

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND .	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	- 1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1.4-Dichlorobenzene	ND	1.0	μg/L
21	Chioroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND ND	1.0	µg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	l ND	1.0	μg/L	67	n-Butyibenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND -	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1.2-Dichloroethane-d4	114	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L	• •				
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					

ND = Not Detected

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachioroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

38

40

41

42

43

trans-1,3-Dichloropropene

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

0.50

0.50

1.0

0.50

1.0 µg/L

5.0 μg/L

1.0 µg/L

2.0 µg/L

1.0

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

SELECTION OF THE SELECT

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: MW-9

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-08A

Attn: Phone: Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 13:17

Received: 10/06/16

Extracted: 10/15/16 05:42 Analyzed: 10/15/16 05:42

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1:0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	22	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND .	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.3	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	NÐ	,5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	115	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	120	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
~-		I		. •					

ND = Not Detected

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

36

37

39

40

41

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

0.50

0.50

1.0 µg/L

1.0 µg/L

5.0 μg/L

1.0 µg/L

2.0 µg/L

1.0

0.50

µg/L

μg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

DOD ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

TNI MBOWTORN

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-09A

Client I.D. Number: WCW-5

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 09:16

Received: 10/06/16

Extracted: 10/15/16 06:07 Analyzed: 10/15/16 06:07

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND ·	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND .	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND -	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μ g/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
		I							

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1.2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

38

39

40

41

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

ND

Kandy Davlmer

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

0.50

1.0

1.0 µg/L

5.0

1.0

2.0

0.50

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

THE

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017 KMEP DFSP Norwalk Job:

Daniel Jablonski Phone: (213) 228-8271

Fax:

Attn:

(714) 424-2135

Alpha Analytical Number: CHH16100605-10A

Client I.D. Number: MW-20(MID)

Sampled: 10/05/16 09:46

Received: 10/06/16

Extracted: 10/15/16 06:32 Analyzed: 10/15/16 06:32

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	l ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND ·	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	22	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	7.1	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND .	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	7.2	1.0	µg/L	62	sec-Butylbenzene	· ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND .	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μ g/ L
24	1,2-Dichloroethane	13	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	117	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

38

39

40

41

42

Roger Scholl

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

1.0

μg/L

μg/L

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-11A

Client I.D. Number: WCW-7

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 08:01

Received: 10/06/16

Extracted: 10/15/16 06:57 Analyzed: 10/15/16 06:57

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	a-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND -	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND .	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETI	BE) ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	115	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TA	AME) ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	116	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•		• • •	
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND ·	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					

ND = Not Detected

2-Hexanone Dibromochloromethane

1,2-Dibromoethane (EDB)

Tetrachloroethene
1,1,1,2-Tetrachloroethane

40

Roger Scholl

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

1.0 µg/L

2.0

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard

Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-12A

Client I.D. Number: WCW-6

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 08:40

Received: 10/06/16

Extracted: 10/15/16 07:22 Analyzed: 10/15/16 07:22

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND ·	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND .	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND .	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	116	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ŇD	1.0	μg/L	73	Surr: Toluene-d8	95	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	117	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		·			
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					

ND = Not Detected

cis-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

trans-1,3-Dichloropropene

35

36

37

38

39

40

Roger Scholl

ND

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

μg/L

μg/L

μg/L

0.50

5.0

1.0

2.0 µg/L

1.0 μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

ELF ACCRES

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: TB-2

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100605-13A

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 07:15

Received: 10/06/16

Extracted: 10/15/16 02:26 Analyzed: 10/15/16 02:26

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND .	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L.	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0,50	μg/L	58	2-Chlorotoluene	ND ·	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND .	1.0	μg/L	62	sec-Butylbenzene	ND ·	1.0	µg/L
19	cis-1,2-Dichloroethene	ND .	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE) ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	, ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	106	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAM	E) ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L					
32	Trichloroethene	ND *	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

36

37

38

39

40

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

KandySaulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0 µg/L

0.50

1.0

5.0

1.0 µg/L

2.0 µg/L

µq/L

μg/L

µg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

TNI

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16100605

Job: KMEP DFSP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pH
16100605-01A	MW-7	Aqueous	2
16100605-02A	MW-19(MID)	Aqueous	2
16100605-03A	MW-6	Aqueous	2
16100605-04A	EB-3	Aqueous	2
16100605-05A	GMW-8	Aqueous	2
16100605-06A	MW-21(MID)	Aqueous	2
16100605-07A	PW-3	Aqueous	2
16100605-08A	MW-9	Aqueous	2
16100605-09A	WCW-5	Aqueous	2
16100605-10A	MW-20(MID)	Aqueous	2
16100605-11A	WCW-7	Aqueous	2
16100605-12A	WCW-6	Aqueous	2
16100605-13A	TB-2	Aqueous	2

10/17/16

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Oct-16	(QC Summai	y Report			Work Order 16100605	
Method Blank File ID: 1 Sample ID: MBLK-37		E Run ID: N	est Code: EPA Met Batch ID: 37285 IANUAL_161008A	A P	nalysis Date: 1	10/07/2016 17:46 10/07/2016 12:08	
TPH-E (DRO) Surr: Nonane	Result ND 0.138	90.05 0.05 0.15	SpkRefVal %REC	35 15		al %RPD(Limit)	Qual
Laboratory Control S File ID: 2	Spike	71	est Code: EPA Met			10/07/2016 18:13	
Sample ID: LCS-372	85 Units : mg/L Result	Run ID: N	IANUAL_161008A SpkRefVal %REC	Р	rep Date: 1	10/07/2016 12:08	Qual
TPH-E (DRO) Surr: Nonane	2.92 0.146	0.05 2.5 0.15		73 13 35 15	-		
Sample Matrix Spike File ID: 4		71	est Code: EPA Met Batch ID: 37285		-	10/07/2016 19:06	
Sample ID: 16100609 Analyte	5-04AMS Units : mg/L Result		IANUAL_161008A SpkRefVal %REC			10/07/2016 12:08 at %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	2.83 0.274	0.1 2.5 0.3		64 16 33 16			
Sample Matrix Spike File ID: 5	Duplicate	.,,	est Code: EPA Met			10/07/2016 19:32	
Sample ID: 16100609 Analyte	5-04AMSD Units : mg/L Result		IANUAL_161008A SpkRefVal %REC			10/07/2016 12:08 al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	2.75 0.257	0.1 2.5 0.3	0 110	64 16 33 16	1 2.825	2.7(40)	-
~ .					 		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Oct-16			QC St	ımmar	y Repor	t			Work Orde 16100605	
Method Blank File ID: 41			Type N		est Code: EF			15B/C / SW8260B Analysis Date:	10/15/2016 02:02	
Sample ID: MBL	K MS09W1014A	Units : mg/L		Run ID: M.	ANUAL 161	014D		Prep Date:	10/15/2016 02:02	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroeth Surr: Toluene-d8 Surr: 4-Bromofluorob		ND 0.0105 0.0095 0.0112	0.05	0.01 0.01 0.01		105 95 112	70 70 70	130 130 130		
Laboratory Cont	rol Spike		Type L	CS T	est Code: EF	A Meth	nod SW80	15B/C / SW8260B		
File ID: 40				В	atch ID: MS0	9W101	4B	Analysis Date:	10/15/2016 00:49	
Sample ID: GLC	S MS09W1014B	Units : mg/L		Run ID: M	ANUAL_161	014D		Prep Date:	10/15/2016 00:49	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroeth Surr: Toluene-d8 Surr: 4-Bromofluorob		0.438 0.0104 0.00985 0.0111	0.05	0.4 0.01 0.01 0.01		110 104 99 111	70 70 70 70	130 130 130 130		
Sample Matrix Sp	oike		Type N	IS T	est Code: EF	A Meth	od SW80	15B/C / SW8260B		
File ID: 55				В	atch ID: MS0	9W101	4B	Analysis Date:	10/15/2016 08:34	
Sample ID: 1610	0605-01AGS	Units : mg/L		Run ID: M.	ANUAL_161	014D		Prep Date:	10/15/2016 08:34	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroeth Surr: Toluene-d8 Surr: 4-Bromofluorob		1.83 0.0565 0.0478 0.0598	0.25	2 0.05 0.05 0.05	. 0	91 113 96 120	46 70 70 70	167 130 130 130		_
Sample Matrix Sp	oike Duplicate		Type N	ISD T	est Code: EF	A Meth	nod SW80	15B/C / SW8260B		
File ID: 56	-			В	atch ID: MS0	9W101	4B	Analysis Date:	10/15/2016 08:59	
Sample ID: 1610	0605-01AGSD	Units : mg/L		Run ID: M.	ANUAL_161	014D		Prep Date:	10/15/2016 08:59	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroeth Surr: Toluene-d8 Surr: 4-Bromofluorob		1.64 0.0537 0.0488 0.058	0.25	2 0.05 0.05 0.05	0	82 107 98 116	54 70 70 70	143 1.82 130 130 130	5 10,7(23)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13 Aeronautic Gas Range Orgnics (AGRO) C4-C10

Date: 17-Oct-16			Work Order: 16100605					
Method Blank			Type N	MBLK	Test Code: EPA Method SW			
File ID: 2					Batch ID: MS09W1014A	Analysis Date:	10/15/2016 02:02	
	MS09W1014A	Units : µg/L			: MANUAL_161014D	Prep Date:	10/15/2016 02:02	
Analyte		Result	PQL	Spk\	/al SpkRefVal %REC LCL(Mi	E) UCL(ME) RPDRef	/al %RPD(Limit)	Qua
Dichlorodifluoromethar	ne	ND	1					
Chloromethane Vinyl chloride		ND ND	0.5	2				
Chloroethane		ND	0.5) 1				
Bromomethane		ND	2	2	•			
Trichlorofluoromethane)	ND	10					
Acetone 1,1-Dichloroethene		ND ND	10					
Tertiary Butyl Alcohol (TBA)	ND ND	1 10					
Dichloromethane	· -· •	ND	5					
Freon-113		ND	10	-				
Carbon disulfide trans-1,2-Dichloroether		ND	2.5			*		
Methyl tert-butyl ether		ND ND	0.5					
1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	ND	1					
Vinyl acetate		ND	50					
2-Butanone (MEK))E\	ND	10					
Di-isopropyl Ether (DIP cis-1,2-Dichloroethene		ND ND	1	l 1				
Bromochloromethane		ND	1	' 1				
Chloroform		ND	1	İ				
Ethyl Tertiary Butyl Eth	er (ETBE)	ND	1	1				
2,2-Dichloropropane 1,2-Dichloroethane		ND ND	1	1 =				
1,1,1-Trichloroethane		ND ND	0.5 1					
1,1-Dichloropropene		ND	1	•				
Carbon tetrachloride		ND	1					
Benzene Tertiary Amyl Methyl E	thor (TAME)	ND ND	0.5	5				
Dibromomethane	uler (IAIVIE)	ND ND	1	l 1			•	
1,2-Dichloropropane		ND	1	i				
Trichloroethene		ND	1	1				
Bromodichloromethane 4-Methyl-2-pentanone		ND	1	-				
cis-1,3-Dichloropropen		ND ND	10 0.5					
trans-1,3-Dichloroprope		ND	0.5					
1,1,2-Trichloroethane		ND	1					
Toluene		ND	0.5					
1,3-Dichloropropane 2-Hexanone		ND ND	1 5	-				
Dibromochloromethane	•	ND	. 1					
1,2-Dibromoethane (EI	OB)	ND	2	2				
Tetrachloroethene		ND	1	İ				
1,1,1,2-Tetrachloroetha Chlorobenzene	ane	ND ND	1	ļ. 1				
Ethylbenzene		ND ND	0.5 0.5					
m,p-Xylene		ND	0.5					
Bromoform		ND	1	l			n *	
Styrene o-Xylene		ND ND	1					
1,1,2,2-Tetrachioroetha	ane	ND ND	0.5 1					
1,2,3-Trichloropropane		ND	2	-				
Isopropylbenzene		ND	1					
Bromobenzene		ND	1					
n-Propylbenzene 4-Chlorotoluene		ND ND	1	l 				
2-Chlorotoluene		ND ND	1					
1,3,5-Trimethylbenzene	•	ND	1	l				
tert-Butylbenzene	_	ND	1					
1,2,4-Trimethylbenzene	•	ND ND	1					
sec-Butylbenzene 1,3-Dichlorobenzene		ND ND	1	<u> </u> 				
1,4-Dichlorobenzene		ND ND	1	-				
4-Isopropyltoluene		ND	1					
1,2-Dichlorobenzene		ND	1					

Date: 17-Oct-16	(QC Sum	ımary Re	eport			rk Order: 5100605
n-Butylbenzene	ND	1					
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	ND	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	10.5		10	105	70	130	
Surr: Toluene-d8	9.5		10	95	70	130	
Surr: 4-Bromofluorobenzene	11.2		10	112	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: **QC Summary Report** 17-Oct-16 Type LCS Test Code: EPA Method SW8260B Laboratory Control Spike File ID: 1 Batch ID: MS09W1014A Analysis Date: 10/15/2016 00:00 Sample ID: LCS MS09W1014A Units: µg/L Run ID: MANUAL_161014D Prep Date: 10/15/2016 00:00 Analyte SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Result **PQL** Qual Dichlorodifluoromethane 4.57 Chloromethane 9.93 Vinyl chloride 9.96 99.6 Chloroethane 10.6 Bromomethane 7.64 Trichlorofluoromethane 11.1 Acetone 1,1-Dichloroethene 10.4 Tertiary Butyl Alcohol (TBA) Dichloromethane 9.51 Freon-113 11.5 trans-1.2-Dichloroethene 9.85 Methyl tert-butyl ether (MTBE) 8.99 0.5 1,1-Dichloroethane 9.71 2-Butanone (MEK) Di-isopropyl Ether (DIPE) 9.71 cis-1,2-Dichloroethene Bromochloromethane 9.92 Chloroform 9.89 Ethyl Tertiary Butyl Ether (ETBE) 2,2-Dichloropropane 8.41 1.2-Dichloroethane 10.1 1,1,1-Trichloroethane 10.4 1,1-Dichloropropene 10.4 Carbon tetrachloride 10.8 Benzene 9.75 0.5 Tertiary Amyl Methyl Ether (TAME) 10.1 Dibromomethane 9.6 1,2-Dichloropropane 9.89 Trichloroethene 10.1 Bromodichloromethane 9.69 4-Methyl-2-pentanone (MIBK) 26.4 cis-1,3-Dichloropropene 9.42 trans-1,3-Dichloropropene 1,1,2-Trichloroethane 8.91 Toluene 9.59 0.5 1,3-Dichloropropane 9.18 2-Hexanone 99.7 99.7 Dibromochloromethane 9.3 1,2-Dibromoethane (EDB) Tetrachloroethene 1,1,1,2-Tetrachloroethane 9.4 Chlorobenzene 8.8 Ethylbenzene 9.53 0.5 m,p-Xylene 9.57 0.5 Bromoform 9.88 Styrene 8.51 o-Xylene 9.36 0.5 1,1,2,2-Tetrachloroethane 9.3 1,2,3-Trichloropropane 18.7 Isopropylbenzene 10.1 Bromobenzene 9.18 n-Propylbenzene 9.37 4-Chlorotoluene 9.55 2-Chlorotoluene 9.31 1,3,5-Trimethylbenzene 9.87 tert-Butylbenzene 9.82 1,2,4-Trimethylbenzene 10.1 sec-Butylbenzene 9.75 1,3-Dichlorobenzene 9.18 1,4-Dichlorobenzene 9.24 4-isopropyltoluene 10.3 1,2-Dichlorobenzene 8.9 n-Butvlbenzene 9.3 1,2-Dibromo-3-chloropropane (DBCP)

Date: 17-Oct-16	(QC Sun	ımary Re	eport			Work Order: 16100605
1,2,4-Trichlorobenzene	7.59	2	10	76	62	131	
Naphthalene	5.92	2	10	59	39	149	
1,2,3-Trichlorobenzene	5.78	2	10	58	54	135	
Xylenes, Total	18.9	0.5	20	95	70	130	
Surr: 1,2-Dichloroethane-d4	10.5		10	105	70	130	
Surr: Toluene-d8	9.75		10	98	70	130	
Surr: 4-Bromofluorobenzene	11.2		10	112	70	130	

Date: 17-Oct-16		(QC S	ummar	y Repor	t					rk Orde 6100605	
Sample Matrix Spi	ke		Type N	IS Te	est Code: E	PA Met	hod SW82	260B				
File ID: 16				Ва	atch ID: MS	09W10	14A	Anal	ysis Date:	10/15/2016	07:46	
Sample ID: 16100	605-01AMS	Units : µg/L		Run iD: Ma	ANUAL_161	014D			Date:	10/15/2016		
Analyte		Result	PQL		_		LCL(ME)			Val %RPD(l		Qua
	-) IXI DIXE	Vai /orti-D(t	-111111/	
Dichlorodifluorometha Chloromethane	ne	26.6	2.5		0	53	12	150				
Vinyl chloride		39.6 40	10 2.5		0	79 80	26 46	146 142				
Chloroethane		54.2	2.5		0	108	46 25	164				
Bromomethane		20.2	10		0	40	10	172				
Trichlorofluoromethan	e	45.9	2.5		0	92	32	164				
Acetone		1130	50		ő	113	10	188				
1,1-Dichloroethene		44.4	2.5		ō	89	62	133				
Tertiary Butyl Alcohol	(TBA)	650	25	500	0	130	44	155				
Dichloromethane		47.9	10		0	96	69	130				
Freon-113		43.6	2.5		0	87	56	144				
trans-1,2-Dichloroethe		46.4	2.5		0	93	67	131				
Methyl tert-butyl ether	(MIBE)	46.8	1.3		0	94	56	140				
1,1-Dichloroethane 2-Butanone (MEK)		51.9	2.5		0	104	67	130				
z-Butanone (MEK) Di-isopropyl Ether (DIF	DE/	1060 56	50 2.5		0	106 112	26 50	183				
cis-1,2-Dichloroethene		50.4	∠.5 2.5		0	101	59 70	138 130				
Bromochloromethane		47.9	2.5 2.5		0	96	70 70	134				
Chloroform		52.5	2.5		0	105	69	130				
Ethyl Tertiary Butyl Eth	ner (ETBE)	54	2.5		0	108	62	135				
2,2-Dichloropropane	\- · - - /	31.5	2.5		0	63	44	149				
1,2-Dichloroethane		59.8	2.5		1.05	118	64	139				
1,1,1-Trichloroethane		50.4	2.5		0	101	65	139				
1,1-Dichloropropene		46.9	2.5	50	0	94	68	134				
Carbon tetrachloride		48.9	2.5	50	0	98	56	146				
Benzene		48.8	1.3	50	0	98	67	134				
Tertiary Amyl Methyl E	ther (TAME)	53.7	2.5		0	107	64	135				
Dibromomethane		51.9	2.5		0	104	70	132				
1,2-Dichloropropane		54.2	2.5		0	108	69	134			•	
Trichloroethene Bromodichloromethan		45.3	2.5		0	91	68	138				
4-Methyl-2-pentanone		53.3	2.5		0	107	58	147				
cis-1,3-Dichloropropen		148	13 2.5		0	118	49	140				
rans-1,3-Dichloroprop		44.2 42.8	2.5 2.5		0	88 86	61 62	130 131				
1,1,2-Trichloroethane	CIIC	43.5	2.5		0	87	70	131				
Toluene		46.1	1.3		0	92	38	130				
1,3-Dichloropropane		44.5	2.5		0	89	70	130				
2-Hexanone		525	25		Õ	105	25	157				
Dibromochloromethan	9	45.4	2.5		ō	91	49	147				
1,2-Dibromoethane (E	DB)	86.9	5		Ō	87	70	131				
Tetrachloroethene		41.5	2.5	50	. 0	83	63	134				
1,1,1,2-Tetrachloroeth	ane	43.1	2.5	50	0	86	70	133				
Chlorobenzene		38.6	2.5		0	77	70	130				
Ethylbenzene		39.4	1.3		0	79	70	130				
n,p-Xylene		39.6	1.3		0	79	65	139				
Bromoform		44.4	2.5		0	89	60	144				
Styrene		36.6	2.5		0	73	53	144				
o-Xylene	nno	39.9	1.3		0	80	69	130				
i,1,2,2-Tetrachloroeth i,2,3-Trichloropropane		49.3 100	2.5		0	99	67 70	134				
sopropylbenzene		39	10 2.5		0	100 78	70 64	130 136				
Bromobenzene		38.7	2.5		0	77	69	130				
n-Propylbenzene		36.5	2.5		0	73	65	132				
-Chlorotoluene		40.5	2.5		0	81	69	132				
2-Chlorotoluene		40.1	2.5		ŏ	80	69	130				
,3,5-Trimethylbenzen	Э	42	2.5		ő	84	64	135				
ert-Butylbenzene		38.4	2.5		Ō	77	63	139				
1,2,4-Trimethylbenzen	е	43.1	2.5		0	86	62	135				
sec-Butylbenzene		35.9	2.5	50	0	72	68	132				
,3-Dichlorobenzene		39.6	2.5	50	0	79	70	130				
,4-Dichlorobenzene		40	2.5		0	80	70	130				
I-Isopropyltoluene		39.3	2.5		0	79	40	161				
,2-Dichlorobenzene		40.3	2.5		0	81	70	130				
n-Butylbenzene	(DDOC)	35.8	2.5		0	72	58	135				
2-Dibromo-3-chlorop, ا	ropane (DBCP)	216	15	250	. 0	86	63	131				

Date: 17-Oct-16	(QC Sun	nmary R	Repor	t			Work Order: 16100605
1,2,4-Trichlorobenzene	32	10	50	0	64	57	134	
Naphthalene	29	10	50	0	58	31	157	
1,2,3-Trichlorobenzene	25.4	10	50	0	51	52	138	M2
Xylenes, Total	79.5	1.3	100	0	80	70	130	
Surr: 1,2-Dichloroethane-d4	59.5		50		119	70	130	
Surr: Toluene-d8	45.3		50		91	70	130	
Surr: 4-Bromofluorobenzene	55		50		110	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: QC Summary Report 17-Oct-16 16100605 Type MSD Test Code: EPA Method SW8260B Sample Matrix Spike Duplicate File ID: 17 Batch ID: MS09W1014A Analysis Date: 10/15/2016 08:10 Sample ID: 16100605-01AMSD Prep Date: Units: µg/L Run ID: MANUAL 161014D 10/15/2016 08:10 Analyte **PQL** SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Result Qual Dichlorodifluoromethane 25.5 2.5 12 150 50 26.63 4.5(38)Chloromethane 39.1 10 50 0 78 26 146 39.63 1.4(31) Vinyl chloride 38.7 2.5 50 0 77 46 142 39.98 3.4(25)Chloroethane 52.8 2.5 50 0 106 25 164 54.23 2.8(40)Bromomethane 10 50 0 58 10 172 20.19 35.2(40) Trichlorofluoromethane 44.6 2.5 50 0 89 32 164 45.91 2.8(34) Acetone 1150 1000 0 10 188 50 115 1132 1.5(39)1,1-Dichloroethene 2.5 0 43.5 50 87 62 133 44.35 2.0(35)Tertiary Butyl Alcohol (TBA) 664 25 649.8 500 0 133 44 155 2.1(33)Dichloromethane 46.6 10 0 93 69 130 47.92 2.7(26)50 Freon-113 44.1 2.5 50 0 88 56 144 43.6 1.1(40) trans-1,2-Dichloroethene 67 45 2.5 50 0 90 131 46.42 3.1(27)Methyl tert-butyl ether (MTBE) 47.1 1.3 50 0 94 56 140 46.79 0.6(40) 1,1-Dichloroethane 50.6 2.5 50 0 101 67 130 51.9 2.5(20) 2-Butanone (MEK) 1050 50 1000 1060 0 105 26 183 0.6(22)Di-isopropyl Ether (DIPE) 55.5 2.5 50 0 111 59 138 55.98 0.8(20)cis-1.2-Dichloroethene 70 50.39 49.5 2.5 50 0 99 130 1.7(20)Bromochloromethane 0.7(20)48.2 2.5 50 0 96 70 134 47.85 Chloroform 51.9 2.5 50 0 104 69 130 52.53 1.2(22)Ethyl Tertiary Butyl Ether (ETBE) 2.5 53.8 50 0 108 62 135 54 0.3(40)2,2-Dichloropropane 29.9 2.5 50 0 60 44 149 31.54 5.3(23) 1.2-Dichloroethane 58.6 50 .05 115 64 139 59.8 2.0(20)1,1,1-Trichloroethane 49.3 2.5 50 0 99 65 139 50.35 2.1(20) 1,1-Dichloropropene 50 0 93 68 134 46.89 1.4(20)Carbon tetrachloride 2.5 96 56 146 48.85 1.8(21) 48 50 0 Benzene 47.2 1.3 50 0 94 67 134 48.81 3.3(21)Tertiary Amyl Methyl Ether (TAME) 53.6 2.5 50 0 107 64 135 53.66 0.2(31)Dibromomethane 2.5 50 0 103 70 0.5(20) 51.6 132 51.86 1,2-Dichloropropane 2.5 50 0 105 69 134 54.2 2.8(20) Trichloroethene 2.5 44.5 50 0 89 68 138 45.34 1.9(20)Bromodichloromethane 2.8(20) 51.8 2.5 0 104 58 147 53.27 50 4-Methyl-2-pentanone (MIBK) 149 119 49 140 147.9 1.0(24)125 cis-1.3-Dichloropropene 43 2.5 50 0 86 61 130 44.2 2.8(20)trans-1,3-Dichloropropene 43 2.5 50 0 86 62 131 42.82 0.4(21)1,1,2-Trichloroethane 44.2 2.5 50 0 88 70 131 43.53 1.4(20)Toluene 44 2 1.3 0 88 38 46.09 4.2(20) 50 130 1,3-Dichloropropane 46.8 2.5 50 0 94 70 130 44.5 5.0(20) 2-Hexanone 0 109 25 525.3 544 25 500 157 3.5(23)Dibromochloromethane 46.4 2.5 0 49 93 147 45.37 2.3(20)50 1,2-Dibromoethane (EDB) 89.3 0 89 70 86.92 100 131 2.7(20)Tetrachloroethene 2.5 41.47 42.6 50 0 85 63 134 2.8(20)1,1,1,2-Tetrachloroethane 2.6(20) 44.2 2.5 50 0 88 70 133 43.06 Chlorobenzene 38.7 2.5 0 77 70 130 38.62 0.2(20)50 Ethylbenzene 0 41.2 1.3 50 82 70 130 39.36 4.7(20) m,p-Xylene 1.3 50 0 81 65 139 39.6 2.0(20)Bromoform 46.4 2.5 50 0 93 60 144 44.37 4.4(21)Styrene 37.5 2.5 0 75 53 144 36.63 2.3(31) 50 o-Xylene 40.8 1.3 0 82 130 39.9 2.3(20) 50 1,1,2,2-Tetrachloroethane 0 100 50 2.5 50 67 134 49.27 1.4(20)1,2,3-Trichloropropane 101 0 10 100 101 70 130 100.4 0.9(20)Isopropylbenzene 2.5 41.7 50 0 83 64 136 39.01 6.7(20)1.3(20) Bromobenzene 39.2 2.5 0 78 69 130 38.69 50 n-Propylbenzene 39 2.5 50 0 78 65 132 36.51 6.5(40)4-Chlorotoluene 0 2.5 50 82 69 40.49 41.2 132 1.7(20)2-Chlorotoluene 41.2 2.5 50 0 82 69 130 40.13 2.7(20)1,3,5-Trimethylbenzene 43.4 2.5 50 0 87 64 135 41.98 3.4(21) tert-Butylbenzene 41.7 2.5 50 0 83 63 139 38.41 8.1(20) 1,2,4-Trimethylbenzene 0 89 43.07 44.5 50 135 3.2(24)sec-Butylbenzene 39.2 50 0 78 68 132 35.85 9.0(20) 2.5 1,3-Dichlorobenzene 0 79 39.6 2.5 50 70 130 39.64 0.1(20)0 39.98 1.4-Dichlorobenzene 39.9 2.5 50 80 70 130 0.1(20)4-isopropyltoluene 2.5 0 85 40 161 39.28 8.1(22) 426 50 1,2-Dichlorobenzene 40.6 2.5 0 81 70 130 40.29 0.9(20)50 n-Butylbenzene 8.7(24) 0 78 58 35.78

39

1,2-Dibromo-3-chloropropane (DBCP)

2.5

50

135

216.2

3.8(29)

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Oct-16	(QC Sun	nmary F	Repor	t				Work Or 161006	
1,2,4-Trichlorobenzene	39.4	10	50	0	79	57	134	32.01	20.6(30)	
Naphthalene	40.9	10	50	0	82	31	157	28.95	34.3(40)	
1,2,3-Trichlorobenzene	42.4	10	50	0	85	52	138	25.4	50.0(39)	R5
Xylenes, Total	81.2	1.3	100	0	81	70	130	79.5	2.1(22)	
Surr: 1,2-Dichloroethane-d4	56.4		50		113	70	130		` ,	
Surr: Toluene-d8	45.7		50		91	70	130			
Surr: 4-Bromofluorobenzene	56.2		50		112	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

Per client request, all 8010 analytes were added together and reported out as Total Halogens.

Per client request, all 8010 analytes were added together and reported out as Total Halogens.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

S

Page: 1 of 2

Report Due By: 5:00 PM On: 17-Oct-16 WorkOrder: CHHL16100605

> **EMail Address** Phone Number Report Attention

Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

21st Floor

CH2M Hill

Client:

Los Angeles, CA 90017

EDD Required: Yes daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x

Sampled by: Daniel Mosso

Date Printed 06-Oct-16

Samples Received 06-Oct-16 Cooler Temp 1 °C Job: KMEP DFSP Norwalk Client's COC #: none QC Level: S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

								Requested Tests	
Alpha	Client	Collection No. of Bottles	No. of	Bottles		TPH/E_W TPH	V W_WHYP_V	w_oov_	
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT				Sample Remarks
CHH16100605-01A	MW-7	AQ 10/05/16 11:37	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate	<u> </u>	TPHE(0.05) +Vimyl acetate	
CHH16100605-02A	MW-19(MID)	AQ 10/05/16 10:55	9	0		TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-03A MW-6	MW-6	AQ 10/05/16 10:17	9	0		TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-04A	EB-3	AQ 10/05/16 15:25	9	0	2	TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-05A	GMW-8	AQ 10/05/16 14:20	9	0		TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-06A MW-21(MID)	MVV-21(MID)	AQ 10/05/16 15:07	9	0		TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-07A	PW-3	AQ 10/05/16 12:33	9	0		TPHE(0.05) TPHE +Vinyl +V acetate ace	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100605-08A	MW-9	AQ 10/05/16 13:17	9	0		TPHE(0.05) TPHE +Vinyl +V acetate acc	TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values.: Comments:

	Signature		Print Name	Company	Date/Time	
Logged in by:		> Mea		MOM. Alpha Analytical, Inc. $\mathbb{D}/6$	91	2胜

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406 daniel.jablonski@ch2m.com matthew.mayry@ch2m.com

(213) 228-8271 x (213) 228-8271 x

Matthew Mayry

Los Angeles, CA 90017

21st Floor

CH2M Hill

Client:

Phone Number

EMail Address

Report Attention Daniel Jablonski 1000 Wilshire Boulevard

CA

Page: 2 of 2

WorkOrder: CHHL16100605

Report Due By: 5:00 PM On: 17-Oct-16

EDD Required: Yes

Sampled by: Daniel Mosso

Date Printed 06-Oct-16 Samples Received 06-Oct-16 Cooler Temp $1^{\circ}C$

Job: KMEP DFSP Norwalk = Final Rpt, MBLK, LCS, MS/MSD With Surrogates Client's COC #: none QC Level: S3

						-			Rednes	Requested Tests	
Alpha	Client	Collect	tion N	Collection No. of Bott	ottles	ь	TPH/E_W TPH/P_W	TPH/P_W	voc_w		
Sample ID	Sample ID	Matrix Date		Alpha S	Sub	TĀ.					Sample Remarks
CHH16100605-09A WCW-5	WCW-5	AQ 10/05/16 09:16	16	9	0	7	TPHE(0.05) TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16100605-10A MW-20(MID)	MW-20(MID)	AQ 10/05/16 09:46	716 6	9	0		TPHE(0.05)	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate	 	
CHH16100605-11A WCW-7	WCW-7	AQ 10/05/16 08:01		9	0		TPHE(0.05)	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16100605-12A WCW-6	WCW-6	AQ 10/05/16 08:40	716 0	9	0		TPHE(0.05)	TPHE(0.05) +Vimyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16100605-13A TB-2	TB-2	AQ 10/05/16 07:15		2	0	7			TPHE(0.05) +Vinyl acetate		 Reno TB 7/29/16

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

Date/Time	ार्गात । यस	
Company	Alpha Analytical, Inc. 10/6/16	
Print Name	Mechani	
Signature		
	Logged in by:	

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be refurned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

LAB SAMPLE # TIME (70%) CONDITION Alpha Analytical COC_ DATE 6 5 90 す Standard STATUS 2 63 8 09 CHH 16100605-0 Kinder Morgan Norwalk Report to: Dan Jablonski CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 Kinder Morgan 1100 Town and CountryRd. Orange CA 95112 ADD'L INFORMATION RESULTS NEEDED Billing Information: **NO LATER THAN** RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT 600 TIME SENT んごり TIME VOC's & Oxygenates (EPA 8260B) (M2108 A93) bH9T , gH9T SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 **1680 ROGERS AVENUE** 500 Ę Preservation Type CONTAINERS ヹ 15306 Norwalk Blvd, Norwalk **%** PERFORMED BY 9 SAMPLING MATRIX AQ= Water 8 Kinder Morgan **DFSP Norwalk** 0946 9/50 رة ا 1500 1233 E E 1137 TIME 1055 1426 152 1317 TECH SERVICES, INC. 1/S/K DATE DATE BLAINE CHAIN OF CUSTODY ò MU-19 MID MW-21 [M10] MW-26 (M10) RELEASED BY RELEASED BY NCW S RELEASED BY COMPLETED SHIPPED VIA 6-WM SAMPLE I.D. SAMPLING F. W. E 8 × 3 × PW-3 アンプル CLIENT SITE

BLAINE

TIME 7 LAB SAMPLE # Alpha Analytical COC 2 of 2 CONDITION Standard STATUS 3 55-C 6 Report to:
Dan Jablonski
CH2MHILL
1000 Wilshire Blvd 21st floor
Los Angeles, CA 90017 Kinder Morgan 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk 2HH 16100G ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN RECEIVED BY RECEIVED BY RECEIVED BY 0 COOLER# CONDUCT ANALYSIS TO DETECT 055c TIME SENT TIME TIME VOC's & Oxygenates (EPA 8260B) (M2108 A93) bH9T (PPA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 ア CONTAINERS Preservation | Type 3 15306 Norwalk Blvd, Norwalk PERFORMED BY Ć, 63 9 SAMPLING MATRIX AQ= Water **҈** Kinder Morgan **DFSP Norwalk** 0810 E S 27.5 TIME 020 TIME TECH SERVICES, INC. 19/2/pt DATE CHAIN OF CUSTODY RELEASED BY RELEASED BY RELEASED BY COMPLETED SHIPPED VIA SAMPLE I.D. 18-7 りへかいが ころう SAMPLING CLIENT SITE

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017

Attn:

Daniel Jablonski

Phone: (213) 228-8271

Fax:

(714) 424-2135

Date Received: 10/06/16

Job:

KMEP DFSP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

		D	Composition	Reporting Limit	Date Extracted	Date Analyzed
	C	Parameter	Concentration	LIIII	Extracted	Maryzea
Client ID:	GMW-39		ND.	0.050 mg/l	10/07/16 11:35	10/07/16 17:26
Lab ID:	CHH16100608-01A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 17:26
Date Sampled	10/05/16 07:20	Surr: Nonane	101	(53-145) %REC 0.050 mg/L	10/12/16 14:21	10/12/16 14:21
		TPH-P (GRO)	ND	J	10/12/16 14:21	10/12/16 14:21
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/12/16 14:21	10/12/16 14:21
		Surr: Toluene-d8	99	(70-130) %REC		10/12/16 14:21
		Surr: 4-Bromofluorobenzene	106	(70-130) %REC	10/12/16 14:21	10/12/10 14.21
Client ID:	MW-12				4010=146.44.05	10/07/16 17:53
Lab ID:	CHH16100608-02A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 17:52
Date Sampled	10/05/16 08:05	Surr: Nonane	95	(53-145) %REC	10/07/16 11:35	10/07/16 17:52
•		TPH-P (GRO)	ND	$0.050~\mathrm{mg/L}$	10/12/16 14:45	10/12/16 14:45
		Surr: 1,2-Dichloroethane-d4	108	(70-130) %REC	10/12/16 14:45	10/12/16 14:45
		Surr: Toluene-d8	100	(70-130) %REC	10/12/16 14:45	10/12/16 14:45
	,	Surr: 4-Bromofluorobenzene	109	(70-130) %REC	10/12/16 14:45	10/12/16 14:45
Client ID:	GMW-O-3			•		
Lab ID:	CHH16100608-03A	TPH-E (DRO)	ND	$0.050~\mathrm{mg/L}$	10/07/16 11:35	10/07/16 18:19
	10/05/16 08:50	Surr: Nonane	89	(53-145) %REC	10/07/16 11:35	10/07/16 18:19
Date Sampled	10/03/10 00.50	TPH-P (GRO)	ND	0.050 mg/L	10/12/16 15:09	10/12/16 15:09
		Surr: 1,2-Dichloroethane-d4	107	(70-130) %REC	10/12/16 15:09	10/12/16 15:09
		Surr: Toluene-d8	100	(70-130) %REC	10/12/16 15:09	10/12/16 15:09
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/12/16 15:09	10/12/16 15:09
Client ID:	GMW-O-4		-	,		
Lab ID:	CHH16100608-04A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 18:45
		Surr: Nonane	96	(53-145) %REC	10/07/16 11:35	10/07/16 18:45
Date Sampled	10/05/16 09:30	TPH-P (GRO)	ND	0.050 mg/L	10/12/16 15:32	10/12/16 15:32
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/12/16 15:32	10/12/16 15:32
		Surr: Toluene-d8	99	(70-130) %REC	10/12/16 15:32	10/12/16 15:32
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/12/16 15:32	10/12/16 15:32
Client ID:	GMW-SF-8	Suit. 4-Biomonuoroscuzene	,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		TRUE (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 19:11
Lab ID:	CHH16100608-05A	TPH-E (DRO)	ND 96	(53-145) %REC	10/07/16 11:35	10/07/16 19:11
Date Sampled	10/05/16 10:20	Surr: Nonane	ND	0.050 mg/L	10/12/16 15:56	10/12/16 15:56
		TPH-P (GRO)	עא 111	(70-130) %REC	10/12/16 15:56	10/12/16 15:50
		Surr: 1,2-Dichloroethane-d4		(70-130) %REC	10/12/16 15:56	10/12/16 15:50
		Surr: Toluene-d8	98	(70-130) %REC	10/12/16 15:56	10/12/16 15:50
		Surr: 4-Bromofluorobenzene	109	(70-130) /MAEC	10/12/10 15.50	10/12/10 15:5
Client ID:	MW-8			0.050 //	10/07/16 11:25	10/07/16 19:3
Lab ID:	CHH16100608-06A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 19.3
Date Sampled	10/05/16 11:22	Surr: Nonane	97	(53-145) %REC	10/07/16 11:35	10/07/16 19:3
		TPH-P (GRO)	ND	0.050 mg/L	10/12/16 16:19	
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/12/16 16:19	10/12/16 16:19
		Surr: Toluene-d8	99	(70-130) %REC	10/12/16 16:19	10/12/16 16:19
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/12/16 16:19	10/12/16 16:19

Page 1 of 3 KMEP DFSP Norwalk

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	GMW-SF-7				10/07/16 11:35	10/07/16 20:02
Lab ID:	CHH16100608-07A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 20:03
Date Sampled	10/05/16 11:59	Surr: Nonane	98	(53-145) %REC	10/07/16 11:35	10/07/16 20:03
		TPH-P (GRO)	, ND	0.050 mg/L	10/12/16 16:43	10/12/16 16:43
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/12/16 16:43	10/12/16 16:43
		Surr: Toluene-d8	98	(70-130) %REC	10/12/16 16:43	10/12/16 16:43
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/12/16 16:43	10/12/16 16:43
Client ID:	GMW-O-9		•			·
Lab ID:	CHH16100608-08A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 22:41
Date Sampled	10/05/16 12:45	Surr: Nonane	96	(53-145) %REC	10/07/16 11:35	10/07/16 22:41
		TPH-P (GRO)	ND	0.050 mg/L	10/12/16 17:07	10/12/16 17:07
		Surr: 1,2-Dichloroethane-d4	113	(70-130) %REC	10/12/16 17:07	10/12/16 17:07
		Surr: Toluene-d8	98	(70-130) %REC	10/12/16 17:07	10/12/16 17:07
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/12/16 17:07	10/12/16 17:07
Client ID:	HL-2					
Lab ID:	CHH16100608-09A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 23:08
	10/05/16 13:30	Surr: Nonane	93	(53-145) %REC	10/07/16 11:35	10/07/16 23:08
Date Sampled	10/03/10 13.30	TPH-P (GRO)	ND	0.050 mg/L	10/12/16 17:30	10/12/16 17:30
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/12/16 17:30	10/12/16 17:30
		Surr: Toluene-d8	98	(70-130) %REC	10/12/16 17:30	10/12/16 17:30
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/12/16 17:30	10/12/16 17:30
Client ID:	GMW-O-19	Sui. I Diamandorosandon		,		
Lab ID:	CHH16100608-10A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 23:34
		Surr: Nonane	98	(53-145) %REC	10/07/16 11:35	10/07/16 23:34
Date Sampled	10/05/16 14:45	TPH-P (GRO)	ND	0.050 mg/L	10/12/16 17:54	10/12/16 17:54
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/12/16 17:54	10/12/16 17:54
		Surr: Toluene-d8	98	(70-130) %REC	10/12/16 17:54	10/12/16 17:54
		Surr: 4-Bromofluorobenzene	111	(70-130) %REC	10/12/16 17:54	10/12/16 17:54
Client ID:	GMW-O-16	Sun. 4-Diomonuolobenzene	***	(10 200) 1222		
	-	TRUE (DRO)	ND	0.050 mg/L	10/07/16	10/08/16
Lab ID:	CHH16100608-11A	TPH-E (DRO)	99	(53-145) %REC	10/07/16	10/08/16
Date Sampled	10/05/16 15:30	Surr: Nonane	ND	0.050 mg/L	10/12/16 18:18	10/12/16 18:18
		TPH-P (GRO)	ND 112	(70-130) %REC	10/12/16 18:18	10/12/16 18:18
		Surr: 1,2-Dichloroethane-d4	98	(70-130) %REC	10/12/16 18:18	10/12/16 18:18
		Surr: Toluene-d8		(70-130) %REC	10/12/16 18:18	10/12/16 18:18
CIL . ID	ED 4	Surr: 4-Bromofluorobenzene	111	(70-130) Autec	10/12/10 10:10	10/12/10 10/10
Client ID:	EB-2		3.773	0.050 ma/I	10/07/16 11:35	10/07/16 16:07
Lab ID:	CHH16100608-12A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/07/16 16:07
Date Sampled	10/05/16 15:40	Surr: Nonane	103	(53-145) %REC 0.050 mg/L	10/12/16 18:41	10/12/16 18:41
		TPH-P (GRO)	ND	_	10/12/16 18:41	10/12/16 18:41
		Surr: 1,2-Dichloroethane-d4	118	(70-130) %REC	10/12/16 18:41	10/12/16 18:41
		Surr: Toluene-d8	102	(70-130) %REC (70-130) %REC	10/12/16 18:41	10/12/16 18:41
		Surr: 4-Bromofluorobenzene	107	(70-130) AREC	10/12/10 10.41	10/12/10 10.11
Client ID:	DUP-1			0.050/I	10/07/16 11:35	10/08/16 00:27
Lab ID:	CHH16100608-13A	TPH-E (DRO)	ND	0.050 mg/L		10/08/16 00:27
Date Sampled	10/05/16 00:00	Surr: Nonane	103	(53-145) %REC	10/07/16 11:35	10/12/16 19:05
		TPH-P (GRO)	ND	0.050 mg/L	10/12/16 19:05	10/12/16 19:05
		Surr: 1,2-Dichloroethane-d4	117	(70-130) %REC	10/12/16 19:05	10/12/16 19:05
		Surr: Toluene-d8	102	(70-130) %REC	10/12/16 19:05 10/12/16 19:05	10/12/16 19:05
		Surr: 4-Bromofluorobenzene	113	(70-130) %REC	10/12/10 19.03	10/12/10 19.03
Client ID:	DUP-2			0.070 %	10/07/16 11:25	10/09/14 00:52
Lab ID:	CHH16100608-14A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 11:35	10/08/16 00:53
Date Sampled	1 10/05/16 00:00	Surr: Nonane	97	(53-145) %REC	10/07/16 11:35	10/08/16 00:53
-		TPH-P (GRO)	ND	0.050 mg/L	10/12/16 19:29	10/12/16 19:29
		Surr: 1,2-Dichloroethane-d4	115	(70-130) %REC	10/12/16 19:29	10/12/16 19:29
		Surr: Toluene-d8	99	(70-130) %REC	10/12/16 19:29	10/12/16 19:29
		Surr: 4-Bromofluorobenzene	114	(70-130) %REC	10/12/16 19:29	10/12/16 19:29

KMEP DFSP Norwalk

Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13 ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-01A

Client I.D. Number: GMW-39

Daniel Jablonski Attn: Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/05/16 07:20

Received: 10/06/16

Extracted: 10/12/16 14:21 Analyzed: 10/12/16 14:21

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/Ł
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	- 50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μ g/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichlorcethene	ND	1.0	μg/L	57	4-Chlorotoluene	. ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.6	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μ g/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND ·	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	99	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	106	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					
40	2-Hexanone	ND	5.0	μg/L					
41	Dibromochloromethane	ND	1.0	μg/L					

ND = Not Detected

1,2-Dibromoethane (EDB) Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-02A

Client I.D. Number: MW-12

Daniel Jablonski Attn: Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/05/16 08:05

Received: 10/06/16

Extracted: 10/12/16 14:45 Analyzed: 10/12/16 14:45

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	ting		Reporting			
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xyienes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μ g/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND.	1:0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
. 21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1,0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μ g/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND '	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	108	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	100	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	109	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
		1	1						

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0

5.0

1.0

2.0

µg/L

μg/L

μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: GMW-O-3

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-03A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 08:50

Received: 10/06/16

Extracted: 10/12/16 15:09 Analyzed: 10/12/16 15:09

Volatile Organics by GC/MS EPA Method 624/8260

			Reporting						Reporting		
	Compound	Concentration	Lim	it		Compound	Concentration		Limit		
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L		
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L		
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L		
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L		
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	ND	0.50	μg/L		
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L		
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L		
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L		
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L		
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L		
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L		
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L		
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L		
14	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	µg/L		
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L		
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L		
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L		
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L		
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L		
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μ g/L		
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	μg/L		
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L		
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0,	μg/L		
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L		
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L		
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L		
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L		
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	107	(70-130)	%REC		
29	Tertiary Amyl Methyl Ether (TAME)	l ND	1.0	μg/L	73	Surr: Toluene-d8	100	(70-130)	%REC		
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC		
31	1.2-Dichloropropane	ND	1.0	μg/L							
32	Trichloroethene	ND	1.0	μg/L							
33	Bromodichloromethane	ND	1.0	μg/L							
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
35	cis-1,3-Dichloropropene	ND	0.50	μg/L							
36	trans-1,3-Dichloropropene	ND	0.50	μg/L							
	• •	i .		·							

ND = Not Detected

1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene 1,3-Dichloropropane

2-Hexanone

37

38

39

42

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

5.0

2.0 μg/L

μg/L 1.0

μg/L 1.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-04A

Client I.D. Number: GMW-O-4

Daniel Jablonski Attn: (213) 228-8271 Phone:

(714) 424-2135 Fax:

Sampled: 10/05/16 09:30

Received: 10/06/16

Extracted: 10/12/16 15:32 Analyzed: 10/12/16 15:32

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting			× .	Reporting		
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L	
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L	
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L	
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L	
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L	
. 6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L	
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L	
8	1,1-Dichloroethene	ND .	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L	
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μ g/L	
11	Freon-113	ND	10	μ g/L	55	Bromobenzene	ND	1.0	μg/L	
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L	
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L	
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	µg/L	
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L	
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L	
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L	
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L	
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L	
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L	
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L	
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L	
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/Ł	
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L	
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L	
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L	
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	99	(70-130)	%REC	
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC	
31	1,2-Dichloropropane	ND	1.0	μg/L						
32	Trichloroethene	ND	1.0	μg/L						
33	Bromodichloromethane	ND	1.0	μg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L		•				
35	cis-1,3-Dichloropropene	ND	0.50	μg/L						

ND = Not Detected

trans-1,3-Dichloropropene 1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene 1,3-Dichloropropane 2-Hexanone

Roger Scholl

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-05A

Client I.D. Number: GMW-SF-8

Daniel Jablonski Attn:

Phone: (213) 228-8271 Fax: (714) 424-2135

Sampled: 10/05/16 10:20

Received: 10/06/16

Extracted: 10/12/16 15:56 Analyzed: 10/12/16 15:56

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	porting
	Compound	Concentration	Lim	ıit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	l ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	µg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μ g/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μ g/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	109	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1.3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1.1.2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
		1	5.00	L					

ND = Not Detected

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

2-Hexanone

39

Roger Scholl

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

5.0

1.0 µg/L

2.0 μg/L

10/17/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-06A

Client I.D. Number: MW-8

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 11:22

Received: 10/06/16

Extracted: 10/12/16 16:19 Analyzed: 10/12/16 16:19

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	eporting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	hg/L
9	Tertiary Butyl Alcohol (TBA)	ND	. 10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0-	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg / L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μ g/L
14	Methyl tert-butyl ether (MTBE)	0.85	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/Ł
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyitoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	99	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/Ł					

ND = Not Detected

1,3-Dichloropropane 2-Hexanone Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

Roger Scholl

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

The sit

10/17/16

Report Det

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Joh:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-07A

Client I.D. Number: GMW-SF-7

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 11:59

Received: 10/06/16

Extracted: 10/12/16 16:43 Analyzed: 10/12/16 16:43

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting			Reporting			
	Compound	Concentration	Lim	it	_	Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L	
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L	
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L	
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L	
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	NÐ	0.50	μg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L	
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L	
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L	
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L	
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μ g/L	
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L	
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L	
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	μg/L	
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L	
16	Vinyl acetate	ND ·	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L	
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L	
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L	
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L	
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L	
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L	
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L	
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L	
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L	
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L	
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC	
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	. 111	(70-130)	%REC	
31	1,2-Dichloropropane	ND	1.0	μg/L						
32	Trichloroethene	NĐ	1.0	μg/L						
33	Bromodichloromethane	ND	1.0	μg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L						
35	cis-1,3-Dichloropropene	ND	0.50	μg/Ł						
	40011	I ND	0.50							

ND = Not Detected

trans-1,3-Dichloropropene 1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene 1,3-Dichloropropane

2-Hexanone

39

41

42

Roger Scholl

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0

2.0 µg/L

μg/L

μg/L

μg/L

μg/L

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-08A

Client I.D. Number: GMW-O-9

Daniel Jablonski Attn:

Phone: (213) 228-8271 (714) 424-2135 Fax:

Sampled: 10/05/16 12:45

Received: 10/06/16

Extracted: 10/12/16 17:07 Analyzed: 10/12/16 17:07

Volatile Organics by GC/MS EPA Method 624/8260

		Repo	rting				Re	porting
Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1 Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2 Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3 Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4 Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	μg/L
5 Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6 Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7 Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8 1.1-Dichloroethene	l ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9 Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10 Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11 Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12 Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13 trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14 Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	μg/L
15 1.1-Dichloroethane	ND	1.0	µg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16 Vinyl acetate	ND	50	μg/L	60	tert-Butvibenzene	ND	1.0-	μg/L
17 2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18 Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19 cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20 Bromochloromethane	ND	1.0	μg/L	64	1.4-Dichlorobenzene	ND	1.0	μg/L
21 Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22 Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23 2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24 1.2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25 1.1.1-Trichloroethane	ND	1.0	μg/L	69	1.2.4-Trichlorobenzene	ND	2.0	μg/L
26 1.1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27 Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28 Benzene	ND	0.50	μg/L μg/L	72	Surr: 1,2-Dichloroethane-d4	113	(70-130)	%REC
	ND	1.0	μg/L μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
29 Tertiary Amyl Methyl Ether (TAME) 30 Dibromomethane	ND ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC
	ND ND	1.0		/-	Suit. 4-bioliolidolobelizono		, (, , , , , , , ,	
31 1,2-Dichloropropane	ND ND	1.0	µg/L					
32 Trichloroethene		1.0	μg/L					
33 Bromodichloromethane	ND ND	1.0	μg/L					
34 4-Methyl-2-pentanone (MIBK)	ND ND		μg/L					
35 cis-1,3-Dichloropropene	ND	0.50	µg/L					
36 trans-1,3-Dichloropropene	ND ND	0.50	µg/L					
37 1,1,2-Trichloroethane	ND ND	1.0	μg/L					
38 Toluene	ND ND	0.50	μg/L					
39 1,3-Dichloropropane	ND	1.0	μg/L					

ND = Not Detected

2-Hexanone Dibromochloromethane

1,2-Dibromoethane (EDB)

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

μg/L

μg/L

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-09A

Client I.D. Number: HL-2

Daniel Jablonski Attn: Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/05/16 13:30

Received: 10/06/16

Extracted: 10/12/16 17:30 Analyzed: 10/12/16 17:30

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting			Reporting			
	Compound	Concentration	Lim	iit	_	Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L	
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L	
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	ND	0.50	µg/L	
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L	
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	µg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L	
7	Acetone	ND	10	μg/L	51	o-Xyiene	ND	0.50	µg/L	
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachlorcethane	ND	1.0	µg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L	
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1:0	μg/L	
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L	
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L	
13	trans-1.2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L	
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L	
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L	
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L	
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND .	1.0	μg/L	
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L	
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L	
20	Bromochloromethane	ND	1.0	μg/L	64	1.4-Dichlorobenzene	ND .	1.0	μg/L	
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0.	μg/L	
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L	
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	
25	1.1.1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	NÐ	2.0	μg/L	
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L	
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND [®]	2.0	μg/L	
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC	
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC	
31	1,2-Dichloropropane	ND	1.0	µg/L				-		
32	Trichloroethene	ND	1.0	μg/L						
33	Bromodichloromethane	ND	1.0	µg/L			•			
34	4-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L						
35	cis-1,3-Dichloropropene	ND	0.50	µg/L						
36	trans-1,3-Dichloropropene	ND	0.50	μg/L						
37	1,1,2-Trichloroethane	ND	1.0	μg/L						
38	Toluene	ND	0.50	μg/L						
39	1,3-Dichloropropane	ND ND	1.0	μg/L						
40		ND	50	ua/L						

ND = Not Detected

Dibromochloromethane 1,2-Dibromoethane (EDB) Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16 Report Date

Deporting

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Client I.D. Number: GMW-O-19

Alpha Analytical Number: CHH16100608-10A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/05/16 14:45

Received: 10/06/16

Extracted: 10/12/16 17:54 Analyzed: 10/12/16 17:54

Volatile Organics by GC/MS EPA Method 624/8260

		Reporting						Reporting		
	Compound	Concentration	Lim	_		Compound	Concentration		Limit	
1	Dichlorodifluoromethane	l ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L	
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L	
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xyleпe	ND	0.50	μg/L	
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L	
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L	
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	µg/L	
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L	
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L	
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μ g/L	
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0.	µg/L	
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	μg/L	
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	µg/L	
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L	
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND ·	1.0	µg/L	
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μ g/L	
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L	
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L	
20	Bromochioromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L	
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L	
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L	
24	1.2-Dichloroethane	ND	0.50	μ g/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μ g/L	
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L	
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L	
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L	
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	- 98	(70-130)	%REC	
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC	
31	1.2-Dichloropropane	ND	1.0	μg/L						
32	Trichloroethene	ND	1.0	μg/L						
33	Bromodichloromethane	ND	1.0	μg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L						
35	cis-1,3-Dichloropropene	ND	0.50	μg/L						
36	trans-1,3-Dichloropropene	ND	0.50	μg/L						
37	1,1,2-Trichloroethane	ND	1.0	μg/L						
38	Toluene	ND	0.50	μg/L						
39	1,3-Dichloropropane	ND	1.0	μg/L						
40	2-Hexanone	ND	5.0	μg/L						
41	Dibromochloromethane	ND	1.0	μg/L						
- :-		1	I							

ND = Not Detected

1,2-Dibromoethane (EDB)

Tetrachioroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16

Deporting

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-11A

Client I.D. Number: GMW-O-16

Attn: Daniel Jablonski

Phone: (213) 228-8271 Fax:

(714) 424-2135

Sampled: 10/05/16 15:30

Received: 10/06/16

Extracted: 10/12/16 18:18 Analyzed: 10/12/16 18:18

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chiorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND .	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1.1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1.2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1.1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinvl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND ·	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochioromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	111	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					

ND = Not Detected

35 cis-1,3-Dichloropropene

Toluene

2-Hexanone

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Dibromochloromethane

1,2-Dibromoethane (EDB)

trans-1,3-Dichloropropene

Roger Scholl

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

1.0 0.50

1.0

5.0

1.0 μg/L

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-12A

Client I.D. Number: EB-2

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 15:40

Received: 10/06/16

Extracted: 10/12/16 18:41 Analyzed: 10/12/16 18:41

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND .	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μ g/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μ g/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μ g/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μ g/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L_
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	118	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	102	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	107	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	µg/L					

ND = Not Detected

1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane (EDB)

Tetrachioroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/17/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-1

Job: KMEP

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-13A

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/05/16 00:00

Received: 10/06/16

Extracted: 10/12/16 19:05 Analyzed: 10/12/16 19:05

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	eporting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μ g/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0.	μ g/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND .	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.5	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	NĐ	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chioroform	ND	1.0	μg/L	65	4-isopropyitoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1 2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	117	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	102	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	. 74	Surr: 4-Bromofluorobenzene	113	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
		I	I						

ND = Not Detected

2-Hexanone
Dibromochloromethane

1,2-Dibromoethane (EDB)

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0

DoD ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/17/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Attn:

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100608-14A

Client I.D. Number: DUP-2

Phone: (213) 228-8271 Fax: (714) 424-2135

Daniel Jablonski

Sampled: 10/05/16 00:00

Received: 10/06/16

Extracted: 10/12/16 19:29 Analyzed: 10/12/16 19:29

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	ting				Re	porting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μ g/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	. 0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μ g/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0.	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chioropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichioroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	115	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	99	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	114	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	µg/L					
38	Toluene	ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					
40	2-Hexanone	ND	5.0	µg/L					
41	Dibromochloromethane	ND	1.0	μg/L					
42	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					

ND = Not Detected

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

μg/L

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16100608

Job:

KMEP DFSP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pН	
16100608-01A	GMW-39	Aqueous	2	
16100608-02A	MW-12	Aqueous	2	
16100608-03A	GMW-O-3	Aqueous	2	
16100608-04A	GMW-O-4	Aqueous	2	•
16100608-05A	GMW-SF-8	Aqueous	2	
16100608-06A	MW-8	Aqueous	2	
16100608-07A	GMW-SF-7	Aqueous	2	
16100608-08A	GMW-O-9	Aqueous	2	
16100608-09A	HL-2	Aqueous	2	
16100608-10A	GMW-O-19	Aqueous	2	
16100608-11A	GMW-O-16	Aqueous	2	
16100608-12A	EB-2	Aqueous	2	
16100608-13A	DUP-1	Aqueous	2	
16100608-14A	DUP-2	Aqueous	2	

10/17/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16		. (QC S	ummary	y Repor	t				Work Orde 16100608	
Method Blan	ık		Type N	ABLK Te	15B/C Ex Analy		10/07/2016 15:41				
Sample ID:	MBLK-37283	Units : mg/L			ANUAL_161			Prep		10/07/2016 11:35	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		ND 0.144	0.05	0.15		96	35	151			
Laboratory	Control Spike		Type L	.CS Te	est Code: El	A Met	hod SW80	15B/C E	ĸt		
File ID: 1	•				atch ID: 372			•		10/07/2016 15:14	
Sample ID:	LCS-37283	Units : mg/L			ANUAL_161			Prep		10/07/2016 11:35	0 1
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		3.13 0.167	0.0	5 2.5 0.15		125 111	73 35	135 151			
Sample Mat	rix Spike		Type I	VIS TO	est Code: El	A Met	hod SW80	15B/C E	xt .		
File ID: 4	•			Ва	atch ID: 372	8 3		Analy	sis Date:	10/07/2016 16:34	
Sample ID:	16100608-12AMS	Units : mg/L		Run ID: M	ANUAL_161	007G		Prep	Date:	10/07/2016 11:35	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		3.19 0.651	0.	1 2.5 0.6	0	128 109	64 33	161 162			
Sample Mat	rix Spike Duplicate		Type I	MSD To	est Code: El	PA Met	hod SW80	15B/C E	xt		•
File ID: 5				Ва	atch ID: 372	B3		Analy	sis Date:	10/07/2016 17:00	
Sample ID:	16100608-12AMSD	Units : mg/L		Run ID: M.	ANUAL_161	007G		Prep	Date:	10/07/2016 11:35	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.92 0.299	0.	1 2.5 0.3	0	117 99.7	64 33	161 162	3.19	1 8.9(40)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 14-Oct-16	C)C Si	ımmar	y Report				Work Orde 16100608		
Method Blank File ID: 40		Туре М		est Code: EP			15B/C / SW8260B Analysis Date:	10/12/2016 13:34		
Sample ID: MBLK MS15W1012B	Units : mg/L			ANUAL_1610		20	Prep Date:	10/12/2016 13:34		
Analyte	Result	PQL		_		LCL(ME)	UCL(ME) RPDRef		Qual	
			Эркчаі	Spkreival /	MINLO	LOC(WIL)	COL(ML) THE BITCH	vai vora B(Eining)		
TPH-P (GRO) Surr: 1.2-Dichloroethane-d4	ND 0.0109	0.05	0.01		109	70	130			
Surr: Toluene-d8	0.0109		0.01		99	70	130			
Surr: 4-Bromofluorobenzene	0.011		0.01		110	70	130			
Laboratory Control Spike	Type LCS Test Code: EPA Method SW8015B/C / SW8260B									
File ID: 44			В	atch ID: MS1	5W101	2B	Analysis Date:	10/12/2016 12:47		
Sample ID: GLCS MS15W1012B	Units : mg/L		Run ID: M.	ANUAL_1610)12J		Prep Date:	10/12/2016 12:47		
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	0.369	0.05	0.4		92	70	130			
Surr: 1,2-Dichloroethane-d4	0.0111		0.01		111	70	130			
Surr: Toluene-d8	0.00972		0.01		97	70	130			
Surr: 4-Bromofluorobenzene	0.0111		0.01		111	70	130			
Sample Matrix Spike		Type M	S T	est Code: EP	A Met	hod SW80	15B/C / SW8260B			
File ID: 42			В	atch ID: MS1	5W101	12B	Analysis Date:	10/12/2016 22:37		
Sample ID: 16100608-01AGS	Units : mg/L			ANUAL_1610			Prep Date:	10/12/2016 22:37		
Analyte	Result	PQL	SpkVal	SpkRefVal ¹	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	1.67	0.25	2		84	46	167			
Surr: 1,2-Dichloroethane-d4	0.0562		0.05		112	70	130			
Surr: Toluene-d8	0.0513		0.05		103	70	130			
Surr: 4-Bromofluorobenzene	0.0558		0.05		112	70	130			
Sample Matrix Spike Duplicate		Type M	ISD T	est Code: EP	A Met	hod SW80	15B/C / SW8260B			
File ID: 43			В	atch ID: MS1	5W10	12B	Analysis Date:	10/12/2016 23:01		
Sample ID: 16100608-01AGSD	Units : mg/L			ANUAL_161			Prep Date:	10/12/2016 23:01		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
TPH-P (GRO)	1.82	0.25			91	54	143 1.67	3 8.4(23)		
Surr: 1,2-Dichloroethane-d4	0.0562		0.05		112	70	130			
Surr: Toluene-d8	0.0486		0.05		97	70 70	130			
Surr: 4-Bromofluorobenzene	0.0578		0.05		116	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13

Date: 17-Oct-16		(Work Order: 16100608					
Method Blank			Type N	BLK	Test Code: EPA Method SW82 Batch ID: MS15W1012A		10/12/2016 13:34	
	MBLK MS15W1012A	Units : µg/L		Run in	: MANUAL_161012J	Prep Date:	10/12/2016 13:34	
Analyte	IDEN MOISTFICIEN	Result	PQL		Val SpkRefVal %REC LCL(ME)	·		Qua
		·		<u>-</u>	vai Spriteivai /orteo Ecc(ivie)	OOL(ML) IN DICH	var vorti B(cirrit)	
Dichlorodifluoron Chloromethane	netnane	ND ND	1					
/inyl chloride		ND	0.5					
Chloroethane		ND	1					
Bromomethane		ND	2					
Trichlorofluorome	ethane	ND	10					
Acetone		ND	10					
l,1-Dichloroethe Fertiary Butyl Alc		ND ND	1 10					
Dichloromethane		ND	5					
Freon-113		ND	10					
Carbon disulfide		ND	2.5	,				
rans-1,2-Dichlor		ND	1					
Methyl tert-butyl		ND	0.5					
1,1-Dichloroetha⊧ Vinyl acetate	ne	ND ND	1 50					
2-Butanone (MEI	K)	ND ND	10					
Di-isopropyl Ethe		ND	1					
cis-1,2-Dichloroe	thene	ND	1					
Bromochloromet	hane	ND	1					
Chloroform	() F() (FTDF)	ND	1					
	tyl Ether (ETBE)	ND	1					
2,2-Dichloroprop 1,2-Dichloroetha		ND ND	0.5					
1,1,1-Trichloroet		ND	1					
,1-Dichloroprop		ND	1					
Carbon tetrachlo		ND	1					
Benzene		ND	0.5	, ,				
	ethyl Ether (TAME)	ND	1					
Dibromomethane 1,2-Dichloroprop		ND ND	1					
Trichloroethene	ano	ND	1					
Bromodichlorom	ethane	ND	1					
4-Methyl-2-penta	none (MIBK)	ND	10)				
cis-1,3-Dichlorop		ND	0.5					
trans-1,3-Dichlor		ND	0.5					
1,1,2-Trichloroetl Toluene	nane	ND ND	0.5					
1,3-Dichloroprop	ane	ND ND	0.0	,				
2-Hexanone	uno	ND	5	,				
Dibromochlorom	ethane	ND	1					
1,2-Dibromoetha		ND	2					
Tetrachloroethen		ND	1					
1,1,1,2-Tetrachlo Chlorobenzene	proetnane	ND ND	1					
Ethylbenzene		ND ND	0.5					
m,p-Xylene		ND	0.5					
Bromoform		ND	1					
Styrene		ND	1					
o-Xylene	,,	ND	0.5					
I,1,2,2-Tetrachic	proethane	ND	1					
,2,3-Trichloroprosopropylbenzen		ND ND	2					
sopropyiberizeni Bromobenzene	•	ND ND	1					
n-Propylbenzene	•	ND	1					
I-Chlorotoluene		ND	1					
2-Chlorotoluene		ND	1					
1,3,5-Trimethylbe		ND	1					
ert-Butylbenzen		ND	1					
1,2,4-Trimethylbe		ND ND	1					
sec-Butylbenzen 1,3-Dichlorobenz		ND ND	1					
1,3-Dichlorobenz		ND ND	1					
4-Isopropyltoluer		ND	. 1					
1,2-Dichlorobenz		ND	1					

Date: 17-Oct-16	(Work Order: 16100608						
n-Butylbenzene	ND	1						
1,2-Dibromo-3-chloropropane (DBCP)	ND	5						
1,2,4-Trichlorobenzene	ND	2						
Naphthalene	ND	10						
1,2,3-Trichlorobenzene	ND	2						
Xylenes, Total	ND	0.5						
Surr: 1,2-Dichloroethane-d4	10.9		10	109	70	130		
Surr: Toluene-d8	9.85		10	99	70	130		
Surr: 4-Bromofluorobenzene	11		10	110	70	130		

Date: 17-Oct-16	III Nummary Ranori									
Laboratory Control Spike		Type LCS	Test C	ode: EPA Meth	od SW82	260B				
File ID: 2			Batch I	D: MS15W1012	2A	Analysis Da	nte: 10/12/2016 12:23			
Sample ID: LCS MS15W1012A	Units : µg/L	Ru	in ID: MANU	AL_161012J		Prep Date:	10/12/2016 12:23			
Analyte	Result				LCL(ME)	UCL(ME) RPD	RefVal %RPD(Limit)	Qua		
Dichlorodifluoromethane	6.52	1	10	65	32	145				
Chloromethane	8.82	2	10	88	40	145				
Vinyl chloride	9.52	1.	10	95	70	130				
Chloroethane	12.8	1	10	128	38	156				
Bromomethane	8.52	2	10	85	13	162				
Trichlorofluoromethane	11.7	1	10	117	46	154				
Acetone	202	10	200	101	22	188				
1,1-Dichloroethene	10.2	1	10	102	70	130				
Tertiary Butyl Alcohol (TBA)	102	10	100	102	48	148				
Dichloromethane	10.6	2	10	106	69	130				
Freon-113 trans-1,2-Dichloroethene	10.9	1	10	109	70 70	136				
Methyl tert-butyl ether (MTBE)	10.5 11.9	1 0.5	10 10	105 119	70 63	130 137				
1,1-Dichloroethane	11.1	0.5 1	10	111	70	130				
2-Butanone (MEK)	224	10	200	112	26	183				
Di-isopropyl Ether (DIPE)	12.5	10	10	125	69	133				
cis-1,2-Dichloroethene	10.6	1	10	106	70	130				
Bromochloromethane	10.7	1	10	107	70	133				
Chloroform	10.5	i 1	10	105	70	130				
Ethyl Tertiary Butyl Ether (ETBE)	12.3	1	10	123	66	135				
2,2-Dichloropropane	12.5	1	10	125	70	149				
1,2-Dichloroethane	11.8	1	10	118	70	133				
1,1,1-Trichloroethane	11.4	1	10	114	70	135				
1,1-Dichloropropene	11.4	1	10	114	70	130				
Carbon tetrachloride	11.4	1	10	114	63	143				
Benzene	10.4	0.5	10	104	70	130				
Tertiary Amyl Methyl Ether (TAME)	12	1	10	120	70	133				
Dibromomethane	11.4	1	10	114	70	130				
1,2-Dichloropropane	11.4	1	10	114	70	130				
Trichloroethene	10.5	1	10	105	68	138				
Bromodichloromethane 4-Methyl-2-pentanone (MIBK)	11.7	1	10	117	58	147 140				
cis-1,3-Dichloropropene	27.7 11.9	2.5 1	25 10	111 119	59 70	130				
trans-1,3-Dichloropropene	10.6	1	10	106	70 70	131				
1,1,2-Trichloroethane	11.3	1	10	113	70	130				
Toluene	11	0.5	10	110	70	130				
1,3-Dichloropropane	11.3	1	10	113	70	130				
2-Hexanone	112	5	100	112	48	157				
Dibromochloromethane	9.84	1	10	98	49	147				
1,2-Dibromoethane (EDB)	22.3	2	20	112	70	131				
Tetrachloroethene	10.6	1	10	106	70	130				
1,1,1,2-Tetrachloroethane	11	1	10	110	70	130				
Chlorobenzene	11	1	10	110	70	130				
Ethylbenzene	10.5	0.5	10	105	70	130				
m,p-Xylene	10	0.5	. 10	100	65	139				
Bromoform	9.34	1	10	93	60	144				
Styrene	9.91	1	10	99	55	144				
o-Xylene	10	0.5	10	100	70 70	130				
1,1,2,2-Tetrachloroethane	10.2	1	10	102	70 70	130				
1,2,3-Trichloropropane Isopropylbenzene	21.1	2 1	20	105 130	70 69	130 136				
Bromobenzene	13 12.6	1	10 10	130	70	130	•			
n-Propylbenzene	13.3	1	10	133	70 70	132		L51		
4-Chlorotoluene	12.7	1	10	127	70	132		_01		
2-Chlorotoluene	13	1	10	130	70 70	130				
1,3,5-Trimethylbenzene	13.1	1	10	131	70	134				
tert-Butylbenzene	12.6	1	10	126	63	139				
1,2,4-Trimethylbenzene	13	1	10	130	70	133				
sec-Butylbenzene	12.6	1	10	126	70	132				
1,3-Dichlorobenzene	12.0	1	10	120	70	130				
1,4-Dichlorobenzene	11.6	1	10	116	70	130				
4-isopropyltoluene	12.5	1	10	125	40	161				
1,2-Dichlorobenzene	10.9	1	10	109	70	130				
n-Butylbenzene	12.6	1	10	126	69	134				
1,2-Dibromo-3-chloropropane (DBCP)	37.9	.3	50	76	67	130				

Date: 17-Oct-16	(Work Order: 16100608					
1,2,4-Trichlorobenzene	5.54	2	10	55	62	131	L2
Naphthalene	5.77	2	10	58	39	149	
1,2,3-Trichlorobenzene	5.53	2	10	55	54	135	
Xylenes, Total	20	0.5	20	100	70	130	
Surr: 1,2-Dichloroethane-d4	10.7		10	107	70	130	
Surr: Toluene-d8	9.78		10	98	70	130	
Surr: 4-Bromofluorobenzene	11.4		10	114	70	130	

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

QC Summary Report 17-Oct-16 Type MS Test Code: EPA Method SW8260B Sample Matrix Spike Batch ID: MS15W1012A Analysis Date: 10/12/2016 21:50 File ID: 1 Sample ID: 16100608-01AMS Units: µg/L Run ID: MANUAL_161012J Prep Date: 10/12/2016 21:50 SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Analyte Result **PQL** Qual Dichlorodifluoromethane 23.1 2.5 Chloromethane 40.7 Vinyl chloride 38.9 2.5 Chloroethane 2.5 36.3 Bromomethane 32.3 Trichlorofluoromethane 43.8 2.5 Acetone 1,1-Dichloroethene 39.3 2.5 Tertiary Butyl Alcohol (TBA) Dichloromethane 45.3 Freon-113 35.2 2.5 trans-1,2-Dichloroethene 2.5 Methyl tert-butyl ether (MTBE) 53.8 1.3 1.1-Dichloroethane 47.4 2.5 2-Butanone (MEK) Di-isopropyl Ether (DIPE) 2.5 55.2 cis-1,2-Dichloroethene 45.7 2.5 Bromochloromethane 45.8 2.5 Chloroform 44 5 2.5 Ethyl Tertiary Butyl Ether (ETBE) 54 2 2,2-Dichloropropane 42.5 2.5 1,2-Dichloroethane 52.6 2.5 1,1,1-Trichloroethane 1,1-Dichloropropene 42 1 2.5 Carbon tetrachloride 42.6 2.5 Benzene 1.3 Tertiary Amyl Methyl Ether (TAME) 54.2 2.5 Dibromomethane 1,2-Dichloropropane 48.6 2.5 Trichloroethene 39.7 2.5 Bromodichloromethane 50.5 2.5 4-Methyl-2-pentanone (MIBK) cis-1,3-Dichloropropene 2.5 trans-1,3-Dichloropropene 42.8 2.5 1.1.2-Trichloroethane 48.7 2.5 Toluene 42.7 1.3 1,3-Dichloropropane 2.5 2-Hexanone Dibromochloromethane 40.5 2.5 1,2-Dibromoethane (EDB) 92.8 Tetrachloroethene 35.4 2.5 1,1,1,2-Tetrachloroethane 44.9 2.5 Chlorobenzene 42.3 2.5 Ethylbenzene 37.8 m,p-Xylene 36.9 1.3 Bromoform 38.4 2.5 Styrene 36.9 2.5 o-Xvlene 37.5 1.3 1,1,2,2-Tetrachloroethane 2.5 42.9 1,2,3-Trichloropropane 88.9 Isopropylbenzene 44.2 2.5 Bromobenzene 49.1 2.5 n-Propylbenzene 43.2 2.5 4-Chlorotoluene 2.5 2-Chlorotoluene 46.7 2.5 n 1,3,5-Trimethylbenzene 45.5 2.5 tert-Butylbenzene 2.5 1,2,4-Trimethylbenzene 2.5 45.8 sec-Butylbenzene 39.6 2.5 1,3-Dichlorobenzene 41.8 2.5 1.4-Dichlorobenzene 40.5 2.5 4-Isopropyltoluene 2.5 1,2-Dichlorobenzene 2.5 n-Butylbenzene 36.2 2.5 M2 1,2-Dibromo-3-chloropropane (DBCP) 98.3 n

Date: 17-Oct-16	(Work Order: 16100608						
1,2,4-Trichlorobenzene	6.61	10	50	0	13	57	134	M57
Naphthalene	3.21	10	50	0	6.4	31	157	M2
1,2,3-Trichlorobenzene	2.53	10	50	0	5.1	52	138	M2
Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	74.4 56.5 47.1 56.2	1.3	100 50 50 50	0	74 113 94 112	70 70 70 70	130 130 130 130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Oct-16	(QC Sı	ımmary	Report					Work Order: 16100608	
Sample Matrix Spike Duplicate		Туре М		t Code: EP			60B			
File ID: 2			Bate	ch ID: MS1	5W101	I2A	Analy	sis Date: 1	0/12/2016 22:14	
Sample ID: 16100608-01AMSD	Units : µg/L		Run ID: MA!	NUAL_1610)12J		Prep I	Date: 1	0/12/2016 22:14	
Analyte	Result	PQL	SpkVal S	SpkRefVal ⁹	%REC	LCL(ME)	UCL(ME)	RPDRefVa	l %RPD(Limit)	Qua
Dichlorodifluoromethane	22.9	2.5	50	0	46	12	150	23.07	1.0(38)	
Chloromethane	38.5	10	50	ŏ	77	26	146	40.66	5.5(31)	
Vinyl chloride	38.1	2.5	50	0	76	46	142	38.91	2.1(25)	
Chloroethane	45.8	2.5	50	0	92	25	164	36.29	23.2(40)	
Bromomethane	36.4	10	50	0	73	10	172	32.34	11,9(40)	
Trichlorofluoromethane	43.8	2.5	50	0	88	32	164	43.81	0.1(34)	
Acetone	893	50	1000	0	89	10	188	900.7	0.8(39)	
1,1-Dichloroethene	38.1	2.5	50 500	0	76	62	133	39.32	3.2(35)	
Tertiary Butyl Alcohol (TBA) Dichloromethane	470 43.4	25 10	500	0	94 87	44 69	155 130	451.8 45.3	4.0(33)	
Freon-113	45.4 35.9	2.5	50 50	0	72	56	144	35.18	4.4(26) 2.1(40)	
trans-1,2-Dichloroethene	40.5	2.5	50 50	0	81	67	131	41.98	3.5(27)	
Methyl tert-butyl ether (MTBE)	52.3	1.3	50	ő	101	56	140	53.75	2.8(40)	
1,1-Dichloroethane	45.1	2.5	50	ŏ	90	67	130	47.41	5.1(20)	
2-Butanone (MEK)	958	50	1000	Ö	96	26	183	970.2	1.3(22)	
Di-isopropyl Ether (DIPE)	51.5	2.5	50	Ō	103	59	138	55.23	7.1(20)	
cis-1,2-Dichloroethene	43.3	2.5	50	0	87	70	130	45.69	5.4(20)	
Bromochloromethane	44.2	2.5	50	0	88	70	134	45.82	3.6(20)	
Chloroform	42.3	2.5	50	0	85	69	130	44.54	5.3(22)	
Ethyl Tertiary Butyl Ether (ETBE)	51.1	2.5	50	Q	102	62	135	54.2	5.9(40)	
2,2-Dichloropropane	39.9	2.5	50	0	80	44	149	42.49	6.3(23)	
1,2-Dichloroethane	50.3	2.5	50	0	101	64 65	139	52.58	4.5(20)	
1,1,1-Trichloroethane 1,1-Dichloropropene	44.2	2.5	50	0	88 82	65 68	139	46.25 42.12	4.6(20)	
Carbon tetrachloride	40.9 41.9	2.5 2.5	50 50	0	82 84	68 56	134 146	42.12	2.9(20) 1.8(21)	
Benzene	39.8	1.3	50 50	0	80	67	134	42.95	7.5(21)	
Tertiary Amyl Methyl Ether (TAME)	50.1	2.5	50 50	0	100	64	135	54.17	7.8(31)	
Dibromomethane	45.1	2.5	50	ŏ	90	70	132	49.19	8.8(20)	
1,2-Dichloropropane	41.7	2.5	50	0	83	69	134	48.57	15.2(20)	
Trichloroethene	38.1	2.5	50	0	76	68	138	39.74	4.2(20)	
Bromodichloromethane	46.3	2.5	50	0	93	58	147	50.46	8.6(20)	
4-Methyl-2-pentanone (MIBK)	102	13	125	0	82	49	140	118.7	15.3(24)	
cis-1,3-Dichloropropene	40.1	2.5	50	0	80	61	130	46.3	14.4(20)	
trans-1,3-Dichloropropene	38.9	2.5	50	0	78	62	131	42.77	9.6(21)	
1,1,2-Trichloroethane Toluene	42.5	2.5	50	0	85 75	70	131	48.65	13.5(20)	
1,3-Dichloropropane	37.3 4 2.8	1.3 2.5	50 50	0	75 86	38 70	130 130	42.69 46.97	13.5(20) 9.4(20)	
2-Hexanone	418	2.5	500	0	84	25	157	472.3	12.2(23)	
Dibromochloromethane	38	2.5	50	0	76	49	147	40.47	6.4(20)	
1,2-Dibromoethane (EDB)	86.2	5	100	ŏ	86	70	131	92.78	7.4(20)	
Tetrachloroethene	35	2.5	50	Ö	70	63	134	35.41	1.3(20)	
1,1,1,2-Tetrachloroethane	42.2	2.5	50	0	84	70	133	44.93	6.3(20)	
Chlorobenzene	39.7	2.5	50	0	79	70	130	42.34	6.6(20)	
Ethylbenzene	35.5	1.3	50	. 0	71	70	130	37.78	6.1(20)	
m,p-Xylene	33.6	1.3	50	0	67	65	139	36.88	9.3(20)	
Bromoform	38.5	2.5	50	0	77	60	144	38.43	0.3(21)	
Styrene	35.2	2.5	50	0	70	53	144	36.92	4.9(31)	
o-Xylene 1,1,2,2-Tetrachloroethane	34.9 41.9	1.3 2.5	50 50	0	70 84	69 67	130 134	37.48 42.86	7.0(20) 2.4(20)	
1,2,3-Trichloropropane	86.8	10	100	0	87	70	130	88.87	2.4(20)	
Isopropylbenzene	42.3	2.5	50	0	85	64	136	44.15	4.2(20)	
Bromobenzene	46	2.5	50 50	0	92	69	130	49.09	6.5(20)	
n-Propylbenzene	42.4	2.5	50	Ö	85	65	132	43.2	1.9(40)	
4-Chlorotoluene	42.5	2.5	50	0	85	69	132	44.97	5.6(20)	
2-Chlorotoluene	43.7	2.5	50	0	87	69	130	46.66	6.7(20)	
1,3,5-Trimethylbenzene	43.4	2.5	50	0	87	64	135	45.5	4.7(21)	
tert-Butylbenzene	44.5	2.5	50	0	89	63	139	41.62	6.6(20)	
1,2,4-Trimethylbenzene	47.7	2.5	50	0	95	62	135	45.83	3.9(24)	
sec-Butylbenzene	43.1	2.5	50	0	86	68 70	132	39.61	8.5(20)	
1,3-Dichlorobenzene	45	2.5	50	0	90	70 70	130	41.83	7.2(20)	
1,4-Dichlorobenzene	42.4 43.3	2.5	50 50	0	85 87	70 40	130 161	40.46 38.96	4.7(20) 10.6(22)	
4-Isopropyltoluene 1,2-Dichlorobenzene	43.3 40.2	2.5 2.5	50 50	0 0	87 80	40 70	130	37.98	5.7(20)	
n-Butylbenzene	39.3	2.5	50 50	0	79	58	135	36.21	8.2(24)	
1,2-Dibromo-3-chloropropane (DBCP)	157	15	250	ő	63	63	131	98.27	46.0(29)	R58

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Oct-16	(QC Sun	nmary R	lepor	t				Work C 16100	
1,2,4-Trichlorobenzene	18.8	10	50	0	38	57	134	6.61	95.7(30)	M57R58
Naphthalene	18	10	50	0	36	31	157	3.21	139.0(40)	R58
1,2,3-Trichlorobenzene	14.5	10	50	0	29	52	138	2.53	141.0(39)	M2 R58
Xylenes, Total	68.6	1.3	100	0	69	70	130	74.36	8.1(22)	M2
Surr: 1,2-Dichloroethane-d4	61.9		50		124	70	130			
Surr: Toluene-d8	45		50		90	70	130			
Surr: 4-Bromofluorobenzene	54.1		50		108	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- R58 = MS/MSD RPD exceeded the laboratory control limit.
- L2 = The associated blank spike recovery was below laboratory acceptance limits.
- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.
- M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.
- M57 = Matrix spike recovery was below laboratory acceptance limits.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

CA

Page: 1 of 2

WorkOrder: CHHL16100608

Report Due By: 5:00 PM On: 17-Oct-16

EDD Required: Yes daniel.jablonski@ch2m.com matthew.mayry@ch2m.com EMail Address (213) 228-8271 x (213) 228-8271 x Phone Number Report Attention Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

CH2M Hill

Client:

Los Angeles, CA 90017

21st Floor

Sampled by: Kevin Thompson

Date Printed Samples Received 06-Oct-16 Cooler Temp 1 °C

06-Oct-16 Job: KMEP DFSP Norwalk = Final Rpt, MBLK, LCS, MS/MSD With Surrogates Client's COC #: none QC Level: S3

									Requested Tests	
Alpha	Client		Collection No. of Bottles	No. of	Bottles		TPH/E_W TPH	TPH/P_W	w_cov	
Sample ID	Sample ID	Matr	Matrix Date	Alpha	Sub	TAT			Sample Remarks	Remarks
CHH16100608-01A GMW-39	GMW-39	ΑQ	10/05/16 07:20	9	0		TPHE(0.05) TPHE +Vinyl +V	TPHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100608-02A MW-12	MW-12	ΑQ	10/05/16 08:05	9	0		TPHE(0.05) TPHI +Vinyl +V acetate ac	TPHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100608-03A	GMW-O-3	ΑQ	10/05/16 08:50	9	0	2	TPHE(0.05) TPHI +Vinyl +V acetate ac	TPHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acctate	
CHH16100608-04A GMW-O-4	GMW-0-4	AQ	10/05/16 09:30	9	0	2	TPHE(0.05) TPHI +Vinyl +V acetate ac	TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acctate	
CHH16100608-05A GMW-SF-8	GMW-SF-8	ΑQ	10/05/16 10:20	9	0	2	TPHE(0.05) TPHI +Vinyl +V acetate ac	TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acetate	
CHH16100608-06A	MW-8	AQ	10/05/16	9	0	2	TPHE(0.05) TPHI +Vinyl +1 acetate ac	TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acctate	
CHH16100608-07A GMW-SF-7	GMW-SF-7	ΑQ	10/05/16 11:59	9	0	2	TPHE(0.05) TPH +Vinyl +V acetate ac	TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acctate	
CHH16100608-08A GMW-O-9	GMW-O-9	AQ	10/05/16 12:45	9	0	2	TPHE(0.05) TPH +Vinyl +V acetate ac	TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acctate	

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

Date/Time	nc. 10/6/16 1330	
Company	Alpha Analytical, Inc	
Print Name	Arghan C.	
Signature		
	Logged in by:	

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Page: 2 of 2

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: CHHL16100608 CA EMail Address

daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x Phone Number Report Attention Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

CH2M Hill

Client:

Los Angeles, CA 90017

21st Floor

Report Due By: 5:00 PM On: 17-Oct-16 Samples Received Sampled by: Kevin Thompson EDD Required: Yes Cooler Temp

Date Printed

06-Oct-16

06-Oct-16 1°C Job: KMEP DFSP Norwalk = Final Rpt, MBLK, LCS, MS/MSD With Surrogates Client's COC #: none QC Level: S3

							Requested Tests	
Alpha Client	Collection No. of Bottles	No. of	3ottles	!	TPH/E_W	TPH/P_W	voc_w	
Sample ID Sample ID	ID Matrix Date	Alpha Sub		TAT			Sam	Sample Remarks
CHH16100608-09A HL-2	AQ 10/05/16	9	0		TPHE(0.05) TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate acetate	PHE(0.05) 1+Vinyl acetate	PHE(0.05) +Vinyl acetate	
CHH16100608-10A GMW-O-19	2-19 AQ 10/05/16 14:45	9	0		TPHE(0.05) TPHE(0.05) , +Vinyl +Vinyl acetate acetate	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acctate	
CHH16100608-11A GMW-O-16	3-16 AQ 10/05/16 15:30	9	0		TPHE(0.05) T+Vinyl acetate	TPHE(0.05) TPHE(0.05) +Vinyl acetate	PPHE(0.05) +Vinyl acctate	
CHH16100608-12A EB-2	AQ 10/05/16 15:40	9	0	7	TPHE(0.05) T+Vinyl acetate	TPHE(0.05) TPHE(0.05) +Vinyl acetate acetate	PPHE(0.05) +Vinyl acetate	
CHH16100608-13A DUP-1	AQ 10/05/16 00:00	9	0	7	TPHE(0.05)	PHE(0.05) +Vinyl acetate	PPHE(0.05) +Vinyl acetate	
CHH16100608-14A DUP-2	AQ 10/05/16 00:00	9	0	7	TPHE(0.05)	PHE(0.05) +Vinyl acetate	PPHE(0.05) +Vinyl acctate	

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. Comments:

,	Signature	Print Name	Company	Date/Time
Logged in by:		Meghan C.	Alpha Analytical, Inc.	0821 3/9/01

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

LAB SAMPLE # 4 oţ CONDITION Alpha Analytical COC DATE \otimes STATUS さ 8 Standard 16100608-0 9 Dan Jabionski CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk Report to: ADD'L INFORMATION RESULTS NEEDED Billing Information: Kinder Morgan NO LATER THAN 恶 RECEIVED BY RECEIVED BY RECEIVED BY CONDUCT ANALYSIS TO DETECT COOLER# TIME SENT Thomoson TIME VOC's & Oxygenates X X X $\frac{X}{X}$ X (EPA 8260B) X (M2108 A93) bH9T (ePA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 VORS Preservation | Type CONTAINERS ならろ エピ 15306 Norwalk Blvd, Norwalk PERFORMED BY 2 MATRIX AQ= Water Kinder Morgan **DFSP Norwalk** 0920 976 0820 1.122 1330 2005 1020 1245 7445 TIME TIME 1159 19.5.01 TECH SERVICES, INC. 10-5-16 DATE BLAINE CHAIN OF CUSTODY GMW-0-9 G.MW-0-19 GMW-SF-8 HE SE-T GMW-0-4 C-0-4 9 mw-39 MW-8 RELEASED BY RELEASED BY オーナ COMPLETED SHIPPED VIA MW-T SAMPLE 1.D. SAMPLING CLIENT SITE

TIME 00 LAB SAMPLE # 8 Alpha Analytical COC 2 of 2 DATE 10/5/6 CONDITION DATE 4 せ Standard STATUS Dan Jablonski CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 Kinder Morgan 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk Report to: ADD'L INFORMATION CHH16(00) RESULTS NEEDED NO LATER THAN Billing Information: RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT TIME SENT Tresolvent TIME TIME VOC's & Oxygenates (EPA 8260B) (M2108 A93) bH9T (PPA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 1000 CONTAINERS Preservation | Type とうと 呈 15306 Norwalk Blvd, Norwalk PERFORMED BY e e 9 SAMPLING MATRIX 3 AQ= Water 3 3 **DFSP Norwalk** Kinder Morgan 07 S1 1530 TIME TIME 10.5.10 10 15 TECH SERVICES, INC. g mw - or 16 10-5.16 DATE BLAINE DATE CHAIN OF CUSTODY RELEASED BY RELEASED BY RELEASED BY 2-000 COMPLETED SHIPPED VIA SAMPLE I.D. SAMPLING 2-63 DU0-1 CLIENT SITE

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135 Date Received: 10/07/16

Job: KMEP DFSP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

				Reporting	Date	Date
		Parameter	Concentration	Limit	Extracted	Analyzed
Client ID:	GMW-26					•
Lab ID:	CHH16100702-01A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/08/16 02:11
Date Sampled	10/06/16 08:05	Surr: Nonane	101	(53-145) %REC	10/07/16 12:08	10/08/16 02:11
Zuit Suinpies	10/00/10 00:05	TPH-P (GRO)	ND	0.050 mg/L	10/17/16 13:29	10/17/16 13:29
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/17/16 13:29	10/17/16 13:29
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 13:29	10/17/16 13:29
		Surr: 4-Bromofluorobenzene	121	(70-130) %REC	10/17/16 13:29	10/17/16 13:29
Client ID:	HL-3					
Lab ID:	CHH16100702-02A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/08/16 02:38
Date Sampled	10/06/16 08:40	Surr: Nonane	92	(53-145) %REC	10/07/16 12:08	10/08/16 02:38
•		TPH-P (GRO)	ND	0.050 mg/L	10/17/16 13:52	10/17/16 13:52
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/17/16 13:52	10/17/16 13:52
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 13:52	10/17/16 13:52
		Surr: 4-Bromofluorobenzene	108	(70-130) %REC	10/17/16 13:52	10/17/16 13:52
Client ID:	GMW-1					
Lab ID:	CHH16100702-03A	TPH-E (DRO)	0.15	0.050 mg/L	10/07/16 12:08	10/08/16 03:05
Date Sampled	10/06/16 09:33	Surr: Nonane	95	(53-145) %REC	10/07/16 12:08	10/08/16 03:05
-		TPH-P (GRO)	0.057	0.050 mg/L	10/17/16 14:16	10/17/16 14:16
		Surr: 1,2-Dichloroethane-d4	111	(70-130) %REC	10/17/16 14:16	10/17/16 14:16
		Surr: Toluene-d8	96	(70-130) %REC	10/17/16 14:16	10/17/16 14:16
		Surr: 4-Bromofluorobenzene	110	(70-130) %REC	10/17/16 14:16	10/17/16 14:16
Client ID:	PZ-5					
Lab ID:	CHH16100702-04A	TPH-E (DRO)	0.97	0.050 mg/L	10/07/16 12:08	10/08/16 03:31
Date Sampled	10/06/16 10:37	Surr: Nonane	101	(53-145) %REC	10/07/16 12:08	10/08/16 03:31
		TPH-P (GRO)	1.2	0.20 mg/L	10/18/16 15:45	10/18/16 15:45
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/18/16 15:45	10/18/16 15:45
		Surr: Toluene-d8	97	(70-130) %REC	10/18/16 15:45	10/18/16 15:45
		Surr: 4-Bromofluorobenzene	106	(70-130) %REC	10/18/16 15:45	10/18/16 15:45
Client ID:	MW-18(MID)					
Lab ID:	CHH16100702-05A	TPH-E (DRO)	0.49	0.050 mg/L	10/07/16 12:08	10/08/16 03:58
Date Sampled	10/06/16 12:46	Surr: Nonane	92	(53-145) %REC	10/07/16 12:08	10/08/16 03:58
		TPH-P (GRO)	0.20	0.10 mg/L	10/18/16 14:10	10/18/16 14:10
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/18/16 14:10	10/18/16 14:10
		Surr: Toluene-d8	98	(70-130) %REC	10/18/16 14:10	10/18/16 14:10
		Surr: 4-Bromofluorobenzene	106	(70-130) %REC	10/18/16 14:10	10/18/16 14:10
Client ID:	GMW-28					
Lab ID:	CHH16100702-06A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:08	10/08/16 04:24
Date Sampled	10/06/16 13:30	Surr: Nonane	95	(53-145) %REC	10/07/16 12:08	10/08/16 04:24
		TPH-P (GRO)	ND	0.050 mg/L	10/17/16 14:40	10/17/16 14:40
		Surr: 1,2-Dichloroethane-d4	112	(70-130) %REC	10/17/16 14:40	10/17/16 14:40
		Surr: Toluene-d8	96	(70-130) %REC	10/17/16 14:40	10/17/16 14:40
		Surr: 4-Bromofluorobenzene	104	(70-130) %REC	10/17/16 14:40	10/17/16 14:40

KMEP DFSP Norwalk Page 1 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	PZ-2					
Lab ID :	CHH16100702-07A	TPH-E (DRO)	0.55	0.050 mg/L	10/07/16 12:08	10/08/16 04:51
	10/06/16 14:05	Surr: Nonane	97	(53-145) %REC	10/07/16 12:08	10/08/16 04:51
Date Samples	10/00/10 11/00	TPH-P (GRO)	0.41	0.050 mg/L	10/17/16 15:03	10/17/16 15:03
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/17/16 15:03	10/17/16 15:03
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 15:03	10/17/16 15:03
		Surr: 4-Bromofluorobenzene	104	(70-130) %REC	10/17/16 15:03	10/17/16 15:03
Client ID:	GMW-23			,		
Lab ID:	CHH16100702-08A	TPH-E (DRO)	6.1	0.050 mg/L	10/07/16 12:08	10/08/16 05:17
Date Sampled	10/06/16 14:33	Surr: Nonane	96	(53-145) %REC	10/07/16 12:08	10/08/16 05:17
•		TPH-P (GRO)	0.13	0.050 mg/L	10/17/16 15:27	10/17/16 15:27
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/17/16 15:27	10/17/16 15:27
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 15:27	10/17/16 15:27
		Surr: 4-Bromofluorobenzene	102	(70-130) %REC	10/17/16 15:27	10/17/16 15:27
Client ID:	GMW-25				•	
Lab ID:	CHH16100702-09A	TPH-E (DRO)	0.78	0.050 mg/L	10/07/16 12:16	10/08/16 15:52
Date Sampled	10/06/16 15:15	Surr: Nonane	90	(53-145) %REC	10/07/16 12:16	10/08/16 15:52
•		TPH-P (GRO)	0.070	0.050 mg/L	10/17/16 15:50	10/17/16 15:50
		Surr: 1,2-Dichloroethane-d4	111	(70-130) %REC	10/17/16 15:50	10/17/16 15:50
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 15:50	10/17/16 15:50
		Surr: 4-Bromofluorobenzene	104	(70-130) %REC	10/17/16 15:50	10/17/16 15:50
Client ID:	GMW-9					
Lab ID:	CHH16100702-10A	TPH-E (DRO)	0.14	0.050 mg/L	10/07/16 12:16	10/08/16 16:18
Date Sampled	10/06/16 15:43	Surr: Nonane	97	(53-145) %REC	10/07/16 12:16	10/08/16 16:18
•		TPH-P (GRO)	0.067	0.050 mg/L	10/17/16 16:14	10/17/16 16:14
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/17/16 16:14	10/17/16 16:14
		Surr: Toluene-d8	98	(70-130) %REC	10/17/16 16:14	10/17/16 16:14
		Surr: 4-Bromofluorobenzene	107	(70-130) %REC	10/17/16 16:14	10/17/16 16:14
Client ID:	DUP-5					
Lab ID:	CHH16100702-11A	TPH-E (DRO)	1.1	0.050 mg/L	10/07/16 12:16	10/08/16 16:45
Date Sampled	10/06/16 00:00	Surr: Nonane	105	(53-145) %REC	10/07/16 12:16	10/08/16 16:45
		TPH-P (GRO)	0.95	0.10 mg/L	10/18/16 16:08	10/18/16 16:08
		Surr: 1,2-Dichloroethane-d4	110	(70-130) %REC	10/18/16 16:08	10/18/16 16:08
		Surr: Toluene-d8	97	(70-130) %REC	10/18/16 16:08	10/18/16 16:08
		Surr: 4-Bromofluorobenzene	107	(70-130) %REC	10/18/16 16:08	10/18/16 16:08
Client ID:	DUP-6					
Lab ID:	CHH16100702-12A	TPH-E (DRO)	0.70	0.050 mg/L	10/07/16 12:16	10/08/16 17:11
Date Sampled	10/06/16 00:00	Surr: Nonane	99	(53-145) %REC	10/07/16 12:16	10/08/16 17:11
		TPH-P (GRO)	0.37	0.10 mg/L	10/18/16 14:34	10/18/16 14:34
		Surr: 1,2-Dichloroethane-d4	109 °	(70-130) %REC	10/18/16 14:34	10/18/16 14:34
		Surr: Toluene-d8	97	(70-130) %REC	10/18/16 14:34	10/18/16 14:34
		Surr: 4-Bromofluorobenzene	108	(70-130) %REC	10/18/16 14:34	10/18/16 14:34
Client ID:	EB-5					
Lab ID:	CHH16100702-14A	TPH-E (DRO)	ND	0.050 mg/L	10/07/16 12:16	10/08/16 17:38
Date Sampled	10/06/16 16:00	Surr: Nonane	97	(53-145) %REC	10/07/16 12:16	10/08/16 17:38
		TPH-P (GRO)	ND	0.050 mg/L	10/17/16 17:01	10/17/16 17:01
		Surr: 1,2-Dichloroethane-d4	109	(70-130) %REC	10/17/16 17:01	10/17/16 17:01
		Surr: Toluene-d8	97	(70-130) %REC	10/17/16 17:01	10/17/16 17:01
		Surr: 4-Bromofluorobenzene	109	(70-130) %REC	10/17/16 17:01	10/17/16 17:01

KMEP DFSP Norwalk Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13 ND = Not Detected

Roger Scholl
Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Page 3 of 3 KMEP DFSP Norwalk

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: GMW-26

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-01A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 08:05

Received: 10/07/16

Extracted: 10/17/16 13:29 Analyzed: 10/17/16 13:29

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				R	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropyibenzene	ND	1.0	μg/L
11	Freon-113	ND	. 10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	0.64	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	2.0	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND ·	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND .	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	2.3	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	121	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	µg/L					
38	Toluene	ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	0.11	1	1	· -					

ND = Not Detected

2-Hexanone

Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

40

41

42

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@aipha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0 μg/L

2.0 μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-02A

Client I.D. Number: HL-3

Daniel Jablonski Attn: (213) 228-8271 Phone:

(714) 424-2135 Fax:

Sampled: 10/06/16 08:40

Received: 10/07/16

Extracted: 10/17/16 13:52 Analyzed: 10/17/16 13:52

Volatile Organics by GC/MS EPA Method 624/8260

			Report	ting				Re	eporting
	Compound	Concentration	Limi	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1,0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1:0	μg/L	57	4-Chiorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND :	1.0	μg/L
15	1,1-Dichloroethane	- ND	1.0	µg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND .	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1.4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1.1.1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1.2-Dichloroethane-d4	109	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	108	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L	7.7	Cont. 4 Distriction del Contraction		, (,	
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L μg/L					
37	1.1.2-Trichloroethane	ND ND	1.0	μg/L μg/L					
38	Toluene	ND ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L μg/L			•		
40	2-Hexanone	ND ND	5.0	μg/L μg/L					
41	Dibromochloromethane	ND ND	1.0						
71	Distriction indication in the control in the contro	1 100	1	µg/L					

ND = Not Detected

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0 μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-03A

Client I.D. Number: GMW-1

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/06/16 09:33

Received: 10/07/16

Extracted: 10/17/16 14:16 Analyzed: 10/17/16 14:16

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	porting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	2.0	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	2.9	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	0.93	0.50	µg/L
8	1,1-Dichloroethene	ND .	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	13	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND ND	10	µg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	2.0	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	1.2	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	ug/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	ug/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND .	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	. ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND .	2.0	μg/L
28	Benzene	0.56	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1,0	µg/L	74	Surr: 4-Bromofluorobenzene	110	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	µg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					
41	Dibromochloromethane	ND	1.0	μg/L					

ND = Not Detected

43

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

Roger Scholl

ND

ND

Kandy Saulman

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0

1.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

THE STORE

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-04A

Client I.D. Number: PZ-5

Attn: Daniel Jablonski Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/06/16 10:37

Received: 10/07/16

Extracted: 10/18/16 15:45 Analyzed: 10/18/16 15:45

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	2.0	µg/L	45	Chlorobenzene	ND	2.0	µg/L
2	Chloromethane	ND	8.0	μg/L	46	Ethylbenzene	ND .	1.0	μg/L
3	Vinyl chloride	ND	2.0	μg/L	47	m,p-Xylene	1.4	1.0	µg/L
4	Chloroethane	ND	2.0	μg/L	48	Bromoform	ND	2.0	μg/L
5	Bromomethane	ND	8.0	μg/L	49	Xylenes, Total	1.4	1.0	µg/L
- 6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	2.0	μg/L
7	Acetone	ND	40	μg/L	51	o-Xylene	ND .	1.0	µg/L
8	1,1-Dichloroethene	ND	2.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	2.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	110,000 *	2,000	µg/L	53	1,2,3-Trichloropropane	ND	8.0	µg/L
10	Dichloromethane	ND	8.0	µg/L	54	Isopropylbenzene	ND	2.0	µg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	2.0	µg/L
12	Carbon disulfide	ND	10	µg/L	56	n-Propylbenzene	ND	2.0	μg/L
13	trans-1,2-Dichloroethene	ND	2.0	µg/L	57	4-Chlorotoluene	ND	2.0	μg/L
14	Methyl tert-butyl ether (MTBE)	7.2	1.0	µg/L	58	2-Chlorotoluene	ND	2.0	μg/L
15	1,1-Dichloroethane	ND	2.0	µg/L	59	1,3,5-Trimethylbenzene	ND	2.0	µg/L
16	Vinyl acetate	ND	200	μg/L	60	tert-Butylbenzene	ND	2.0	μg/L
17	2-Butanone (MEK)	ND	40	µg/L	61	1,2,4-Trimethylbenzene	2.6	2.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	2.0	µg/L	62	sec-Butylbenzene	ND	2.0	µg/L
19	cis-1,2-Dichloroethene	ND	2.0	µg/L	63	1,3-Dichlorobenzene	ND	2.0	µg/L
20	Bromochloromethane	ND	2.0	μg/L	64	1,4-Dichlorobenzene	ND	2.0	μg/L
21	Chloroform	ND	2.0	µg/L	65	4-Isopropyltoluene	ND	2.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	2.7	2.0	µg/L	66	1,2-Dichlorobenzene	ND	2.0	μg/L
23	2,2-Dichloropropane	ND	2.0	μg/L	67	n-Butylbenzene	ND	2.0	μg/L
24	1,2-Dichloroethane	ND	2.0	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	12	µg/L
25	1,1,1-Trichloroethane	ND	2.0	μg/L	69	1,2,4-Trichlorobenzene	ND	8.0	μg/L
26	1,1-Dichloropropene	ND	2.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	2.0	µg/L	71	1,2,3-Trichlorobenzene	ND	8.0	µg/L
28	Benzene	ND	1.0	µg/L	72	Surr: 1,2-Dichloroethane-d4	87	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	2.0	µg/L	73	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
30	Dibromomethane	ND	2.0	µg/L	74	Surr: Toluene-d8	106	(70-130)	%REC
31	1,2-Dichloropropane	ND	2.0	µg/L	75	Surr: Toluene-d8	97	(70-130)	%REC
32	Trichloroethene	ND	2.0	µg/L	76	Surr: 4-Bromofluorobenzene	106	(70-130)	%REC
33	Bromodichloromethane	ND	2.0	µg/L	77	Surr: 4-Bromofluorobenzene	81	(70-130)	%REC
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L		· · · · · · · · · · · · · · · · · · ·			
35	cis-1,3-Dichloropropene	ND	2.0	μg/L					
36	trans-1,3-Dichloropropene	ND	2.0	μg/L					
37	1,1,2-Trichloroethane	ND	2.0	µg/L					
38	Toluene	ND	1.0	µg/L					
39	1,3-Dichloropropane	ND	2.0	μg/L					
40	2-Hexanone	ND	20	μg/L					
41	Dibromochloromethane	ND	2.0	μg/L					

ND = Not Detected

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

42

43

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

10/20/16

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

μg/L

μg/L

^{*}This analyte was analyzed separately on 10/19/16 in order to achieve lower reporting limits for the other analytes. Reporting Limits were increased due to high concentrations of target analytes.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Client I.D. Number: MW-18(MID)

Alpha Analytical Number: CHH16100702-05A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 12:46

Received: 10/07/16

Extracted: 10/18/16 14:10 Analyzed: 10/18/16 14:10

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	4.0	μg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	1.0	μg/L	47	m,p-Xylene	1.0	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	4.0	μg/L	49	Xylenes, Total	1.5	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	20	μg/L	51	o-Xylene	0.50	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	55	10	μg/L	53	1,2,3-Trichloropropane	. ND	4.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	3.4	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	5.0	μg/L	56	n-Propylbenzene	1.6	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	2.7	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND :	100	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	20	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	1.3	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1.2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	1.0	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	6.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	4.0	µg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	4.0	µg/L
28	Benzene	6.1	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	106	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L		•	•	• • •	
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND:	1.0	μg/L					

Some Reporting Limits were increased due to sample foaming.

ND = Not Detected

trans-1.3-Dichloropropene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Toluene

2-Hexanone Dibromochloromethane

36

37

38

39

40

42

43

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

0.50

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/20/16 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: GMW-28

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-06A

Attn: Phone:

Daniel Jablonski (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 13:30

Received: 10/07/16

Extracted: 10/17/16 14:40 Analyzed: 10/17/16 14:40

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	eporting
	Compound	Concentration	Lim	it -		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μ g/ L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	46	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	µg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.6	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	19	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND .	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chioroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	96	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	104	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L		•	•	• • • •	
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					
		1 ''-	1 0.0	P9-					

ND = Not Detected

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0 μg/L

2.0 μg/L

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: PZ-2

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-07A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 14:05

Received: 10/07/16

Analyzed: 10/17/16 15:03

Extracted: 10/17/16 15:03

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	8.2	0.50	µg/L
3	Vinyl chloride	ND	0.50	µg/L	47	m,p-Xylene	16	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1,0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	22	0.50	µg/L
6	Trichlorofluoromethane	ND	- 10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	6.1	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	23	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	3.0	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	µg/L	56	n-Propylbenzene	3.5	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	1.7	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1,3,5-Trimethylbenzene	6.3	1.0	µg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	. ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	12	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	1.0	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	3.5	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	104	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L	•	•			
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND ·	0.50	μg/L					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

37

38

39

40

41

42

43

Roger Scholl

ND

ND

ND

ND

ND

ND

ND

0.84

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

0.50

1.0

1.0

5.0

1.0

2.0 µg/L

0.50

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: GMW-23

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-08A

Attn:

Daniel Jablonski

Fax:

Phone: (213) 228-8271 (714) 424-2135

Sampled: 10/06/16 14:33

Received: 10/07/16

Extracted: 10/17/16 15:27 Analyzed: 10/17/16 15:27

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	. 1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	. 10	μg/L	51	o-Xylene	ND ·	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	14	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chiorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1.3.5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	µg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	4.8	1.0	μg/L	62	sec-Butvlbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	µg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butvibenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	2.9	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	102	(70-130)	%REC
31	1.2-Dichloropropane	ND	1.0	µg/L				, (,	
32	Trichloroethene	ND	1.0	· µg/L					
33	Bromodichloromethane	ND	1.0	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					

ND = Not Detected

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachioroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachioroethane

Toluene

2-Hexanone

36 37

38

39

40

42

Roger Scholl

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

1.0 μg/L

μg/L

0.50

1.0 µg/L

5.0

1.0 μg/L

2.0 µg/L

1.0 μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-09A

Client I.D. Number: GMW-25

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/06/16 15:15

Received: 10/07/16

Extracted: 10/17/16 15:50 Analyzed: 10/17/16 15:50

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	ting				Re	eporting
	Compound	Concentration	Lim	it .		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	µg/L	47	m.p-Xylene	0.59	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	1.1	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	0.51	0.50	µg/L
8	1,1-Dichloroethene	ND .	1.0	µg/L	52	1.1.2.2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	18	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND .	1.0	µg/L
12	Carbon disulfide	ND	2.5	µg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	0.50	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1.3.5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	1.2	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butvibenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	0.88	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1.2.3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1.2-Dichloroethane-d4	111	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	104	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L	• • •				
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	µg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					
40	2-Hexanone	ND	5.0	µg/L					
41	Dibromochloromethane	ND	1.0	µg/L					

ND = Not Detected

43

1,2-Dibromoethane (EDB)

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

2.0 1.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Ser on Oth

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-10A

Client I.D. Number: GMW-9

Attn: Daniel Jablonski Phone: (213) 228-8271

(714) 424-2135 Fax:

Sampled: 10/06/16 15:43

Received: 10/07/16

Extracted: 10/17/16 16:14 Analyzed: 10/17/16 16:14

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1,0	µg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND ·	0.50	µg/L	47	m,p-Xytene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND ·	1.0	μg/L
5	Bromomethane	ND ·	2.0	µg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	ND ·	0.50	μg/L
8	1,1-Dichloroethene	ND .	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND .	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	110	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND .	5.0	µg/L	54	Isopropylbenzene	ND	1.0	µg/L
11	Freon-113	ND	. 10	µg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	µg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1,0	µg/L
14	Methyl tert-butyl ether (MTBE)	0.84	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	13	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND ·	1.0	μg/L	63	1,3-Dichlorobenzene	ND .	1.0	μg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND .	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	0.64	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND.	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND .	2.0	µg/L
28	Benzene	4.6	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	110	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	98	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	107	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L			•		
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					

ND = Not Detected

Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

μg/L

μg/L

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-5

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-11A

Attn:

Daniel Jablonski

Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 00:00

Received: 10/07/16

Extracted: 10/18/16 16:08 Analyzed: 10/18/16 16:08

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				R	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	4.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	1.0	μg/L	47	m,p-Xylene	0.86	0.50	μg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	4.0	µg/L	49	Xylenes, Total	0.86	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	20	µg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	130,000	1,000	µg/L	53	1,2,3-Trichloropropane	ND	4.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	5.0	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chiorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	6.5	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	100	µg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	20	µg/L	61	1,2,4-Trimethylbenzene	2.3	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	1.2	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	2.5	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	1.0	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	6.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND .	4.0	µg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1.2.3-Trichlorobenzene	ND .	4.0	μg/L
28	Benzene	ND	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	89	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: 1.2-Dichloroethane-d4	110	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: Toluene-d8	107	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	µg/L	75	Surr: Toluene-d8	97	(70-130)	%REC
32	Trichloroethene	ND	1.0	µg/L	76	Surr: 4-Bromofluorobenzene	107	(70-130)	%REC
33	Bromodichloromethane	ND	1.0	µg/L	77	Surr: 4-Bromofluorobenzene	82	(70-130)	%REC
34	4-Methyl-2-pentanone (MIBK)	ND	10	µg/L	• • •		,		
35	cis-1,3-Dichloropropene	ND	1.0	µg/L					
36	trans-1,3-Dichloropropene	ND	1.0	ua/L					

Some Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone Dibromochloromethane

37

38

39

40

42

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

μg/L

μg/L

2.0 μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-6

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-12A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 00:00

Received: 10/07/16

Extracted: 10/18/16 14:34 Analyzed: 10/18/16 14:34

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	µg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND .	4.0	μg/L	46	Ethylbenzene	7.0	0.50	µg/L
3	Vinyl chloride	ND	1.0	μg/L	47	m,p-Xylene	14	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	4.0	µg/L	49	Xylenes, Total	20	0.50	µg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND.	20	μg/L	51	o-Xylene	5.5	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	21	10	µg/L	53	1,2,3-Trichloropropane	ND	4.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	2.7	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
. 12	Carbon disulfide	ND .	5.0	μg/L	56	n-Propylbenzene	3.1	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	. 1.6	0.50	µg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	5.8	1.0	µg/L
16	Vinyl acetate	ND	100	µg/L	60	tert-Butylbenzene	ND ·	1.0	µg/L
17	2-Butanone (MEK)	ND	20	μg/L	61	1,2,4-Trimethylbenzene	10	1.0	µg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1.4-Dichlorobenzene	ND .	1.0	µg/L
21	Chloroform	ND	1.0	µg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND	1.0	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	6.0	µg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1,2,4-Trichlorobenzene	ND	4.0	μg/L
26	1,1-Dichloropropene	ND ND	1.0	µg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	µg/L	71	1,2,3-Trichlorobenzene	ND	4.0	µg/L
28	Benzene	3.1	0.50	µg/L	72	Surr: 1,2-Dichloroethane-d4	109	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	108	(70-130)	%REC
31	1,2-Dichloropropane	ND ND	1.0	µg/L	• • •	Curr. 4 Dicinoladi Obolizono	.,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
32	Trichloroethene	ND ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	1.0	μg/L μg/L					
36	trans-1,3-Dichloropropene	ND ND	1.0	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L μg/L					
38	Toluene	0.80	0.50	μg/L μg/L					
39	1,3-Dichloropropane	ND ND	1.0	μg/L					
40	2-Hexanone	ND ND	10	µg/L					
75	2 i ionariorio	140	1 10	Pyr					

Some Reporting Limits were increased due to sample foaming.

ND = Not Detected

Dibromochloromethane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-13A

Client I.D. Number: TB-3

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/06/16 07:15

Received: 10/07/16

Extracted: 10/17/16 16:37 Analyzed: 10/17/16 16:37

Volatile Organics by GC/MS EPA Method 624/8260

			Report	ing				R	eporting
_	Compound	Concentration	Limi	t		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	.0.50	µg/L
4	Chloroethane	ND	1.0	µg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	µg/L	50	Styrene	ND	1.0	μg/L.
7	Acetone	ND	10	µg/L	. 51	o-Xylene	ND	0.50	μg/L
. 8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachioroethane	ND ·	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND .	1.0	µg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND		µg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1	µg/L	57	4-Chlorotoluene	ND	1.0	µg/L
14	Methyl tert-butyl ether (MTBE)	- ND		µg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	µg/L	59	1.3.5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND		µg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND		µg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND		µg/L	62	sec-Butylbenzene	ND ·	1.0	μg/L
19	cis-1,2-Dichloroethene	ND		µg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	µg/L	64	1.4-Dichlorobenzene	ND ND	1.0	µg/L
21	Chloroform	ND		µg/L	65	4-Isopropyltoluene	ND	1.0	hā/r
22	Ethyl Tertiary Butyl Ether (ETBE)	ND		μg/L	66	1,2-Dichlorobenzene	ND	1.0	µg/L
23	2,2-Dichloropropane	ND		μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	ND		µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND .	1.0	µg/L	69	1.2.4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	l l	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND		ha/r	72	Surr: 1.2-Dichloroethane-d4	112	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND		µg/L	73	Surr: Toluene-d8	97	(70-130)	%REC
30	Dibromomethane	ND		μg/L	74	Surr: 4-Bromofluorobenzene	103	(70-130)	%REC
31	1,2-Dichloropropane	ND		μg/L	, ,	Suit. 4-bioliolidoloberizerie	100	1 (10-100)	MILLO
32	Trichloroethene	ND		μg/L					
33	Bromodichloromethane	ND		. •					
34	4-Methyl-2-pentanone (MIBK)	ND		μg/L					
35	cis-1,3-Dichloropropene	ND		µg/L					
36	trans-1,3-Dichloropropene	ND		µg/L					
37	1,1,2-Trichloroethane	ND	1	µg/L					
38	Toluene	ND ND	1.0 0.50	µg/L					
39	1.3-Dichloropropane	ND ND		µg/L					
40	2-Hexanone	ND		µg/L					
41	Dibromochloromethane	ND ND		µg/L					
42				µg/L					
42	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					

ND = Not Detected

Tetrachloroethene
1,1,1,2-Tetrachloroethane

Roger Scholl

Kandy Saulur

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

DOD ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EB-5

KMEP DFSP Norwalk

Alpha Analytical Number: CHH16100702-14A

Attn:

Daniel Jablonski

Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/06/16 16:00

Received: 10/07/16

Extracted: 10/17/16 17:01 Analyzed: 10/17/16 17:01

Volatile Organics by GC/MS EPA Method 624/8260

2 Chloromethane ND 2.0 µg/L 46 Ethylbenzene ND 0.5 3 Vinyl chloride ND 0.50 µg/L 47 m,p-Xylene ND 0.5 4 Chloroethane ND 1.0 µg/L 48 Bromoform ND 1 5 Bromomethane ND 2.0 µg/L 49 Xylenes, Total ND 0.5 6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.5 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	Reporting
2 Chloromethane ND 2.0 µg/L 46 Ethylbenzene ND 0.9 3 Vinyl chloride ND 0.50 µg/L 47 m,p-Xylene ND 0.9 4 Chloroethane ND 1.0 µg/L 48 Bromoform ND 1 5 Bromomethane ND 2.0 µg/L 49 Xylenes, Total ND 0.9 6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.9 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	Limit
3 Vinyl chloride ND 0.50 µg/L 47 m,p-Xylene ND 0.9 4 Chloroethane ND 1.0 µg/L 48 Bromoform ND 1 5 Bromomethane ND 2.0 µg/L 49 Xylenes, Total ND 0.9 6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.9 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2-2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	.0 µg/L
4 Chloroethane ND 1.0 µg/L 48 Bromoform ND 1 5 Bromomethane ND 2.0 µg/L 49 Xylenes, Total ND 0.5 6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND ND 0.5 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	0 µg/L
4 Chloroethane ND 1.0 µg/L 48 Bromform ND 1 5 Bromomethane ND 2.0 µg/L 49 Xylenes, Total ND 0.9 6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.9 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	50 µg/L
6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.9 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	.0 µg/L
6 Trichlorofluoromethane ND 10 µg/L 50 Styrene ND 1 7 Acetone ND 10 µg/L 51 o-Xylene ND 0.6 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	
7 Acetone ND 10 µg/L 51 o-Xylene ND 0.6 8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	.0 µg/L
8 1,1-Dichloroethene ND 1.0 µg/L 52 1,1,2,2-Tetrachloroethane ND 1 9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	50 µg/L
9 Tertiary Butyl Alcohol (TBA) ND 10 µg/L 53 1,2,3-Trichloropropane ND 2	.0 µg/L
	.0 μg/L
	.0 µg/L
	.0 µg/L
	.0 μg/L
	.0 µg/L
	.0 μg/L
	.0 µg/L
	.0 µg/L
	.0 μg/L
The Part of Control of	.0 μg/L
10 pg 11 11 11 11 11 11 11 11 11 11 11 11 11	.0 μg/L
	.0 μg/L
	.0 µg/L
	0 µg/L
27 Carbon tetrachloride ND 1.0 µg/L 71 1,2,3-Trichlorobenzene ND 2	
28 Benzene ND 0.50 µg/L 72 Surr: 1,2-Dichloroethane-d4 109 (70-13	, .
29 Tertiary Amyl Methyl Ether (TAME) ND 1.0 µg/L 73 Surr: Toluene-d8 97 (70-13	
30 Dibromomethane ND 1.0 µg/L 74 Surr: 4-Bromofluorobenzene 109 (70-13	
31 1,2-Dichloropropane ND 1.0 µg/L	J) MILLO
32 Trichloroethene ND 1.0 µg/L	
33 Bromodichloromethane ND 1.0 µg/L	
34 4-Methyl-2-pentanone (MIBK) ND 10 µg/L	
35 cis-1,3-Dichloropropene ND 0.50 µg/L	
700 692	
37 1,1,2-Trichloroethane ND 1.0 µg/L 38 Toluene ND 0.50 µg/L	

ND = Not Detected

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

2-Hexanone

39

40

42

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

µg/L

μg/L

1.0 μg/L

2.0 µg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16100702

Job:

KMEP DFSP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pН	
16100702-01A	GMW-26	Aqueous	2	
16100702-02A	HL-3	Aqueous	2	
16100702-03A	GMW-1	Aqueous	2	
16100702-04A	PZ-5	Aqueous	2	
16100702-05A	MW-18(MID)	Aqueous	2	
16100702-06A	GMW-28	Aqueous	2	
16100702-07A	PZ-2	Aqueous	2	
16100702-08A	GMW-23	Aqueous	2	
16100702-09A	GMW-25	Aqueous	2	
16100702-10A	GMW-9	Aqueous	2	
16100702-11A	DUP-5	Aqueous	2	
16100702-12A	DUP-6	Aqueous	2	
16100702-13A	TB-3	Aqueous	2	
16100702-14A	EB-5	Aqueous	2	

10/20/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16		(QC S	ummar	y Repor	t				Work Orde 16100702	
Method Blan			Type N	Ва	est Code: El atch ID: 372	85	hod SW80	Analy	sis Date:	10/07/2016 17:46	
Sample ID: Analyte	MBLK-37285	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep I UCL(ME)		10/07/2016 12:08 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		ND 0.138	0.05	0.15		92	35	151			
Laboratory	Control Spike		Type L		est Code: El		thod SW80			10/07/2016 18:13	
Sample ID:	LCS-37285	Units : mg/L Result	PQL	Run ID: MA	ANUAL_161	A800	: LCL(ME)	Prep	Date:	10/07/2016 12:08 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.92 0.146	0.05		Opinito, va.	117 97	73 35	135 151			
Sample Mat	rix Spike		Type N		est Code: El atch ID: 372		hod SW80			10/07/2016 19:06	
Sample ID: Analyte	16100605-04AMS	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep I UCL(ME)		10/07/2016 12:08 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.83 0.274	0.1	2.5 0.3	0	113 91	64 33	161 162		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample Mat	rix Spike Duplicate		Type N		est Code: El		hod SW80			40/07/2046 40-22	
Sample ID: Analyte	16100605-04AMSD	Units : mg/L Result	PQL	Run ID: M	atch ID: 372 ANUAL_161 SpkRefVal	A8001	LCL(ME)	Prep	Date:	10/07/2016 19:32 10/07/2016 12:08 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.75 0.257	0.1		0		64 33	161 162	2.825		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16		(QC S	ummar	y Repor	t				Work Orde 16100702	
Method Blar File ID: 25			Type N	Ва	est Code: El atch ID: 372	86	hod SW80	Analy	sis Date:	10/08/2016 07:03	
Sample ID: Analyte	MBLK-37286	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep UCL(ME)		10/07/2016 12:16 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		ND 0.14	0.05	0.15		93	35	151			
	Control Spike		Type L	.CS To	est Code: El	PA Met	hod SW80	15B/C E	xt		
File ID: 26 Sample ID:	LCS-37286	Units : mg/L	DO 1	Run ID: M	atch ID: 372	A800		Prep	Date:	10/08/2016 07:30 10/07/2016 12:16	0 -1
Analyte TPH-E (DRO) Surr: Nonane		Result 3.22 0.151	PQL 0.05		Spkkervai	129 101	73 35	135 151	RPDReit	/al %RPD(Limit)	Qual
Sample Mati	rix Spike		Type N	VIS T	est Code: El	PA Met	hod SW80	15B/C E	ĸt		
File ID: 28					atch ID: 372					10/08/2016 08:23	
Sample ID: Analyte	16100625-02AMS	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	Prep UCL(ME)		10/07/2016 12:16 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.94 0.241	0.1	l 2.5 0.3	0	118 80	64 33	161 162			
Sample Mati	rix Spike Duplicate		Type N	MSD To	est Code: El	PA Met	hod SW80	15B/C E	xt		
File ID: 29 Sample ID:	16100625-02AMSD	Units : mg/L			atch ID: 372 ANUAL 161			Analy Prep		10/08/2016 08:49 10/07/2016 12:16	
Analyte		Result	PQL		_		LCL(ME)	•		/al_%RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.81 0.198	0.1		0		64 33	161 162	2.94		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16	Ç	C S	ımmar	y Report				Work Orde 16100702	
Method Blank File ID: 40 Sample ID: MBLK MS15W1017B Analyte	Units : mg/L Result	Type M	Ba Run ID: M .	atch ID: MS15 ANUAL_1610	W101 17G	7B	15B/C / SW8260E Analysis Date Prep Date: UCL(ME) RPDRe	10/17/2016 12:09 10/17/2016 12:09	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 0.0108 0.00974 0.0114	0.05	i		108 97 114	70 70 70	130 130 130		
Laboratory Control Spike	•	Гуре L	CS To	est Code: EPA	A Meth	od SW80	15B/C / SW8260E		
File ID: 40				atch ID: MS15		7B		: 10/17/2016 11:22	
Sample ID: GLCS MS15W1017B Analyte	Units : mg/L Result	PQL		ANUAL_1610		LCL(ME)	Prep Date: UCL(ME) RPDRe	10/17/2016 11:22	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	0.425 0.0104 0.00975 0.0123	0.05			106 104 98 123	70 70 70 70	130 130 130 130		
Sample Matrix Spike		Type N	IS To	est Code: EPA	A Meth	od SW80	15B/C / SW8260E)	
File ID: 41 Sample ID: 16100702-01AGS Analyte	Units : mg/L Result	PQL	Run ID: M.	atch ID: MS15 ANUAL_1610 SpkRefVal %	17G		Analysis Date Prep Date: UCL(ME) RPDRe	: 10/18/2016 16:32 10/18/2016 16:32 Wal %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	1.3 0.0558 0.0474 0.0547	0.25	2 0.05 0.05 0.05	0	65 112 95 109	46 70 70 70	167 130 130 130		
Sample Matrix Spike Duplicate	•	Type N	ISD T	est Code: EPA	A Meth	od SW80	15B/C / SW8260E	B	
File ID: 42				atch ID: MS15		7B	•	10/18/2016 17:42	
Sample ID: 16100702-01AGSD Analyte	Units : mg/L Result	PQL		ANUAL_1610		I CL (ME)	Prep Date: UCL(ME) RPDRe	10/18/2016 17:42	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	1.41 0.0561 0.0475 0.0537	0.25	2 0.05 0.05 0.05	0	70 112 95 107	54 70 70 70 70	143 1.30 130 130 130		wudi

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13 Gasoline Range Organics (GRO) C4-C13 Aeronautic Gas Range Organics (AGRO) C4-C10

Date: 26-Oct-16	. (Work Order: 16100702			
Method Blank File ID: 2		Type MBLK	Test Code: EPA Method SW Batch ID: MS09W1019A		10/19/2016 11:29
Sample ID: MBLK MS09W1019A	Units : µg/L	Run II	D: MANUAL_161019A	Prep Date:	10/19/2016 11:29
Analyte	Result	PQL Spk	Val SpkRefVal %REC LCL(ME	E) UCL(ME) RPDRefV	al %RPD(Limit) Qua
Dichlorodifluoromethane	ND	1			
Chloromethane	ND	2			
Vinyl chloride	ND .	0.5			
Chloroethane Bromomethane	ND ND	1			
Trichlorofluoromethane	ND ND	2 10			
Acetone	ND	10			
1.1-Dichloroethene	ND	1			
Tertiary Butyl Alcohol (TBA)	ND	10 10			
Dichloromethane	ND	5			
Freon-113	ND	10			
Carbon disulfide	ND	2.5			
trans-1,2-Dichloroethene	ND	1			
Methyl tert-butyl ether (MTBE)	ND	0.5			
1,1-Dichloroethane	ND	1			
Vinyl acetate	ND	50			
2-Butanone (MEK) Di-isopropyl Ether (DIPE)	ND ND	10			
cis-1,2-Dichloroethene	ND ND	1			
Bromochloromethane	ND	1			
Chloroform	ND	1			
Ethyl Tertiary Butyl Ether (ETBE)	ND	i			
2,2-Dichloropropane	ND	1			
1,2-Dichloroethane	ND	0.5			
1,1,1-Trichloroethane	ND	1			
1,1-Dichloropropene	ND	1			
Carbon tetrachloride	ND	1			
Benzene	ND.	0.5			
Tertiary Amyl Methyl Ether (TAME)	ND	1			
Dibromomethane	ND	1			
1,2-Dichloropropane Trichloroethene	ND ND	1			
Bromodichloromethane	ND	1			
4-Methyl-2-pentanone (MIBK)	ND	10			
cis-1,3-Dichloropropene	ND	0.5			
trans-1,3-Dichloropropene	ND	0.5			
1,1,2-Trichloroethane	ND	1			
Toluene	ND	0.5			
1,3-Dichloropropane	ND	1			
2-Hexanone	ND	5			
Dibromochloromethane	ND	1			
1,2-Dibromoethane (EDB)	ND	2			
Tetrachloroethene	ND	1			
1,1,1,2-Tetrachloroethane Chlorobenzene	ND	1			
Ethylbenzene	ND ND	1 0.5			
m,p-Xylene	ND	0.5			
Bromoform	ND	1			
Styrene	ND	i			
o-Xylene	ND	0.5			
1,1,2,2-Tetrachloroethane	ND	1 .			
1,2,3-Trichloropropane	ND .	2			
Isopropylbenzene	ND	1			
Bromobenzene	ND	1			
n-Propylbenzene	ND	1			
4-Chlorotoluene	ND	1			
2-Chlorotoluene	ND ND	. 1			
1,3,5-Trimethylbenzene tert-Butylbenzene	ND ND	1 1			
1,2,4-Trimethylbenzene	ND ND	1			
sec-Butylbenzene	ND ND	1			
1,3-Dichlorobenzene	ND ND	1			
1,4-Dichlorobenzene	ND	1			
4-Isopropyltoluene	ND	i			
1,2-Dichlorobenzene	ND	i			

Date: 26-Oct-16		Work Order: 16100702					
n-Butylbenzene	. ND	. 1					
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	ND	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	8.77		10	88	70	130	
Surr: Toluene-d8	10.7		10	107	70	130	
Surr: 4-Bromofluorobenzene	8.31		10	83	70	130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16	(Work Order: 16100702						
Laboratory Control Spike		Type LC	S Tes	t Code: EPA Meth	od SW8	260B			
File ID: 1			Bate	ch ID: MS09W101	9A	Analy	rsis Date:	10/19/2016 10:39	
Sample ID: LCS MS09W1019A	Units : µg/L	f	Run ID: MAI	NUAL_161019A		Prep	Date:	10/19/2016 10:39	
Analyte	Result	PQL	SpkVal S	SpkRefVal %REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
Dichlorodifluoromethane	14.8	1	10	148	32	145			L51
Chioromethane	8.65	2	10	87	40	145			
Vinyl chloride	9.44	1	10	94	70	130			
Chloroethane	10.3	i	10	103	38	156			
Bromomethane	3.81	2	10	. 38	13	162			
Trichlorofluoromethane	10.9	1	10	109	46	154			
Acetone	182	10	200	91	22	188			
1,1-Dichloroethene	10.5	1	10	105	70	130			
Tertiary Butyl Alcohol (TBA)	103	10	100	103	48	148			
Dichloromethane	8.91	2	10	89	69	130			
Freon-113 trans-1,2-Dichloroethene	12.2	1	10	122	70	136			
Methyl tert-butyl ether (MTBE)	10 8.17	1 0.5	10 10	100 82	70 63	130 137			
1,1-Dichloroethane	9.29	0.5	10	93	70	137			
2-Butanone (MEK)	9.29 176	10	200	88	26	183			
Di-isopropyl Ether (DIPE)	8.77	10	10	88	69	133			
cis-1,2-Dichloroethene	9.91	i	10	. 99	70	130			
Bromochloromethane	8.59	ì	10	86	70	133			
Chloroform	9.16	1	10	92	70	130			
Ethyl Tertiary Butyl Ether (ETBE)	9.31	1	10	93	66	135			
2,2-Dichloropropane	11.6	1	10	116	70	149			
1,2-Dichloroethane	8.87	1	10	89	70	133			
1,1,1-Trichloroethane	10.1	- 1	- 10	101	70	135			
1,1-Dichloropropene	10.1	1	10	101	70	130			
Carbon tetrachloride	10.3	1	10	103	63	143			
Benzene	9.69	0.5	10	97	70	130			
Tertiary Amyl Methyl Ether (TAME)	9.33	1	10	93	70	133			
Dibromomethane	8.6	1	10	86	70	130			
1,2-Dichloropropane Trichloroethene	9.04	1	10	90 102	70 68	130 138			
Bromodichloromethane	10.2 9.13	1	10 10	91	58	147			
4-Methyl-2-pentanone (MIBK)	20.8	2.5	25	83	59	140			
cis-1,3-Dichloropropene	9.12	1	10	91	70	130			
trans-1,3-Dichloropropene	8.47	i	10	85	70	131			
1,1,2-Trichloroethane	8.01	1	10	80	70	130			
Toluene	9.56	0.5	10	96	70	130			
1,3-Dichloropropane	8.32	1	10	83	70	130			
2-Hexanone	78	5	100	78	48	157			
Dibromochloromethane	8.82	1	10	88	49	147			
1,2-Dibromoethane (EDB)	16.6	2	20	83	70	131			
Tetrachloroethene	12	1	10	120	70	130			
1,1,1,2-Tetrachloroethane	9.03	1	10	90	70	130			
Chlorobenzene	8.65	1	10	87	70	130			
Ethylbenzene	9.47	0.5	10	95	70 05	130			
m,p-Xylene	9.57	0.5	10	96	65	139			
Bromoform Shurana	9.64	1	10	96	60	144 144			
Styrene o-Xylene	8.27 9.2	1 0.5	10 10	83 92	55 70	130			
1,1,2,2-Tetrachloroethane	9.2 7.7	0.5	10	77	70 70	130			
1,2,3-Trichloropropane	15.2	2	20	76	70 70	130			
Isopropylbenzene	9.99	1	10	99.9	69	136			
Bromobenzene	9.21	1	10	92	70	130			
n-Propylbenzene	8.82	1	10	88	70	132			
4-Chlorotoluene	8.67	1	10	87	70	132			
2-Chlorotoluene	8.6	1	10	86	70	130			
1,3,5-Trimethylbenzene	9.03	1	10	90	70	134			
tert-Butylbenzene	9.02	1	10	90	63	139			
1,2,4-Trimethylbenzene	9.06	1	10	91	70	133			
sec-Butylbenzene	8.9	1	10	89	70	132	* .		
1,3-Dichlorobenzene	8.49	1	10	85	70	130			
1,4-Dichlorobenzene	8.54	1	10	85	70	130			
4-Isopropyltoluene	9.35	1	10	94	40 70	161 130			
1,2-Dichlorobenzene	8.03	1	10 10	80 81	70 69	130			
n-Butylbenzene 1,2-Dibromo-3-chloropropane (DBCP)	8.13 38.8	1	10 50	81 78	69 67	134			

Date: 26-Oct-16	(Work Order: 16100702					
1,2,4-Trichlorobenzene	7.12	2	10	71	62	131	
Naphthalene	5.13	2	10	51	39	149	
1,2,3-Trichlorobenzene	5.27	2	10	53	54	135	L50
Xylenes, Total	18.8	0.5	20	94	70	130	
Surr: 1,2-Dichloroethane-d4	8.38		10	84	70	130	
Surr: Toluene-d8	10.7		10	107	70	130	
Surr: 4-Bromofluorobenzene	8.35		10	84	70	130	

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

QC Summary Report 26-Oct-16 Test Code: EPA Method SW8260B Sample Matrix Spike Type MS Analysis Date: 10/19/2016 20:31 File ID: 16101926.D Batch ID: MS09W1019A Units: µg/L Sample ID: 1610035-06AMS Run ID: MANUAL 161019A Prep Date: 10/19/2016 20:31 Analyte Result **PQL** SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Dichlorodifluoromethane 2.5 64.2 Chloromethane Vinyl chloride 54.7 2.5 Chloroethane 68.9 2.5 Bromomethane 22.3 -880 **M3** Trichlorofluoromethane 2.5 Acetone 1,1-Dichloroethene 59.6 2.5 Tertiary Butyl Alcohol (TBA) М3 111200 -22000 Dichloromethane Freon-113 50.7 2.5 trans-1,2-Dichloroethene 2.5 59.1 Methyl tert-butyl ether (MTBE) 55.7 1.3 1,1-Dichloroethane 62.5 2.5 2-Butanone (MEK) Di-isopropyl Ether (DIPE) 62.1 2.5 cis-1,2-Dichloroethene 61.2 2.5 Bromochloromethane 2.5 Chloroform 66.5 2.5 M1 Ethyl Tertiary Butyl Ether (ETBE) 62.7 2.5 2,2-Dichloropropane 57.3 2.5 2.5 1,2-Dichloroethane 68.4 1.1.1-Trichloroethane 66.9 2.5 1,1-Dichloropropene 62.5 2.5 Carbon tetrachloride 2.5 67.2 Benzene 60.7 1.3 Tertiary Amyl Methyl Ether (TAME) 62.3 Dibromomethane 60.8 2.5 1,2-Dichloropropane 65.9 2.5 Trichloroethene 58.7 2.5 Bromodichloromethane 63.8 2.5 4-Methyl-2-pentanone (MIBK) cis-1,3-Dichloropropene 2.5 55.8 trans-1,3-Dichloropropene 53.3 2.5 1,1,2-Trichloroethane 50.8 Toluene 59.2 1.3 1,3-Dichloropropane 53.6 2.5 2-Hexanone Dibromochloromethane 54 5 2.5 1,2-Dibromoethane (EDB) M1 Tetrachloroethene 67.6 2.5 1,1,1,2-Tetrachloroethane 55.4 2.5 Chlorobenzene 2.5 50.9 Ethylbenzene 56.1 1.3 m,p-Xylene 53.7 1.3 **Bromoform** 2.5 Styrene 47.3 2.5 o-Xylene 53.5 1.3 1,1,2,2-Tetrachloroethane 49.6 2.5 1,2,3-Trichloropropane 2.5 Isopropylbenzene 56.7 Bromobenzene 52.7 2.5 n-Propylbenzene 46.6 2.5 4-Chlorotoluene 48.7 2.5 2-Chlorotoluene 48.6 2.5 1,3,5-Trimethylbenzene 50.6 2.5 tert-Butylbenzene 50.2 2.5 1,2,4-Trimethylbenzene 50.4 2.5 sec-Butylbenzene 46.8 2.5 1,3-Dichlorobenzene 45.1 2.5 1.4-Dichlorobenzene 45 7 2.5 4-Isopropyltoluene 2.5 48.9 1,2-Dichlorobenzene 2.5 n-Butylbenzene 42.1 2.5 1,2-Dibromo-3-chloropropane (DBCP)

Date: 26-Oct-16	(Work Order: 16100702						
1,2,4-Trichlorobenzene	36.8	10	50	0	74	57	134	,
Naphthalene	29.8	10	50	0	60	31	157	
1,2,3-Trichlorobenzene	29.3	10	50	0	59	52	138	
Xylenes, Total	107	1.3	100	0	107	70	130	
Surr: 1,2-Dichloroethane-d4	51.7		50		103	70	130	
Surr: Toluene-d8	51		50		102	70	130	
Surr: 4-Bromofluorobenzene	40.5		50		81	70	130	

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order:

QC Summary Report 26-Oct-16 16100702 Sample Matrix Spike Duplicate Type MSD Test Code: EPA Method SW8260B File ID: 16101927.D Batch ID: MS09W1019A Analysis Date: 10/19/2016 20:55 Sample ID: 1610035-06AMSD Run ID: MANUAL_161019A Units: µg/L Prep Date: 10/19/2016 20:55 Analyte Result **PQL** SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Dichlorodifluoromethane 67.5 2.5 50 0 135 12 150 64.15 5.1(38) Chloromethane 58.7 10 50 0 117 26 146 54.96 6.5(31)Vinyl chloride 59.5 2.5 119 54.68 50 0 46 142 8.4(25) Chloroethane 70.7 25 2.5 50 0 141 164 68.94 2.6(40) Bromomethane 28 2 10 50 460 -860 10 172 22.26 23.5(40) МЗ Trichlorofluoromethane 63.4 2.5 50 127 32 64.01 1.0(34) 0 164 Acetone 1350 50 1000 0 135 10 188 1295 4.0(39)1,1-Dichloroethene 59.4 2.5 50 0 119 62 0.5(35) 133 59.64 Tertiary Butyl Alcohol (TBA) 770 25 500 111200 -22000 44 155 744.4 3.4(33) **M3** Dichloromethane 57.8 10 50 0 116 69 130 56.02 3.1(26) Freon-113 51.3 2.5 50 0 103 56 144 50.72 1.0(40)trans-1,2-Dichloroethene 59.3 2.5 50 0 119 67 131 59.13 0.3(27)Methyl tert-butyl ether (MTBE) 1.3 58.6 50 0 117 56 140 55.72 5.1(40) 1,1-Dichloroethane 63.9 2.5 50 0 128 67 130 62.54 2.2(20)2-Butanone (MEK) 1270 50 1000 0 127 26 183 1206 4.9(22) Di-isopropyl Ether (DIPE) 64.4 2.5 50 0 129 59 138 62.1 3.7(20)cis-1,2-Dichloroethene 62.6 2.5 0 125 70 50 130 61.22 2.2(20)Bromochloromethane 59.5 2.5 50 0 119 70 134 53.98 9.8(20) Chloroform 66.9 0 2.5 50 134 69 130 66.53 0.6(22)M1 Ethyl Tertiary Butyl Ether (ETBE) 66.1 2.5 50 0 132 62 135 62.68 5.4(40) 2,2-Dichloropropane 56.8 2.5 50 ٥ 114 44 149 57.33 1.0(23)1,2-Dichloroethane 70.8 2.5 50 0 142 64 139 68.37 3.5(20) М1 1,1,1-Trichloroethane 67.3 2.5 0 66.87 50 135 65 139 0.7(20)1,1-Dichloropropene 61.7 2.5 50 0 123 68 134 62.51 1.3(20)Carbon tetrachloride 66.9 2.5 50 0 134 56 146 67.21 0.5(21)Benzene 62.1 1.3 50 0 124 67 134 60.73 2.3(21) Tertiary Amyl Methyl Ether (TAME) 65.4 2.5 135 50 0 131 64 62.32 4.8(31)Dibromomethane 63 4 2.5 50 70 0 132 60.77 127 4.3(20)1,2-Dichloropropane 66.2 2.5 50 0 132 69 134 65.91 0.5(20)Trichloroethene 59.7 2.5 50 0 119 68 138 58.69 1.7(20)Bromodichloromethane 65.4 2.5 50 0 58 131 147 63.83 2.4(20)4-Methyl-2-pentanone (MIBK) 171 13 125 0 137 49 140 161.7 5.4(24) cis-1,3-Dichloropropene 57.6 2.5 50 0 115 61 130 55.8 3.2(20)trans-1,3-Dichloropropene 55.1 2.5 50 0 110 62 131 53.32 3.3(21)1.1.2-Trichloroethane 52.8 2.5 50 0 106 70 50.82 131 3.7(20)Toluene 60 1.3 50 0 120 38 59.2 130 1.3(20)1,3-Dichloropropane 55.6 2.5 50 0 111 70 130 53.64 3.5(20)2-Hexanone 600 25 500 0 120 25 157 575.8 4.2(23)Dibromochloromethane 57.4 2.5 50 n 49 115 147 54.51 5.2(20) 1.2-Dibromoethane (EDB) 109 5 70 100 0 109 131 104.4 3.8(20) Tetrachloroethene 65.9 2.5 50 0 132 63 134 67.58 2.6(20)1,1,1,2-Tetrachloroethane 56.8 2.5 50 0 70 133 55.36 114 2.5(20)Chlorobenzene 51.2 2.5 50 0 102 70 130 50.86 0.7(20)Ethylbenzene 55.6 1.3 50 O 70 130 56.05 111 0.7(20)m,p-Xylene 52.9 1.3 50 0 106 65 139 53.72 1.5(20) **Bromoform** 60.2 2.5 50 0 120 60 144 58.03 3.7(21)Styrene 48.1 2.5 50 0 96 53 144 47 34 1.5(31) o-Xylene 53.9 1.3 50 108 130 53.51 0.6(20)0 69 1,1,2,2-Tetrachloroethane 54.7 2.5 50 0 109 67 134 49.56 9.8(20)1,2,3-Trichloropropane 110 10 100 0 110 70 130 102.2 7.5(20) Isopropylbenzene 56.6 2.5 50 0 113 64 136 56.65 0.1(20)Bromobenzene 53.3 2.5 50 O 107 69 130 52.7 1.1(20) n-Propylbenzene 47.7 2.5 50 95 132 46.57 2.3(40)4-Chlorotoluene 50.4 2.5 50 48.65 0 101 69 132 3.5(20) 2-Chlorotoluene 50.7 2.5 50 0 101 69 130 48.61 4.3(20)1,3,5-Trimethylbenzene 52.7 2.5 50 0 105 64 135 50.55 4.2(21)tert-Butylbenzene 52.8 2.5 50 63 50.22 0 106 139 5.0(20)1,2,4-Trimethylbenzene 53.4 2.5 50 107 135 50.37 5.9(24) 46.77 sec-Butylbenzene 48 2.5 50 68 0 96 132 2.5(20)1.3-Dichlorobenzene 48.8 2.5 50 0 98 70 130 45.1 7.9(20)1,4-Dichlorobenzene 2.5 48.4 50 97 70 45.74 0 130 5.7(20) 4-Isopropyltoluene 50.7 2.5 50 0 101 40 161 48.86 3.6(22)1.2-Dichlorobenzene 50.5 2.5 50 0 101 70 130 45.01 11.4(20) n-Butylbenzene 42.7 2.5 50 85 58 135 42.13 1.3(24)Ω 1,2-Dibromo-3-chloropropane (DBCP) 267 250 107 131 236.7 11.9(29)

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16			Work Order: 16100702							
1,2,4-Trichlorobenzene	47.3	10	50	0	95	57	134	36.81	24.9(30)	
Naphthalene	45.3	10	50	0	91	31	157	29.83	41.1(40)	R5
1,2,3-Trichlorobenzene	49.1	10	50	0	98	52	138	29.31	50.4(39)	R5
Xylenes, Total	107	1.3	100	0	107	70	130	107.2	0.4(22)	
Surr: 1,2-Dichloroethane-d4	50.6		50		101	70	130			
Surr: Toluene-d8	49.5		50		99	70	130			
Surr: 4-Bromofluorobenzene	41.8		50		84	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
- L50 = Analyte recovery was below acceptance limits for the LCS, but was acceptable in the MS/MSD.
- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.
- M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.

Date: 26-Oct-16		Work Order: 16100702					
Method Blank File ID: 1		Type N	/BLK	Test Code: EPA Method SW8260B Batch ID: MS15W1017A		10/17/2016 12:09	
Sample ID: MBLK MS15W1017A Analyte	Units : µg/L	DOL		-	Prep Date:	10/17/2016 12:09	_
	Result	PQL		Val SpkRefVal %REC LCL(ME) UC	L(ME) RPDRef\	/al %RPD(Limit)	Qua
Dichlorodifluoromethane Chloromethane	ND ND	1					
√inyl chloride	ND ND	0.5					
Chloroethane	ND	1					
3romomethane	ND	2					
Trichlorofluoromethane	ND	10					
Acetone	ND	10					
1,1-Dichloroethene Fertiary Butyl Alcohol (TBA)	ND ND	1					
Dichloromethane	ND ND	10					
Freon-113	ND	10		•			
Carbon disulfide	ND	2.5					
rans-1,2-Dichloroethene	ND	1					
Methyl tert-butyl ether (MTBE)	ND	0.5					
I,1-Dichloroethane √inyl acetate	ND	1					
vinyi acetate 2-Butanone (MEK)	ND ND	50 10					
Di-isopropyl Ether (DIPE)	ND	1					
cis-1,2-Dichloroethene	ND	1					
Bromochloromethane	ND	1					
Chloroform	ND	1					
Ethyl Tertiary Butyl Ether (ETBE)	ND	1					
2,2-Dichloropropane 1,2-Dichloroethane	ND ND	1					
1,1,1-Trichloroethane	ND	0.5	•				
1,1-Dichloropropene	ND	1					
Carbon tetrachloride	ND	1					
Benzene	ND	0.5	;				
Tertiary Amyl Methyl Ether (TAME)	ND	1					
Dibromomethane 1,2-Dichloropropane	ND	1					
Trichloroethene	ND ND	1					
Bromodichloromethane	ND	1					
4-Methyl-2-pentanone (MIBK)	ND	10)				
cis-1,3-Dichloropropene	ND	0.5	i				
trans-1,3-Dichloropropene	ND	0.5	i				
1,1,2-Trichloroethane	ND	1					
Toluene 1,3-Dichloropropane	ND ND	0.5	i				
2-Hexanone	ND ND	5					
Dibromochloromethane	ND	1					
1,2-Dibromoethane (EDB)	ND	2					
Tetrachloroethene	ND	1					
1,1,1,2-Tetrachloroethane	ND	1					
Chlorobenzene	ND ND	1					
Ethylbenzene m,p-Xylene	ND ND	0.5 0.5					
Bromoform	ND	1					
Styrene	ND	. 1					
o-Xylene	ND	0.5					
1,1,2,2-Tetrachloroethane	ND	1					
1,2,3-Trichloropropane	ND	2					
sopropylbenzene Bromobenzene	ND ND	1					
n-Propylbenzene	ND ND	1					
I-Chlorotoluene	ND	1					
2-Chlorotoluene	ND	1					
1,3,5-Trimethylbenzene	ND	1					
ert-Butylbenzene	ND	1					
1,2,4-Trimethylbenzene	ND	1					
sec-Butylbenzene	ND	1					
I,3-Dichlorobenzene	ND ND	1					
1-1sopropyltoluene	ND ND	1					
1,2-Dichlorobenzene	ND	1					

Date: 26-Oct-16	(Work Order: 16100702					
n-Butylbenzene	ND	1					
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	2.2	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	10.8		10	108	70	130	
Surr: Toluene-d8	9.74		10	97	70	130	
Surr: 4-Bromofluorobenzene	11.4		10	114	70	130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16	(QC Su	ımmary	Report			,,	Work Ord 16100702	
Laboratory Control Spike		Type LC	S Tes	t Code: EPA Met	hod SW8	260B			
File ID: 2			Bato	ch ID: MS15W101	7A	Analysis	Date:	10/17/2016 10:52	
Sample ID: LCS MS15W1017A	Units : µg/L		Run ID: MAN	NUAL_161017G		Prep Da	ite:	10/17/2016 10:52	
Analyte	Result	PQL		pkRefVal %REC	LCL(ME) UCL(ME) R	PDRef	Val %RPD(Limit)	Qua
Dichlorodifluoromethane				·····					
Chloromethane	4.98 7.57	1 2	10 10	50 76	32 40	145 145			
Vinyl chloride	8.27	1	10	76 83	70	130			
Chloroethane	9.1	1	10	91	38	156			
Bromomethane	4.19	2	10	42	13	162			
Trichlorofluoromethane	11.4	1	10	114	46	154			
Acetone	208	10	200	104	22	188			
1,1-Dichloroethene	9.94	1	10	99	70	130			
Tertiary Butyl Alcohol (TBA)	109	10	100	109	48	148			
Dichloromethane	10.6	2	10	106	69	130			
Freon-113	10.3	1	10	103	70	136			
trans-1,2-Dichloroethene	10.5	1	10	105	70	130			
Methyl tert-butyl ether (MTBE)	11.7	0.5	10	117	63	137			
1,1-Dichloroethane	11.2	1	10	112	70	130			
2-Butanone (MEK)	224	10	200	112	26	183			
Di-isopropyl Ether (DIPE)	12.4	1	10	124	69	133			
cis-1,2-Dichloroethene	10.8	1	10	108	70	130			
Bromochloromethane	10.6	1	10	106	70	133			
Chloroform	10.5	, 1	10	105	70	130			
Ethyl Tertiary Butyl Ether (ETBE)	12.2	1	10	122	66	135			
2,2-Dichloropropane	12.7	1	10	127	70	149			
1,2-Dichloroethane	12	1	10	120	70	133			
1,1,1-Trichloroethane	11.5	1	10	115	70	135			
1,1-Dichloropropene	11.5	1	10	115	70	130			
Carbon tetrachloride	11.6	1	10	116	63	143			
Benzene	10.4	0.5	10	104	70	130			
Tertiary Amyl Methyl Ether (TAME)	11.7	1	10	117	70	133			
Dibromomethane	11.6	1	10	116	70	130			
1,2-Dichloropropane	11.5	1	10	115	70	130			
Trichloroethene Bromodichloromethane	10.7	1	10	107	68	138			
4-Methyl-2-pentanone (MIBK)	12.1	1	10	121	58	147			
cis-1,3-Dichloropropene	27.8 12.1	2.5	25	111 121	59 70	140 130			
trans-1,3-Dichloropropene	12.1	1	10 10	110	70 70	131			
1.1.2-Trichloroethane	11.5	1	10	115	70 70	130			
Toluene	10.9	0.5	10	109	70 70	130			
1,3-Dichloropropane	11.1	0.5	10	111	70 70	130			
2-Hexanone	110	5	100	110	48	157			
Dibromochloromethane	10	1	. 10	100	49	147			
1,2-Dibromoethane (EDB)	22.3	2	20	111	70	131			
Tetrachloroethene	10.2	1	10	102	70	130			
1,1,1,2-Tetrachloroethane	11.2	1	10	112	70	130			
Chlorobenzene	10.9	1	10	109	70 70	130			
Ethylbenzene	10.4	0.5	10	103	70	130			
m,p-Xylene	10.1	0.5	10	101	65	139			
Bromoform	9.83	1	10	98	60	144			
Styrene	10	i	10	100	55	144			
o-Xylene	10	0.5	10	100	70	130			
1,1,2,2-Tetrachloroethane	10.3	1	10	103	70	130			
1,2,3-Trichloropropane	21.3	2	20	107	70	130			
Isopropylbenzene	13	1	10	130	69	136			
Bromobenzene	12.9	. 1	10	129	70	130			
n-Propylbenzene	13.1	1	10	131	70	132			
4-Chlorotoluene	12.7	1	10	127	70	132			
2-Chlorotoluene	13.1	1	10	131	70	130			L51
1,3,5-Trimethylbenzene	13	1	10	130	70	134			
tert-Butylbenzene	12.4	1	10	124	63	139			
1,2,4-Trimethylbenzene	12.9	1	10	129	70	133			
sec-Butylbenzene	12.1	1	10	121	70	132			
1,3-Dichlorobenzene	11.9	1	10	119	70	130			
1,4-Dichlorobenzene	11.2	1	10	112	70	130			
4-Isopropyltoluene	11.8	1	10	118	40	161			
1,2-Dichlorobenzene	10.5	1	10	105	70	130	•		
n-Butylbenzene	11.4	1	10	114	69	134			
1,2-Dibromo-3-chloropropane (DBCP)	37	3	50	74	67	130			

Date: 26-Oct-16	(QC Sun	ımary Re	port			Work Order: 16100702
1,2,4-Trichlorobenzene	4.57	2	10	46	62	131	L50
Naphthalene	4.65	2	10	47	39	149	
1,2,3-Trichlorobenzene	3.49	2	10	13	54	135	L50
Xylenes, Total	20.1	0.5	20	100	70	130	
Surr: 1,2-Dichloroethane-d4	10.7		10	107	70	130	
Surr: Toluene-d8	9.53		10	95	70	130	
Surr: 4-Bromofluorobenzene	11.9		10	119	70	130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16	(QC Sι	ımmary	Repor	t				Work Ord 16100702	
Sample Matrix Spike		Type M	S Tes	st Code: EF	A Met	hod SW82	260B			
File ID: 4			Bat	ch ID: MS1	5W101	17A	Analysi	s Date:	10/19/2016 21:01	
Sample ID: 16100702-01AMS	Units : µg/L		Run ID: MA	NUAL_161	017G		Prep Da	ate:	10/19/2016 21:01	
Analyte	Result	PQL				LCL(ME)	UCL(ME) R	RPDRef\	Val %RPD(Limit)	Qua
Dichlorodifluoromethane	19.5	2.5	50	0	39	12	150	• • • • •		
Chloromethane	29.1	10	50 50	Ö	58	26	146			
Vinyl chloride	35	2.5	50	Ö	70	46	142			
Chloroethane	25.1	2.5	50	Ö	50	25	164			
Bromomethane	15.5	10	50	0	31	10	172			
Trichlorofluoromethane	48.5	2.5	50	0	97	32	164			
Acetone	832	50	1000	0	83	10	188			
1,1-Dichloroethene	41.5	2.5	50	0	83	62	133			
Tertiary Butyl Alcohol (TBA)	411	25	500	0	82	44	155			
Dichloromethane Freon-113	44.7	10	50 50	0	89 87	69 56	130 144			
trans-1,2-Dichloroethene	43.7 43.8	2.5 2.5	50 50	0	88	67	131			
Methyl tert-butyl ether (MTBE)	50.8	1.3	50 50	0.64	100	56	140			
1,1-Dichloroethane	47.8	2.5	50	0.01	96	67	130			
2-Butanone (MEK)	931	50	1000	o o	93	26	183			
Di-isopropyl Ether (DIPE)	54.5	2.5	50	2.03	105	59	138			
cis-1,2-Dichloroethene	46.2	2.5	50	0	92	70	130			
Bromochloromethane	45	2.5	50	0	90	70	134			
Chloroform	45	2.5	50	0	90	69	130			
Ethyl Tertiary Butyl Ether (ETBE)	52.1	2.5	50	0	104	62	135			
2,2-Dichloropropane	47.1	2.5	50	0	94	44	149			
1,2-Dichloroethane	55.8	2.5	50 50	2.31	107	64 65	139 139			
1,1,1-Trichloroethane 1,1-Dichloropropene	50.5 48.5	2.5 2.5	50 50	0	101 97	65 68	139			
Carbon tetrachloride	49.9	2.5	50	0	99.8	56	146			
Benzene	44.1	1.3	50 50	0	88	67	134			
Tertiary Amyl Methyl Ether (TAME)	52.5	2.5	50	ŏ	105	64	135			
Dibromomethane	49.1	2.5	50	0	98	70	132			
1,2-Dichloropropane	48.5	2.5	50	0	97	69	134			
Trichloroethene	44.4	2.5	50	0	89	68	138			
Bromodichloromethane	50.8	2.5	50	0	102	58	147			
4-Methyl-2-pentanone (MIBK)	113	13	125	0	91	49	140			
cis-1,3-Dichloropropene	47.1	2.5		0	94	61 62	130 131			
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	44 48	2.5 2.5	50 50	0	88 96	62 70	131			
Toluene	43.6	1.3		0	87	38	130			
1,3-Dichloropropane	45.1	2.5	50 50	ŏ	90	70	130			
2-Hexanone	437	25	500	ŏ	87	25	157			
Dibromochloromethane	39.3	2.5	50	Ō	79	49	147			
1,2-Dibromoethane (EDB)	88.2	5	100	0	88	70	131			
Tetrachloroethene	41.9	2.5	50	0	84	63	134			
1,1,1,2-Tetrachloroethane	45.6	2.5		0	91	70	133			
Chlorobenzene	44.4	2.5		0	89	70	130			
Ethylbenzene	41.8	1.3		0	84	70	130			
m,p-Xylene	40.4	1.3	50	0	81 76	65 60	139 144			
Bromoform Styrene	38.2 39.9	2.5 2.5		0	80	60 53	144			
o-Xylene	40.2	2.5 1.3		0	80	69	130			
1,1,2,2-Tetrachloroethane	41.7	2.5		0	83	67	134			
1,2,3-Trichloropropane	86.6	10		ŏ	87	70	130			
Isopropylbenzene	50.2	2.5		. 0	100	64	136			
Bromobenzene	49.4	2.5		0	99	69	130			
n-Propylbenzene	50.6	2.5		0	101	65	132			
4-Chlorotoluene	48.3	2.5		0	97	69	132			
2-Chlorotoluene	50.5	2.5		0	101	69	130			
1,3,5-Trimethylbenzene	50.9	2.5		0	102	64	135			
tert-Butylbenzene	48.7	2.5		0	97	63 63	139			
1,2,4-Trimethylbenzene	50.4	2.5		0	101 97	62 68	135 132			
sec-Butylbenzene 1,3-Dichlorobenzene	48.5 45.7	2.5 2.5		0	97 91	70	132			
1,4-Dichlorobenzene	45.7 43.9	∠.5 2.5		0	88	70 70	130			
4-Isopropyltoluene	47.6	2.5		0	95	40	161			
1,2-Dichlorobenzene	39.6	2.5		0	79	70	130			
n-Butylbenzene	45.4	2.5		Ŏ	91	58	135			
1,2-Dibromo-3-chloropropane (DBCP)	96.7	15		0	39	63	131			M2

Date: 26-Oct-16	(QC Sun	nmary F	lepor	t			Work Order: 16100702
1,2,4-Trichlorobenzene	8.73	10	50	0	17	57	134	M2
Naphthalene	3.76	10	50	0	7.5	31	157	M2
1,2,3-Trichlorobenzene	3.25	10	50	0	6.5	52	138	M2
Xylenes, Total	80.6	1.3	100	Ö	81	70	130	
Surr: 1,2-Dichloroethane-d4	61.4		50		123	70	130	
Surr: Toluene-d8	46.4		50		93	70	130	
Surr: 4-Bromofluorobenzene	56.2		50		112	70	130	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: **QC Summary Report** 26-Oct-16 16100702 Sample Matrix Spike Duplicate Type MSD Test Code: EPA Method SW8260B File ID: 3 Batch ID: MS15W1017A Analysis Date: 10/18/2016 17:19 Sample ID: 16100702-01AMSD Units: µg/L Run ID: MANUAL_161017G Prep Date: 10/18/2016 17:19 Analyte Result **PQL** SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Dichlorodifluoromethane 19.7 2.5 39 0 12 150 19.47 0.9(38)Chloromethane 31.1 10 50 0 62 26 146 29.08 6.7(31) Vinyl chloride 39.5 2.5 50 0 79 46 142 34.95 12.1(25) Chloroethane 59.3 2.5 25 50 0 164 25.13 81.0(40) R5 Bromomethane 8.54 10 50 0 17 10 172 15.51 58.0(40) R5 Trichlorofluoromethane 48.2 2.5 50 0 96 32 164 48.54 0.7(34)Acetone 939 50 1000 0 94 10 188 832 12.1(39) 1,1-Dichloroethene 43.8 2.5 50 0 88 62 133 41.52 5.3(35) Tertiary Butyl Alcohol (TBA) 482 25 0 500 96 44 155 411 15.8(33) Dichloromethane 48.1 10 0 96 69 50 130 44.72 7.4(26) Freon-113 2.5 39.1 78 50 0 56 144 43.73 11.2(40) trans-1,2-Dichloroethene 46.6 2.5 50 0 93 67 131 43.79 6.2(27)Methyl tert-butyl ether (MTBE) 56.8 1.3 50 0.64 112 50.78 56 140 11.2(40) 1,1-Dichloroethane 52.1 2.5 50 0 104 67 130 47.79 8.7(20) 2-Butanone (MEK) 1020 50 1000 0 102 26 183 931.4 8.7(22) Di-isopropyl Ether (DIPE) 63.1 2.5 50 2.03 122 59 138 54.49 14.6(20) cis-1,2-Dichloroethene 49.8 2.5 70 46.15 50 0 99.5 130 7.6(20)Bromochloromethane 45.3 2.5 70 50 0 91 134 44.97 0.7(20)Chloroform 48.2 2.5 50 0 96 69 130 44.98 6.8(22) Ethyl Tertiary Butyl Ether (ETBE) 58.9 2.5 50 0 118 62 135 52.09 12.3(40) 2,2-Dichloropropane 28.8 2.5 50 0 58 44 149 47.09 48.1(23) R5 1,2-Dichloroethane 57.5 2.5 50 2.31 110 64 139 55.83 3.0(20)1,1,1-Trichloroethane 51.5 2.5 50 0 103 65 139 50.45 2.1(20) 1,1-Dichloropropene 49.1 2.5 50 0 98 68 134 48.47 1.3(20) Carbon tetrachloride 49.9 0 99.8 56 50 146 49.9 0.0(21)Benzene 47 1.3 50 0 67 94 134 44.11 6.3(21)Tertiary Amyl Methyl Ether (TAME) 2.5 50 0 113 64 135 52.46 7.3(31) Dibromomethane 51.9 2.5 50 0 104 70 132 49.08 5.5(20) 1,2-Dichloropropane 2.5 52.9 0 106 50 69 134 48.47 8.8(20) Trichloroethene 45.4 2.5 50 0 91 68 138 44.39 2.3(20)Bromodichloromethane 54.8 2.5 0 50 110 58 147 50.82 7.5(20) 4-Methyl-2-pentanone (MIBK) 131 13 125 0 105 49 140 113.2 14.3(24) cis-1,3-Dichloropropene 2.5 46.9 50 0 94 61 130 47.08 0.3(20)trans-1,3-Dichloropropene 43.1 2.5 0 86 50 62 131 44.01 2.1(21) 1,1,2-Trichloroethane 0 52 2.5 50 104 70 131 47.97 8.1(20) Toluene 46.7 1.3 50 0 93 38 130 43.62 6.8(20)1,3-Dichloropropane 50 2.5 50 0 100 70 130 45.13 10.2(20) 2-Hexanone 507 25 0 25 500 101 157 436.8 14.9(23) Dibromochloromethane 43.6 2.5 0 49 50 87 147 39.33 10.3(20) 1,2-Dibromoethane (EDB) 97 5 0 97 70 100 131 88.22 9.5(20)Tetrachloroethene 40.5 2.5 0 81 63 41.94 50 134 3.5(20)1,1,1,2-Tetrachloroethane 48.5 0 2.5 50 70 45.56 97 133 6.3(20)Chlorobenzene 46.8 2.5 50 0 94 70 130 44.36 5.3(20)Ethylbenzene 43.4 1.3 50 0 87 70 130 41.75 4.0(20)m,p-Xylene 41.3 1.3 0 83 50 65 139 40.39 2.3(20)**Bromoform** 41.7 2.5 50 0 83 60 144 38.19 8.8(21) Styrene 42 2.5 50 0 84 53 144 39.87 5.3(31) o-Xylene 42.4 1.3 50 0 85 69 130 40.21 5.3(20) 1.1.2.2-Tetrachloroethane 46.4 2.5 50 0 93 67 10.7(20) 134 41.72 1,2,3-Trichloropropane 94.6 10 100 0 95 70 130 86.56 8.9(20) Isopropylbenzene 51.1 2.5 50 0 102 64 136 50.23 1.8(20)Bromobenzene 51.9 2.5 50 69 0 104 130 49.39 4.9(20)n-Propylbenzene 50.4 2.5 50 0 101 65 132 50.55 0.3(40)4-Chlorotoluene 50.1 2.5 50 0 100 69 132 48.34 3.6(20)2-Chlorotoluene 52.1 2.5 50 0 104 69 130 50.48 3.1(20) 1,3,5-Trimethylbenzene 51.6 2.5 103 50.9 50 0 64 135 1.3(21)tert-Butylbenzene 49.4 2.5 50 0 99 63 139 48.72 1.3(20)1,2,4-Trimethylbenzene 51.5 2.5 50 0 103 62 135 50.43 2.1(24)sec-Butvlbenzene 47.3 2.5 50 0 95 68 132 48.52 2.6(20)1,3-Dichlorobenzene 47.7 2.5 50 0 95 70 130 45.68 4.4(20)1.4-Dichlorobenzene 45.7 2.5 50 0 91 70 130 43.87 4.2(20)4-Isopropyltoluene 46.1 2.5 50 0 92 40 161 47.63 3.4(22)1,2-Dichlorobenzene 44.8 2.5 50 0 90 70 130 39.62 12.3(20) n-Butvlbenzene 43.4 2.5 50 0 87 58 135 45.39 4.4(24) 1,2-Dibromo-3-chloropropane (DBCP) 170 250 n 68 63 131 96 68 54.9(29) R5

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Oct-16	(QC Sun	nmary R	epor	t				Work O 16100	
1,2,4-Trichlorobenzene	19.2	10	50	0	38	57	134	8.73	75.2(30)	M2 R5
Naphthalene	23.6	10	50	0	47	31	157	3.76	145.0(40)	R5
1,2,3-Trichlorobenzene	16.8	10	50	0	34	52	138	3.25	135.0(39)	M2 R5
Xylenes, Total	83.7	1.3	100	0	84	70	130	80.6	3.8(22)	
Surr: 1,2-Dichloroethane-d4	59		50		118	70	130			
Surr: Toluene-d8	47.2		50		94	70	130			
Surr: 4-Bromofluorobenzene	55.6		50		111	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
- L50 = Analyte recovery was below acceptance limits for the LCS, but was acceptable in the MS/MSD.
- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.
- M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

Billing Information:

CHAIN-OF-CUSTODY RECORD

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 **EMail Address** TEL: (775) 355-1044 FAX: (775) 355-0406 Alpha Analytical, Inc. (213) 228-8271 x (213) 228-8271 x Phone Number Report Attention Daniel Jablonski Matthew Mayry 1000 Wilshire Boulevard Los Angeles, CA 90017 21st Floor CH2M Hill

WorkOrder: CHHL16100702 S

Page: 1 of 2

Report Due By: 5:00 PM On: 18-Oct-16

Sampled by: Daniel Mosso EDD Required: Yes Cooler Temp daniel.jablonski@ch2m.com matthew.mayry@ch2m.com Job: KMEP DFSP Norwalk

Client's COC #: none

Date Printed 07-Oct-16

Samples Received 07-Oct-16

ID logged in by bottle label, Sample Remarks per Cody Requested Tests TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05 VOC_W +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) +Vinyl TPHE(0.05) TPHE(0.05) TPHE(0.05) TPH/P_W **TPHE(0.05)** +Vinyl +Vinyl +Vinyl +Vinyl TPHE(0.05) +Vinyl TPHE(0.05)
+Vinyl
acetate
TPHE(0.05)
+Vinyl TPHE(0.05) +Vinyl PHE(0.05) +Vinyl TPHE(0.05) +Vinyl rPHE(0.05) +Vinyl rPHE(0.05) +Vinyl TPH/E_W acetate acetate TAT Collection No. of Bottles Alpha Sub 0 0 0 0 0 0 0 0 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates ဖ ဖ ဖ ဖ ဖ ဖ 10/06/16 09:33 10/06/16 10:37 10/06/16 12:46 10/06/16 13:30 10/06/16 14:05 10/06/16 14:33 10/06/16 08:40 AQ 10/06/16 08:05 Matrix Date ð Ϋ́ Ao g ð g Ą CHH16100702-05A MW-18(MID) Sample ID CHH16100702-01A GMW-26 CHH16100702-06A GMW-28 CHH16100702-08A GMW-23 GMW-1 Client PZ-5 CHH16100702-02A HL-3 CHH16100702-07A PZ-2 CHH16100702-03A CHH16100702-04A QC Level: S3 Sample ID Alpha

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values.: Comments:

Date/Time	- 10/7/16 (045)	
Company	Alpha Analytical, Inc.	
Print Name	Meghan	
Signature		
	Logged in by:	

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

EMail Address TEL: (775) 355-1044 FAX: (775) 355-0406 Phone Number Report Attention

WorkOrder: CHHL16100702 CA

2 of 2

Page:

Report Due By: 5:00 PM On: 18-Oct-16

EDD Required: Yes daniel.jablonski@ch2m.com matthew.mayry@ch2m.com (213) 228-8271 x (213) 228-8271 x Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

CH2M Hill

Client:

Los Angeles, CA 90017

21st Floor

Client's COC #: none

Sampled by: Daniel Mosso

Date Printed 07-Oct-16 Samples Received 07-Oct-16 Cooler Temp 1 °C

Job: KMEP DFSP Norwalk

QC Level: S3	= Final Rpt, MBLK, LCS, MS/MSD With Surrogates	S, MS/I	MSD With Su	rrogates								
									Rec	Requested Tests	ts	
Alpha	Client		Collection No. of Bottles	No. of E	3ottles	ī.	TPH/E_W T	TPH/P_W	voc_w			
e ID	Sample ID	Matri	Matrix Date	Alpha	Sub TAT	 TAT						Sample Remarks
CHH16100702-09A GMW-25	GMW-25	AQ	10/06/16 15:15	9	0	7	TPHE(0.05)	HE(0.05) / +Vinyl acetate	TPHE(0.05) +Vinyl acetate			
CHH16100702-10A GMW-9	GMW-9	AQ	10/06/16	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl acetate	HE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate			
CHH16100702-11A DUP-5	DUP-5	AQ	AQ 10/06/16 00:00	9	0		TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate	HE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate			
CHH16100702-12A DUP-6	DUP-6	AQ	10/06/16 00:00	9	0		TPHE(0.05) TP +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate			
CHH16100702-13A TB-3	TB-3	ΑQ	10/06/16 07:15	2	0	7			TPHE(0.05) +Vinyl acetate			Reno TB 7/29/16
CHH16100702-14A EB-5	EB-5	ΑQ	10/06/16 16:00	9	0		TPHE(0.05)	PHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyi acetate			

Security seals intact. Frozen ice. Analysts: Run two analyses in order to achieve lower reporting limits for all other analytes due to high TBA values. : Comments:

Date/ time	वा नार्गिवा	
Company	Alpha Analytical, Inc.	
Print Name	Meghan C	
Signature /		
	Logged in by:	

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

LAB SAMPLE # ζ ō CONDITION Alpha Analytical COC DATE õ Standard STATUS 4 1 S 00 9 CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 Kinder Morgan 1100 Town and CountryRd. Orange CA 95112 CHH16 100702 Kinder Morgan Norwalk Report to: Dan Jablonski ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN AB RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT TIME 30 1630 TIME SENT TIME TIME VOC's & Oxygenates (EPA 8260B) ,pH9T (M2108 A93) bH9T 7 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 282 Type 7 CONTAINERS Preservation PERFORMED BY Dant エ 2 15306 Norwalk Blvd, Norwalk و SAMPLING MATRIX AQ= Water প্ Kinder Morgan **DFSP Norwalk** 1330 5 1405 1433 1543 0933 アイク TIME 080 1037 1×1× HME H 23.0 TECH SERVICES, INC. 10/4/14 10/6/16 DATE DATE BLAINE CHAIN OF CUSTODY 202-20 75-18 (MID) 1MW-33 ンスートスプ RELEASED BY RELEASED BY RELEASED BY 4M-28 SHIPPED VIA COMPLETED G-mw5 SAMPLE I.D. 5-20 しろとり SAMPLING H1-3 Prz CLIENT SITE

LAB SAMPLE # TIME /635 TIME μ $^{
ho}_{
ho}$ CONDITION Alpha Analytical COC Standard STATUS 7 CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 ュ Kinder Morgan 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk Report to: Dan Jablonski ADD'L INFORMATION RESULTS NEEDED NO LATER THAN CHH 16 1007 Billing Information: RECEIVED BY JRECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT TIME SENT 630 TIME TIME TIME VOC's & Oxygenates (EPA 8260B) 40530 X (M2108 A93) bH9T, gH9T X X 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 3 Type CONTAINERS Preservation 25 15306 Norwalk Blvd, Norwalk PERFORMED BY 4 9 # S SAMPLING MATRIX AQ= Water 8 Kinder Morgan **DFSP Norwalk** 7 2115 TIME 10/0/14 | 1600 **Y**9 TECH SERVICES, INC. 10/16/16 10/6/19 DATE BLAINE COMPLETED 196/16 CHAIN OF CUSTODY RELEASED BY RELEASED BY RELEASED BY 2-050 T8-3 SHIPPED VIA 8-5 SAMPLE I.D. 1000 SAMPLING CLIENT SITE 'n

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill 1000 Wilshire Boulevard Los Angeles, CA 90017

Attn:

Daniel Jablonski

Phone: Fax:

(213) 228-8271 (714) 424-2135

Date Received: 10/08/16

Job:

DFSP KMEP Norwalk

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B

					Reporting	Date	Date
		Parameter	Concentra	tion	Limit	Extracted	Analyzed
Client ID:	GMW-O-21						
Lab ID:	CHH16101001-01A	TPH-E (DRO)	2.0	K	0.050 mg/L	10/14/16 12:34	10/14/16 20:14
Date Sampled	10/07/16 07:33	Surr: Nonane	106		(53-145) %REC	10/14/16 12:34	10/14/16 20:14
•		TPH-P (GRO)	18		4.0 mg/L	10/19/16 03:17	10/19/16 03:17
		Surr: 1,2-Dichloroethane-d4	88		(70-130) %REC	10/19/16 03:17	10/19/16 03:17
		Surr: Toluene-d8	105		(70-130) %REC	10/19/16 03:17	10/19/16 03:17
		Surr: 4-Bromofluorobenzene	89		(70-130) %REC	10/19/16 03:17	10/19/16 03:17
Client ID:	MW-SF-13						
Lab ID:	CHH16101001-02A	TPH-E (DRO)	4.4	K	0.050 mg/L	10/14/16 12:34	10/14/16 20:40
Date Sampled	10/07/16 08:17	Surr: Nonane	122		(53-145) %REC	10/14/16 12:34	10/14/16 20:40
,		TPH-P (GRO)	5.3		1.0 mg/L	10/19/16 02:29	10/19/16 02:29
		Surr: 1,2-Dichloroethane-d4	91		(70-130) %REC	10/19/16 02:29	10/19/16 02:29
		Surr: Toluene-d8	105		(70-130) %REC	10/19/16 02:29	10/19/16 02:29
		Surr: 4-Bromofluorobenzene	86		(70-130) %REC	10/19/16 02:29	10/19/16 02:29
Client ID:	GMW-30						
Lab ID:	CHH16101001-03A	TPH-E (DRO)	3.6		0.050 mg/L	10/14/16 12:34	10/14/16 21:06
Date Sampled	10/07/16 09:00	Surr: Nonane	101		(53-145) %REC	10/14/16 12:34	10/14/16 21:06
	10,01110	TPH-P (GRO)	0.36		0.050 mg/L	10/19/16 00:04	10/19/16 00:04
		Surr: 1,2-Dichloroethane-d4	105		(70-130) %REC	10/19/16 00:04	10/19/16 00:04
		Surr: Toluene-d8	100		(70-130) %REC	10/19/16 00:04	10/19/16 00:04
		Surr: 4-Bromofluorobenzene	92		(70-130) %REC	10/19/16 00:04	10/19/16 00:04
Client ID:	DUP-7						
Lab ID:	CHH16101001-04A	TPH-E (DRO)	0.53	K	0.050 mg/L	10/14/16 12:34	10/14/16 21:32
Date Sampled	10/07/16 00:00	Surr: Nonane	98		(53-145) %REC	10/14/16 12:34	10/14/16 21:32
Dute Sumpres		TPH-P (GRO)	32		10 mg/L	10/19/16 04:06	10/19/16 04:06
		Surr: 1,2-Dichloroethane-d4	88		(70-130) %REC	10/19/16 04:06	10/19/16 04:06
		Surr: Toluene-d8	106		(70-130) %REC	10/19/16 04:06	10/19/16 04:06
		Surr: 4-Bromofluorobenzene	89		(70-130) %REC	10/19/16 04:06	10/19/16 04:06
Client ID:	EB-6						
Lab ID:	CHH16101001-05A	TPH-E (DRO)	ND		0.050 mg/L	10/14/16 12:34	10/14/16 21:59
Date Sampled	10/07/16 09:10	Surr: Nonane	. 77		(53-145) %REC	10/14/16 12:34	10/14/16 21:59
		TPH-P (GRO)	ND		0.050 mg/L	10/18/16 23:40	10/18/16 23:40
		Surr: 1,2-Dichloroethane-d4	104		(70-130) %REC	10/18/16 23:40	10/18/16 23:40
		Surr: Toluene-d8	102		(70-130) %REC	10/18/16 23:40	10/18/16 23:40
		Surr: 4-Bromofluorobenzene	91		(70-130) %REC	10/18/16 23:40	10/18/16 23:40
Client ID:	MW-SF-15						
Lab ID:	CHH16101001-07A	TPH-E (DRO)	16		5.0 mg/L	10/14/16 12:34	10/15/16 07:40
	10/07/16 13:30	Surr: Nonane	0	S50	(53-145) %REC	10/14/16 12:34	10/15/16 07:40
_ are sampled		TPH-P (GRO)	ND	0	0.50 mg/L	10/19/16 01:17	10/19/16 01:17
		Surr: 1,2-Dichloroethane-d4	96		(70-130) %REC	10/19/16 01:17	10/19/16 01:17
		Surr: Toluene-d8	103		(70-130) %REC	10/19/16 01:17	10/19/16 01:17
		Surr: 4-Bromofluorobenzene	86		(70-130) %REC	10/19/16 01:17	10/19/16 01:17

Page 1 of 3 DFSP KMEP Norwalk

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-SF-4						
Lab ID:	CHH16101001-08A	TPH-E (DRO)	4.7		0.050 mg/L	10/14/16 12:34	10/14/16 22:25
	10/07/16 13:20	Surr: Nonane	97		(53-145) %REC	10/14/16 12:34	10/14/16 22:25
Dute Bumpled	10/07/10 13.20	TPH-P (GRO)	ND	0	0.50 mg/L	10/19/16 01:41	10/19/16 01:41
		Surr: 1,2-Dichloroethane-d4	93	v	(70-130) %REC	10/19/16 01:41	10/19/16 01:41
		Surr: Toluene-d8	104		(70-130) %REC	10/19/16 01:41	10/19/16 01:41
		Surr: 4-Bromofluorobenzene	85		(70-130) %REC	10/19/16 01:41	10/19/16 01:41
Client ID:	GMW-O-20	Suit. 4-Diomondologonzene	65		(70 150) /MADE	10/15/10 01:11	
Lab ID :	CHH16101001-09A	TPH-E (DRO)	95	K	5.0 mg/L	10/14/16 12:34	10/15/16 08:05
Date Sampled	10/07/16 12:57	Surr: Nonane	0	S50	(53-145) %REC	10/14/16 12:34	10/15/16 08:05
p	10.01.1012.01	TPH-P (GRO)	35		4.0 mg/L	10/19/16 03:42	10/19/16 03:42
		Surr: 1,2-Dichloroethane-d4	88		(70-130) %REC	10/19/16 03:42	10/19/16 03:42
		Surr: Toluene-d8	107		(70-130) %REC	10/19/16 03:42	10/19/16 03:42
		Surr: 4-Bromofluorobenzene	91		(70-130) %REC	10/19/16 03:42	10/19/16 03:42
Client ID:	GMW-O-23				(,		
Lab ID:	CHH16101001-10A	TPH-E (DRO)	170		5.0 mg/L	10/14/16 12:34	10/15/16 08:32
Date Sampled	10/07/16 12:17	Surr: Nonane	0	S50	(53-145) %REC	10/14/16 12:34	10/15/16 08:32
Date Samplea	10/0//10 12:17	TPH-P (GRO)	2.8		0.80 mg/L	10/19/16 02:05	10/19/16 02:05
		Surr: 1,2-Dichloroethane-d4	93		(70-130) %REC	10/19/16 02:05	10/19/16 02:05
		Surr: Toluene-d8	104		(70-130) %REC	10/19/16 02:05	10/19/16 02:05
		Surr: 4-Bromofluorobenzene	86		(70-130) %REC	10/19/16 02:05	10/19/16 02:05
Client ID:	GMW-0-14	Sail I Bromondorovillono	00		(10 100) / 11 11 1		
Lab ID :	CHH16101001-11A	TPH-E (DRO)	0.64	K	0.050 mg/L	10/14/16 12:34	10/14/16 22:51
	10/07/16 11:27	Surr: Nonane	132	K	(53-145) %REC	10/14/16 12:34	10/14/16 22:51
Date Sampled	10/07/10 11.27	TPH-P (GRO)	30		10 mg/L	10/19/16 04:30	10/19/16 04:30
		Surr: 1,2-Dichloroethane-d4	86		(70-130) %REC	10/19/16 04:30	10/19/16 04:30
		Surr: Toluene-d8	109		(70-130) %REC	10/19/16 04:30	10/19/16 04:30
		Surr: 4-Bromofluorobenzene	89		(70-130) %REC	10/19/16 04:30	10/19/16 04:30
Client ID:	MW-SF-6	Suit. 4-Diomondoloochizene	0,7		(70-130) /MRLEC	10/19/10 01.50	10/19/10 01.50
Lab ID:	CHH16101001-12A	TPH-E (DRO)	10	K	0.50 mg/L	10/14/16 12:34	10/15/16 07:13
	10/07/16 10:37	Surr: Nonane	0	S50	(53-145) %REC	10/14/16 12:34	10/15/16 07:13
Date Samples	10/0//10 10/0/	TPH-P (GRO)	8.4		1.0 mg/L	10/19/16 02:53	10/19/16 02:53
		Surr: 1,2-Dichloroethane-d4	87		(70-130) %REC	10/19/16 02:53	10/19/16 02:53
		Surr: Toluene-d8	107		(70-130) %REC	10/19/16 02:53	10/19/16 02:53
		Surr: 4-Bromofluorobenzene	89		(70-130) %REC	10/19/16 02:53	10/19/16 02:53
Client ID:	MW-SF-1	Suit. Diomondorous income	0,		(10 100) 111-		
Lab ID:	CHH16101001-13A	TPH-E (DRO)	1.2		0.050 mg/L	10/14/16 12:34	10/15/16 09:50
Date Sampled	10/07/16 09:53	Surr: Nonane	91		(53-145) %REC	10/14/16 12:34	10/15/16 09:50
J		TPH-P (GRO)	0.055		0.050 mg/L	10/19/16 00:53	10/19/16 00:53
		Surr: 1,2-Dichloroethane-d4	95		(70-130) %REC	10/19/16 00:53	10/19/16 00:53
		Surr: Toluene-d8	104		(70-130) %REC	10/19/16 00:53	10/19/16 00:53
		Surr: 4-Bromofluorobenzene	87		(70-130) %REC	10/19/16 00:53	10/19/16 00:53
Client ID	EXP-1		**				
Lab ID:	CHH16101001-14A	TPH-E (DRO)	ND		0.050 mg/L	10/14/16 12:34	10/14/16 18:55
	10/07/16 11:45	Surr: Nonane	92		(53-145) %REC	10/14/16 12:34	10/14/16 18:55
Date Sumpled	10/0//10 11.73	TPH-P (GRO)	ND		0.050 mg/L	10/19/16 00:28	10/19/16 00:28
		Surr: 1,2-Dichloroethane-d4	100		(70-130) %REC	10/19/16 00:28	10/19/16 00:28
		Surr: Toluene-d8	103		(70-130) %REC	10/19/16 00:28	10/19/16 00:28
		Surr: 4-Bromofluorobenzene	89		(70-130) %REC	10/19/16 00:28	10/19/16 00:28
					` '		

DFSP KMEP Norwalk

Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Diesel Range Organics (DRO) C13-C22

Gasoline Range Organics (GRO) C4-C13

K = DRO concentration may include contributions from lighter-end hydrocarbons that elute in the DRO range.

O = Reporting Limits were increased due to sample foaming.

S50 = The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The laboratory control sample was acceptable.

ND = Not Detected

Roger Scholl

Kandy Saulmer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-01A

Client I.D. Number: GMW-O-21

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 07:33

Received: 10/08/16

Extracted: 10/19/16 03:17 Analyzed: 10/19/16 03:17

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	rit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	40	μg/L	45	Chlorobenzene	ND	40	μ g/L
2	Chloromethane	ND	160	μg/L	46	Ethylbenzene	280	20	µg/L
3	Vinyl chloride	ND	40	μg/L	47	m,p-Xylene	600	20	μg/L
4	Chloroethane	ND	40	μg/L	48	Bromoform	ND	40	μg/L
5	Bromomethane	ND	160	μg/L	49	Xylenes, Total	1,600	20	μg/L
6	Trichlorofluoromethane	ND	40	μg/L	50	Styrene	ND	40.	μg/L
7	Acetone	ND	800	μg/L	51	o-Xylene	970	20	μg/L
8	1,1-Dichloroethene	ND	40	μg/L	52	1,1,2,2-Tetrachloroethane	ND	40	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	400	μg/L	53	1,2,3-Trichloropropane	ND	160	μg/L
10	Dichloromethane	ND	160	μg/L	54	Isopropylbenzene	ND	40	μg/L
11	Freon-113	ND	40	μg/L	55	Bromobenzene	ND	40	μg/L
12	Carbon disulfide	ND	200	μg/L	56	n-Propylbenzene	71	40	μg/L
13	trans-1,2-Dichloroethene	ND	40	μg/L	57	4-Chlorotoluene	ND	40	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	20	μg/L	58	2-Chlorotoluene	ND	40	µg/L
15	1.1-Dichloroethane	ND	40	μg/L	59	1,3,5-Trimethylbenzene	190	40	µg/L
16	Vinyl acetate	ND	4,000	μg/L	60	tert-Butylbenzene	ND	40	μ g/L
17	2-Butanone (MEK)	ND	800	μg/L	61	1,2,4-Trimethylbenzene	680	40	μg/L
18	Di-isopropyl Ether (DIPE)	ND	40	µg/L	62	sec-Butylbenzene	ND	40	μg/L
19	cis-1.2-Dichloroethene	ND	40	μg/L	63	1,3-Dichlorobenzene	ND	40	μg/L
20	Bromochloromethane	ND	40	μg/L μg/L	64	1,4-Dichlorobenzene	ND	40	µg/L
21	Chloroform	ND ND	40	μg/L	65	4-Isopropyttoluene	ND ·	40	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	40	µg/L µg/L	66	1,2-Dichlorobenzene	ND	40	μg/L
	2.2-Dichloropropane	ND ND	40		67	n-Butylbenzene	75	40	μg/L
23		1		µg/L		1,2-Dibromo-3-chloropropane (DBCP)	ND .	240	μg/L
24	1,2-Dichloroethane	ND	40 40	µg/L	68	1,2,4-Trichlorobenzene	ND	160	μg/L
25	1,1,1-Trichloroethane	ND		μg/L	69		300	160	µg/L
26	1,1-Dichloropropene	ND	40	µg/L	70	Naphthalene	ND	160	µg/L
27	Carbon tetrachloride	ND	40	μg/L	71	1,2,3-Trichlorobenzene	88 18	(70-130)	%REC
28	Benzene	2,900	20	μg/L	72	Surr: 1,2-Dichloroethane-d4		(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	40	µg/L	73	Surr: Toluene-d8	105 89	(70-130)	%REC
30	Dibromomethane	ND	40	µg/L	74	Surr: 4-Bromofluorobenzene	1 89	1 (70-130)	MKEC
31	1,2-Dichloropropane	ND	40	µg/L					
32	Trichloroethene	ND	40	µg/L					
33	Bromodichloromethane	ND	40	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	200	µg/L					
35	cis-1,3-Dichloropropene	ND	40	μg/L					
36	trans-1,3-Dichloropropene	ND	40	µg/L					
37	1,1,2-Trichloroethane	ND	40	μg/L					
38	Toluene	21	20	μg/L					
39	1,3-Dichloropropane	ND	40	μg/L					
40	2-Hexanone	ND	400	μg/L			*		
41	Dibromochloromethane	ND .	40	µg/L					
		1	1						

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND = Not Detected

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

Roger Scholl

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

DOD ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

ACCAPTANT OF THE PARTY OF THE P

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

DFSP KMEP Norwalk

Client I.D. Number: MW-SF-13

Alpha Analytical Number: CHH16101001-02A

Attn:

Daniel Jablonski

Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/07/16 08:17

Received: 10/08/16

Extracted: 10/19/16 02:29 Analyzed: 10/19/16 02:29

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	10	μg/L	45	Chlorobenzene	ND	10	μg/L
2	Chloromethane	ND	40	μg/L	46	Ethylbenzene	200	5.0	μg/L
3	Vinyl chloride	l ND	10	μg/L	47	m,p-Xylene	340	5.0	μg/L
4	Chloroethane	ND	10	μg/L	48	Bromoform	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	49	Xylenes, Total	340	5.0	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	10	μg/L
7	Acetone	ND	200	µg/L	51	o-Xylene	ND	5.0	μg/L
8	1,1-Dichloroethene	ND	10	μg/L	52	1,1,2,2-Tetrachloroethane	ND	10	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	100	μg/L	53	1,2,3-Trichloropropane	ND	40	μg/L
10	Dichloromethane	ND	40	μg/L	54	Isopropylbenzene	12	10	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	10	μg/L
12	Carbon disulfide	ND	50	μg/L	56	n-Propylbenzene	26	10	μg/L
13	trans-1,2-Dichloroethene	ND	10	μg/L	57	4-Chlorotoluene	ND	. 10	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	58	2-Chlorotoluene	ND	10	μg/L
15	1,1-Dichloroethane	ND	10	μg/L	59	1,3,5-Trimethylbenzene	ND	10	μg/L
16	Vinyl acetate	ND	1,000	μg/L	60	tert-Butylbenzene	ND	10	µg/L
17	2-Butanone (MEK)	ND	200	µg/L	61	1,2,4-Trimethylbenzene	660	10	μg/L
18	Di-isopropyl Ether (DIPE)	ND	10	μg/L	62	sec-Butylbenzene	ND	10	μg/L
19	cis-1,2-Dichloroethene	ND	10	µg/L	63	1,3-Dichlorobenzene	ND	10,	μg/L
20	Bromochloromethane	ND	10	μg/L	64	1,4-Dichlorobenzene	ND	10	μg/L
21	Chloroform	ND	10	μg/L	65	4-Isopropyltoluene	ND	10	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	10	μg/L	66	1,2-Dichlorobenzene	ND	10	μg/L
23	2,2-Dichloropropane	ND	10	μg/L	67	n-Butylbenzene	ND	10	μg/Ł
24	1,2-Dichloroethane	ND	10	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	60	μg/L
25	1,1,1-Trichloroethane	ND	10	µg/L	69	1,2,4-Trichlorobenzene	ND	40	μg/L
26	1,1-Dichloropropene	ND	10	μg/L	70	Naphthalene	71	40	μg/L
27	Carbon tetrachloride	ND	10	μg/L	71	1,2,3-Trichlorobenzene	ND	40	μg/L
28	Benzene	ND	5.0	μg/L	72	Surr: 1,2-Dichloroethane-d4	91	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND:	10	μg/L	73	Surr: Toluene-d8	105	(70-130)	%REC
30	Dibromomethane	ND	10	μg/L	74	Surr: 4-Bromofluorobenzene	86	(70-130)	%REC
31	1,2-Dichloropropane	ND	10	μg/L					
32	Trichloroethene	ND	10	μg/L					
33	Bromodichloromethane	ND	10	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	50	μg/L					
35	cis-1,3-Dichloropropene	ND	10	μg/L					
36	trans-1,3-Dichloropropene	ND	10	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND

ND

ND

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Dibromochloromethane

1,2-Dibromoethane (EDB) Tetrachloroethene 1,1,1,2-Tetrachloroethane

Toluene

2-Hexanone

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

10

100

10

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-03A

Client I.D. Number: GMW-30

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 09:00

Received: 10/08/16

Extracted: 10/19/16 00:04 Analyzed: 10/19/16 00:04

Volatile Organics by GC/MS EPA Method 624/8260

			Repo		Reporting				
	Compound	Concentration	Lim	-		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	2.6	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	1.5	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	3.0	0.50	µg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	µg/L	51	o-Xylene	1.5	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μ g/L
9	Tertiary Butyl Alcohol (TBA)	27	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	1.7	1.0	µg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	2.3	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	1.7	1.0	μg/L	59	1,3,5-Trimethylbenzene	1.5	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	2.6	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	6.0	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	NĐ	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	µg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	µg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	µg/L
24	1,2-Dichloroethane	1.2	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	µg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	µg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	µg/L
28	Benzene	24	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	105	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	100	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	92	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L		-			
36	trans-1,3-Dichloropropene	ND	0.50	µg/L					
37	1,1,2-Trichloroethane	ND	1.0	µg/L					
38	Toluene	0.60	0.50	μg/L					
39	1,3-Dichloropropane	ND	1.0	µg/L					
40	2-Hexanone	ND	5.0	μg/L					
41	Dibromochloromethane	ND	1.0	μg/L					
42	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					

ND = Not Detected

Tetrachioroethene 1,1,1,2-Tetrachioroethane

Roger Scholl

μg/L

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: DUP-7

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-04A

Attn:

Daniel Jablonski

Fax:

Phone: (213) 228-8271

(714) 424-2135

Sampled: 10/07/16 00:00

Received: 10/08/16

Extracted: 10/19/16 04:06 Analyzed: 10/19/16 04:06

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	rting				Re	porting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	100	µg/L	45	Chlorobenzene	ND	100	μg/L.
2	Chloromethane	ND	400	μg/L	46	Ethylbenzene	470	50	μg/L
3	Vinyl chloride	ND .	100	μg/L	47	m,p-Xylene	200	50	μg/L
4	Chloroethane	ND	100	μg/L	48	Bromoform	ND	100	µg/L
5	Bromomethane	ND	400	μg/L	49	Xylenes, Total	330	50	μg/L
6	Trichlorofluoromethane	ND	100	μg/L	50	Styrene	ND	100	μg/L
7	Acetone	ND	2,000	μg/L	51	o-Xylene	120	50	μg/L
8	1,1-Dichloroethene	ND	100	μg/L	52	1,1,2,2-Tetrachloroethane	ND	100	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	1,000	μg/L	53	1,2,3-Trichloropropane	ND	400	μg/L
10	Dichloromethane	ND	400	μg/L	54	Isopropylbenzene	ND	100	μg/L
11	Freon-113	. ND	100	μg/L	55	Bromobenzene	ND	100	μg/L
12	Carbon disulfide	l ' ND	500	μg/L	56	n-Propylbenzene	ND	100	μg/L
13	trans-1,2-Dichloroethene	ND	100	μg/L	57	4-Chlorotoluene	ND	100	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	50	μg/L	58	2-Chlorotoluene	ND	100	μg/L
15	1.1-Dichloroethane	ND	100	μg/L	59	1,3,5-Trimethylbenzene	ND	100	μg/L
16	Vinyl acetate	ND	10,000	µg/L	60	tert-Butylbenzene	ND	100	μg/L
17	2-Butanone (MEK)	ND	2,000	μg/L	61	1,2,4-Trimethylbenzene	190	100	μg/L
18	Di-isopropyl Ether (DIPE)	230	100	μg/L	62	sec-Butylbenzene	ND	100	μg/L
19	cis-1,2-Dichloroethene	ND ND	100	μg/L	63	1.3-Dichlorobenzene	ND	100	μg/L
20	Bromochloromethane	ND	100	μg/L	64	1.4-Dichlorobenzene	ND	100	μg/L
21	Chloroform	ND	100	μg/L	65	4-Isopropyltoluene	ND	100	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	100	μg/L	66	1,2-Dichlorobenzene	ND	100	μg/L
23	2,2-Dichloropropane	ND	100	μg/L	67	n-Butylbenzene	ND	100	μg/L
24	1.2-Dichloroethane	ND	100	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	600	μg/L
25	1,1,1-Trichloroethane	ND	100	μg/L	69	1,2,4-Trichlorobenzene	ND	400	µg/L
26	1,1-Dichloropropene	ND	100	μg/L	70	Naphthalene	ND	400	μg/L
27	Carbon tetrachloride	ND	100	μg/L	71	1,2,3-Trichlorobenzene	ND	400	µg/L
28	Benzene	12.000	50	μg/L	72	Surr: 1,2-Dichloroethane-d4	88	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND ND	100	µg/L	73	Surr: Toluene-d8	106	(70-130)	%REC
30	Dibromomethane	ND	100	μg/L	74	Surr: 4-Bromofluorobenzene	89	(70-130)	%REC
31	1,2-Dichloropropane	ND ND	100	μg/L	• •			• •	
32	Trichloroethene	ND	100	μg/L					
33	Bromodichloromethane	ND	100	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND ND	500	μg/L					
35	cis-1,3-Dichloropropene	ND ND	100	µg/L					
36	trans-1,3-Dichloropropene	ND	100	µg/L					
37	1,1,2-Trichloroethane	ND	100	μg/L μg/L					
38	Toluene	85	50	µg/L µg/L					
39	1.3-Dichloropropane	ND	100	μg/L					
40	2-Hexanone	ND ND	1,000	µg/L					
41	Dibromochloromethane	ND	100	µg/L					
42		ND ND	200	μg/L μg/L					
42	1,2-Dibromoethane (EDB)	ND ND	200	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-05A

Client I.D. Number: EB-6

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 09:10

Received: 10/08/16

Extracted: 10/18/16 23:40 Analyzed: 10/18/16 23:40

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	•		·			porting
	Compound	Concentration	Lim	nit	_	Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	μ g/ Ł
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μ g/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachioroethane	ND	1.0	μ g/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	· ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	µg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyitoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butvibenzene	ND	1.0	μ g/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	µg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	104	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	102	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	91	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•	•		
32	Trichloroethene	ND	1.0	μg/L					
33	Bromodichioromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L		•			
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
38	Toluene	ND	0.50	μg/L			4		
39	1,3-Dichloropropane	ND	1.0	μg/L					
40	2-Hexanone	ND	5.0	μg/L					
41	Dibromochloromethane	ND	1.0	µg/L					
71		1	1	h8					

ND = Not Detected

1,2-Dibromoethane (EDB) Tetrachloroethene

1,1,1,2-Tetrachloroethane

Roger Scholl

Kandy Saulur

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

µg/L

Service 10

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-06A

Client I.D. Number: TB-4

Attn: Daniel Jablonski

Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 07:00

Received: 10/08/16

Extracted: 10/18/16 23:16 Analyzed: 10/18/16 23:16

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	porting
	Compound	Concentration	Lim	iit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	µg/L	46	Ethylbenzene	ND	0.50	μg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	μg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	µg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1.2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0.	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2.2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	µg/L	69	1.2.4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	105	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	103	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	91	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L			•		
32	Trichloroethene	ND	1.0	µg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	µg/L					
37	1.1.2-Trichloroethane	ND	1.0	µg/L					
38		I ND	0.50	na/I					

ND = Not Detected

1,3-Dichloropropane

Tetrachloroethene

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachioroethane

2-Hexanone Dibromochloromethane

42

Roger Scholl

ND

ND

Kandy Saulur

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

μg/L

μg/L

μg/L

2.0

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-07A

Client I.D. Number: MW-SF-15

Attn: Daniel Jablonski

Phone: (213) 228-8271 Fax: (714) 424-2135

(114) 421 2133

Sampled: 10/07/16 13:30

Received: 10/08/16

Extracted: 10/19/16 01:17 Analyzed: 10/19/16 01:17

Volatile Organics by GC/MS EPA Method 624/8260

			Repoi	rting				Reporting		
	Compound	Concentration	Lim	rit		Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	5.0	μg/L	45	Chlorobenzene	ND	5.0	μg/L	
2	Chloromethane	ND	20	μg/L	46	Ethylbenzene	ND	2.5	µg/L	
3	Vinyl chloride	ND .	5.0	μg/L	47	m,p-Xylene	ND	2.5	μg/L	
4	Chioroethane	ND	5.0	μg/L	48	Bromoform	ND	5.0	µg/L	
5	Bromomethane	ND	20	μg/L	49	Xylenes, Total	ND	2.5	µg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	5.0	μg/L	
7	Acetone	ND	100	μg/L	51	o-Xylene	ND	2.5	μg/L	
8	1,1-Dichloroethene	ND	5.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	
9	Tertiary Butyl Alcohol (TBA)	720	50	μg/L	53	1,2,3-Trichloropropane	ND	20	μg/L	
10	Dichloromethane	ND	20	μg/L	54	Isopropylbenzene	ND	5.0	μg/L	
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	5.0	μ g/L	
12	Carbon disulfide	ND	25	μg/L	56	n-Propylbenzene	ND	5.0	μg/L	
13	trans-1,2-Dichloroethene	ND	5.0	µg/L	57	4-Chlorotoluene	. ND	5.0	μg/L	
14	Methyl tert-butyl ether (MTBE)	26	2.5	μg/L	58	2-Chlorotoluene	ND	5.0	μg/L	
15	1,1-Dichlorcethane	ND	5.0	μg/L	59	1,3,5-Trimethylbenzene	ND	5.0	μg/L	
16	Vinyl acetate	ND	500	μg/L	60	tert-Butylbenzene	ND	5.0	μg/L	
17	2-Butanone (MEK)	ND	100	µg/L	61	1,2,4-Trimethylbenzene	ND	5.0	μg/L	
18	Di-isopropyl Ether (DIPE)	12	5.0	μg/L	62	sec-Butylbenzene	ND	5.0	µg/L	
19	cis-1,2-Dichloroethene	ND	5.0	μg/L	63	1,3-Dichlorobenzene	ND .	5.0	μg/L	
20	Bromochloromethane	ND	5.0	μg/L	64	1,4-Dichlorobenzene	ND	5.0	μg/L	
21	Chloroform	ND	5.0	μg/L	65	4-Isopropyltoluene	ND	5.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	5.0	µg/L	66	1,2-Dichlorobenzene	ND	5.0	μg/L	
23	2,2-Dichloropropane	ND	5.0	µg/L	67	n-Butylbenzene	ND	5.0	µg/L	
24	1,2-Dichloroethane	ND	5.0	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	30	µg/L	
25	1,1,1-Trichloroethane	ND	5.0	μg/L	69	1,2,4-Trichlorobenzene	ND	20	μg/L	
26	1,1-Dichloropropene	ND	5.0	μg/L	70	Naphthalene	ND	20	μg/L	
27	Carbon tetrachloride	ND	5.0	μg/L	71	1,2,3-Trichlorobenzene	ND	20	μg/L	
28	Benzene	7.1	2.5	μg/L	72	Surr: 1,2-Dichloroethane-d4	96	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	5.0	μg/L	73	Surr: Toluene-d8	103	(70-130)	%REC	
30	Dibromomethane	ND	5.0	µg/L	74	Surr: 4-Bromofluorobenzene	86	(70-130)	%REC	
31	1,2-Dichloropropane	ND	5.0	μg/L						
32	Trichloroethene	ND	5.0	μg/L						
33	Bromodichloromethane	ND	5.0	μg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	25	μg/L						
35	cis-1.3-Dichloropropene	ND	5.0	μα/L						

Reporting Limits were increased due to sample foaming.

ND = Not Detected

trans-1,3-Dichloropropene 1,1,2-Trichloroethane

1,3-Dichloropropane

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Dibromochloromethane 1,2-Dibromoethane (EDB)

Toluene

2-Hexanone

Roger Scholl

ND

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Dod ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

A CONTRACTOR OF THE PARTY OF TH

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-08A

Client I.D. Number: MW-SF-4

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 13:20

Received: 10/08/16

Extracted: 10/19/16 01:41 Analyzed: 10/19/16 01:41

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting					Reporting	
	Compound	Concentration	Lin	nit		Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	5.0	μg/L	45	Chlorobenzene	ND	5.0	µg/L	
2	Chloromethane	ND	20	µg/L	46	Ethylbenzene	ND	2.5	μg/L	
3	Vinyl chloride	ND	5.0	μg/L	47	m,p-Xylene	ND	2.5	μg/L	
4	Chloroethane	ND	5.0	μg/L	48	Bromoform	ND	5.0	μg/L	
5	Bromomethane	ND	20	μg/L	49	Xylenes, Total	ND	2.5	μg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	5.0	μg/L	
7	Acetone	ND	100	μg/L	51	o-Xylene	ND	2.5	µg/L	
8	1,1-Dichloroethene	ND	5.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	50	μg/L	53	1,2,3-Trichloropropane	ND	20	μg/L	
10	Dichloromethane	ND	20	μg/L	54	Isopropylbenzene	ND	5.0	μg/L	
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	5.0	µg/L	
12	Carbon disulfide	ND	25	μg/L	56	n-Propyibenzene	ND	5.0	μg/L	
13	trans-1,2-Dichloroethene	ND	5.0	μg/L	57	4-Chlorotoluene	ND	5.0	µg/L	
14	Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	58	2-Chiorotoluene	ND	5.0	µg/L	
15	1,1-Dichloroethane	ND	5.0	μg/L	59	1,3,5-Trimethylbenzene	ND	5.0	µg/L	
16	Vinyl acetate	ND	500	μg/L	60	tert-Butylbenzene	ND	5.0	µg/L	
17	2-Butanone (MEK)	ND	100	μg/L	61	1,2,4-Trimethylbenzene	ND	5.0	μg/L	
18	Di-isopropyl Ether (DIPE)	ND	5.0	μg/L	62	sec-Butylbenzene	ND	5.0	µg/L	
19	cis-1,2-Dichloroethene	ND	5.0	μg/L	63	1,3-Dichlorobenzene	ND	5.0	μg/L	
20	Bromochloromethane	ND	5.0	μg/L	64	1,4-Dichlorobenzene	ND	5.0	μg/L	
21	Chloroform	ND	5.0	µg/L	65	4-Isopropyltoluene	ND	5.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	5.0	μg/L	66	1,2-Dichlorobenzene	ND	5.0	µg/L	
23	2,2-Dichloropropane	ND	5.0	μg/L	67	n-Butylbenzene	ND	5.0	μg/L	
24	1,2-Dichloroethane	ND	5.0	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	30	μg/L	
25	1,1,1-Trichloroethane	ND	5.0	μg/L	69	1,2,4-Trichlorobenzene	ND	20	µg/L	
26	1,1-Dichloropropene	ND	5.0	μg/L	70	Naphthalene	ND	20	µg/L	
27	Carbon tetrachloride	ND	5.0	µg/L	71	1,2,3-Trichlorobenzene	ND	20	µg/L	
28	Benzene	ND	2.5	μg/L	72	Surr: 1,2-Dichloroethane-d4	93	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	5.0	μg/L	73	Surr: Toluene-d8	104	(70-130)	%REC	
30	Dibromomethane	ND	5.0	μg/L	74	Surr: 4-Bromofluorobenzene	85	(70-130)	%REC	
31	1,2-Dichloropropane	ND	5.0	μg/L						
32	Trichloroethene	ND	5.0	μg/L						
33	Bromodichloromethane	ND	5.0	μg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	25	μg/L						
35	cis-1,3-Dichloropropene	ND	5.0	μg/L						
36	trans-1,3-Dichloropropene	ND	5.0	μg/L						
37	1,1,2-Trichloroethane	ND	5.0	μg/L				***		
38	Toluene	ND	2.5	μg/L						
	4.0.00 61	I was	1							

Reporting Limits were increased due to sample foaming.

ND = Not Detected

1,3-Dichloropropane 2-Hexanone

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

ND

ND

Kandy Saulner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

5.0

10

DOD ELAP Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10/19/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

DFSP KMEP Norwalk

Client I.D. Number: GMW-O-20

Alpha Analytical Number: CHH16101001-09A

Attn:

Daniel Jablonski Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/07/16 12:57

Received: 10/08/16

Extracted: 10/19/16 03:42 Analyzed: 10/19/16 03:42

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	porting
	Compound	Concentration	Lim	nit .		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	40	μg/L	45	Chlorobenzene	ND	40	μg/L
2	Chloromethane	ND	160	μg/L	46	Ethylbenzene	230	20	μg/L
3	Vinyl chloride	ND	40	μg/L	47	m,p-Xylene	2,700	20	µg/L
4	Chloroethane	ND	40	μg/L	48	Bromoform	ND -	40	μg/L
5	Bromomethane	ND	160	μg/L	49	Xylenes, Total	4,200	20	μg/L
6	Trichlorofluoromethane	ND	40	μg/L	50	Styrene	ND	40	μg/L
7	Acetone	ND	800	μg/L	51	o-Xylene	1,500	20	μg/L
8	1,1-Dichloroethene	ND .	40	μg/L	52	1,1,2,2-Tetrachloroethane	ND	40	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	400	μg/L	53	1,2,3-Trichloropropane	ND	160	μg/L
10	Dichloromethane	ND	160	μg/L	54	Isopropylbenzene	ND .	40	μg/L
11	Freon-113	ND	40	μg/L	55	Bromobenzene	ND	40	µg/L
12	Carbon disulfide	ND	200	μg/L	56	n-Propylbenzene	50	40	μg/L
13	trans-1,2-Dichloroethene	ND	40	µg/L	57	4-Chlorotoluene	ND	40	μ g/ L
14	Methyl tert-butyl ether (MTBE)	38	20	μg/L	58	2-Chlorotoiuene	ND	40	μg/L
15	1,1-Dichloroethane	ND	40	μg/L	59	1,3,5-Trimethylbenzene	600	40	μg/L
16	Vinyl acetate	ND	4,000	μg/L	60	tert-Butylbenzene	ND	40	µg/L
17	2-Butanone (MEK)	ND	800	μg/L	61	1,2,4-Trimethylbenzene	1,400	40	µg/L
18	Di-isopropyl Ether (DIPE)	ND	40	μg/L	62	sec-Butylbenzene	ND	40	μg/L
19	cis-1,2-Dichloroethene	ND	40	µg/L	63	1,3-Dichlorobenzene	ND	40	μg/L
20	Bromochloromethane	ND	40	μg/L	64	1,4-Dichlorobenzene	ND	40	μg/L
21	Chloroform	ND	40	μg/L	65	4-Isopropyltoluene	58	40	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	40	μg/L	66	1,2-Dichlorobenzene	ND	40	μg/L
23	2,2-Dichloropropane	ND	40	μg/L	67	n-Butylbenzene	90	40	μg/L
24	1,2-Dichloroethane	ND	40	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	240	μg/L
25	1,1,1-Trichloroethane	ND	40	µg/L	69	1,2,4-Trichlorobenzene	ND	160	μg/L
26	1,1-Dichloropropene	ND .	40	µg/L	70	Naphthalene ·	310	160	µg/L
27	Carbon tetrachloride	ND	40	μg/L	71	1,2,3-Trichlorobenzene	ND	160	µg/L
28	Benzene	2,700	20	μg/L	72	Surr: 1,2-Dichloroethane-d4	88	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	40	μg/L	73	Surr: Toluene-d8	107	(70-130)	%REC
30	Dibromomethane	ND	40	μg/L	74	Surr: 4-Bromofluorobenzene	91	(70-130)	%REC
31	1,2-Dichloropropane	ND	40	μg/L		ä			
32	Trichioroethene	ND	40	μg/L					
33	Bromodichloromethane	ND	40	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	200	μg/L					
35	cis-1,3-Dichloropropene	ND	40	μg/L		get.			
36	trans-1,3-Dichloropropene	ND	40	μg/L					
37	1,1,2-Trichloroethane	ND .	40	μg/L				*	
38	Toluene	930	20	μg/L					
39	1,3-Dichloropropane	ND	40	μg/L					
40	2-Hexanone	ND	400	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND = Not Detected

Dibromochloromethane 1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Tetrachloroethene

Roger L. Scholl, Ph.D., Laboratory Director . . Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-10A

Client I.D. Number: GMW-O-23

Attn: Daniel Jablonski

(213) 228-8271 Phone: (714) 424-2135 Fax:

Sampled: 10/07/16 12:17

Received: 10/08/16

Extracted: 10/19/16 02:05 Analyzed: 10/19/16 02:05

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Reporting		
	Compound	Concentration	Lim	it		Compound	Concentration		Limit	
1	Dichlorodifluoromethane	ND	8.0	µg/L	45	Chlorobenzene	ND	8.0	μg/L	
2	Chloromethane	ND	32	μg/L	46	Ethylbenzene	9.3	4.0	μg/L	
3	Vinyl chloride	ND	8.0	μg/L	47	m,p-Xylene	64	4.0	µg/L	
4	Chloroethane	ND	8.0	μg/L	48	Bromoform	ND	8.0	μg/L	
5	Bromomethane	ND	32	μg/L	49	Xylenes, Total	110	4.0	μg/L	
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	8.0	μg/L	
7	Acetone	ND	160	μg/L	51	o-Xylene	50 .	4.0	μg/L	
8	1,1-Dichloroethene	ND	8.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	8.0	μg/L	
9	Tertiary Butyl Alcohol (TBA)	ND	80	μg/L	53	1,2,3-Trichloropropane	NÐ	32	μg/L	
10	Dichloromethane	ND	32	μg/L	54	Isopropylbenzene	ND	8.0	μg/L	
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	8.0	µg/L	
12	Carbon disulfide	ND	40	μg/L	56	n-Propylbenzene	8.6	8.0	μg/L	
13	trans-1.2-Dichloroethene	ND	8.0	μg/L	57	4-Chlorotoluene	ND	8.0	µg/L	
14	Methyl tert-butyl ether (MTBE)	5.0	4.0	μg/L	58	2-Chlorotoluene	ND	8.0	μ g/ L	
15	1.1-Dichloroethane	ND	8.0	μg/L	59	1,3,5-Trimethylbenzene	60	8.0	μg/L	
16	Vinyl acetate	ND	800	μg/L	60	tert-Butylbenzene	ND	8.0	μg/L	
17	2-Butanone (MEK)	l _{ND}	160	μg/L	61	1,2,4-Trimethylbenzene	200	8.0	μg/L	
18	Di-isopropyl Ether (DIPE)	ND	8.0	μg/L	62	sec-Butylbenzene	ND	8.0	μg/L	
19	cis-1.2-Dichloroethene	ND	8.0	μg/L	63	1.3-Dichlorobenzene	ND	8.0	μg/L	
20	Bromochloromethane	ND	8.0	µg/L	64	1,4-Dichlorobenzene	ND	8.0	μg/L	
21	Chloroform	ND	8.0	μg/L	65	4-Isopropyltoluene	ND	8.0	μg/L	
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	8.0	µg/L	66	1.2-Dichlorobenzene	ND	8.0	μg/L	
23	2,2-Dichloropropane	ND	8.0	μg/L	67	n-Butvibenzene	ND	8.0	μg/L	
24	1.2-Dichloroethane	ND	8.0	μg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND	48	μg/L	
25	1.1.1-Trichloroethane	ND	8.0	μg/L	69	1,2,4-Trichlorobenzene	ND	32	μg/L	
26	1,1-Dichloropropene	ND	8.0	µg/L	70	Naphthalene	ND	32	μg/L	
27	Carbon tetrachloride	ND	8.0	µg/L	71	1.2.3-Trichlorobenzene	ND	32	μg/L	
28	Benzene	15	4.0	µg/L	72	Surr: 1.2-Dichloroethane-d4	93	(70-130)	%REC	
29	Tertiary Amyl Methyl Ether (TAME)	ND	8.0	μg/L	73	Surr: Toluene-d8	104	(70-130)	%REC	
30	Dibromomethane	ND	8.0	µg/L	74	Surr: 4-Bromofluorobenzene	86	(70-130)	%REC	
31	1,2-Dichloropropane	ND	8.0	µg/L				-		
32	Trichloroethene	ND	8.0	µg/L						
33	Bromodichloromethane	ND	8.0	µg/L						
34	4-Methyl-2-pentanone (MIBK)	ND	40	µg/L						
35	cis-1,3-Dichloropropene	ND	8.0	μg/L						
36	trans-1.3-Dichloropropene	ND	8.0	μg/L						
	4.4.5 T : 61	1	1 0.0	,-o						

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane (EDB)

Tetrachioroethene

1,1,1,2-Tetrachioroethane

Toluene

Roger Scholl

μg/L

µg/L

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Client I.D. Number: GMW-O-14

Alpha Analytical Number: CHH16101001-11A

Attn:

Daniel Jablonski

Fax:

Phone: (213) 228-8271 (714) 424-2135

Sampled: 10/07/16 11:27

Received: 10/08/16

Extracted: 10/19/16 04:30 Analyzed: 10/19/16 04:30

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Reporting
	Compound	Concentration	Lim	nit		Compound	Concentration	Limit
1	Dichlorodifluoromethane	ND	100	μg/L	45	Chlorobenzene	ND	100 µg/L
2	Chloromethane	ND	400	μg/L	46	Ethylbenzene	390	50 μg/L
3	Vinyl chloride	ND	100	μg/L	47	m,p-Xylene	170	50 μg/L
4	Chloroethane	ND	100	μg/L	48	Bromoform	ND	100 μg/L
5	Bromomethane	ND	400	μg/L	49	Xylenes, Total	290	50 μg/L
6	Trichlorofluoromethane	ND	100	μg/L	50	Styrene	ND	100 μg/L
7	Acetone	ND	2,000	μg/L	51	o-Xylene	120	50 μg/L
8	1,1-Dichloroethene	ND	100	μg/L	52	1,1,2,2-Tetrachloroethane	ND	100 μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	1,000	μg/L	53	1,2,3-Trichloropropane	ND	400 μg/L
10	Dichloromethane	ND	400	μg/L	54	Isopropylbenzene	ND	100 μg/L
11	Freon-113	ND	100	μg/L	55	Bromobenzene	ND	100 μg/L
12	Carbon disulfide	ND	500	μg/L	56	n-Propylbenzene	ND	100 μg/L
13	trans-1,2-Dichloroethene	ND	100	μg/L	57	4-Chiorotoluene	ND	100 μg/L
14	Methyl tert-butyl ether (MTBE)	ND	50	μg/L	58	2-Chlorotoluene	ND	100 μg/L
15	1,1-Dichloroethane	ND	100	µg/L	59	1,3,5-Trimethylbenzene	ND	100 μg/L
16	Vinyl acetate	ND	10,000	μg/L	60	tert-Butylbenzene	ND	100 μg/L
17	2-Butanone (MEK)	ND	2,000	µg/L	61	1,2,4-Trimethylbenzene	150	100 μg/L
18	Di-isopropyl Ether (DIPE)	220	100	µg/L	62	sec-Butylbenzene	ND	100 μg/L
19	cis-1.2-Dichloroethene	ND	100	μg/L	63	1.3-Dichlorobenzene	ND	100 μg/L
20	Bromochloromethane	ND	100	μg/L	64	1,4-Dichlorobenzene	ND	100 μg/L
21	Chloroform	ND	100	μg/L	65	4-Isopropyltoluene	ND	100 μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	100	μg/L	66	1,2-Dichlorobenzene	ND	100 μg/L
23	2,2-Dichloropropane	ND	100	μg/L	67	n-Butylbenzene	ND	100 μg/L
24	1.2-Dichloroethane	ND	100	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	600 µg/L
25	1.1.1-Trichloroethane	ND	100	μg/L	69	1,2,4-Trichlorobenzene	ND	400 μg/L
26	1,1-Dichloropropene	ND	100	µg/L	70	Naphthalene	ND -	400 μg/L
27	Carbon tetrachloride	ND	100	μg/L	71	1.2.3-Trichlorobenzene	ND	400 μg/L
28	Benzene	12,000	50	μg/L	72	Surr: 1.2-Dichloroethane-d4	86	(70-130) %REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	100	µg/L	73	Surr: Toluene-d8	109	(70-130) %REC
30	Dibromomethane	l ND	100	μg/L	74	Surr: 4-Bromofluorobenzene	89	(70-130) %REC
31	1,2-Dichloropropane	ND	100	μg/L	• •		•	• • •
32	Trichloroethene	ND	100	μg/L				
33	Bromodichloromethane	ND	100	µg/L				
34	4-Methyl-2-pentanone (MIBK)	ND	500	μg/L				
35	cis-1,3-Dichloropropene	ND	100	µg/L				
36	trans-1,3-Dichloropropene	ND	100	µg/L				
37	1.1.2-Trichloroethane	ND	100	µg/L				
38	Toluene	72	50	µg/L				
39	1,3-Dichloropropane	ND ND	100	μg/L				
40	2-Hexanone	ND	1,000	μg/L				
41	Dibromochloromethane	ND	100	μg/L				
42	1,2-Dibromoethane (EDB)	ND ·	200	μg/L				
72		l NB	1 200	µg/∟				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Tetrachloroethene 1,1,1,2-Tetrachloroethane

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-12A

Client I.D. Number: MW-SF-6

Attn: Daniel Jablonski Phone: (213) 228-8271

Fax: (714) 424-2135

Sampled: 10/07/16 10:37

Received: 10/08/16

Extracted: 10/19/16 02:53 Analyzed: 10/19/16 02:53

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting				Re	eporting
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	10	µg/L	45	Chlorobenzene	ND	10	μg/L
2	Chloromethane	ND	40	μg/L	46	Ethylbenzene	35	5.0	μg/L
3	Vinyl chloride	ND	10	μg/L	47	m,p-Xylene	450	5.0	μg/L
4	Chloroethane	ND	10	μg/L	48	Bromoform	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	49	Xylenes, Total	640	5.0	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	10	μg/L
7	Acetone	ND	200	μg/L	51	o-Xylene	190	5.0	μg/L
8	1,1-Dichloroethene	ND	10	μg/L	52	1,1,2,2-Tetrachloroethane	ND	10	μg/L
9	Tertiary Butyl Alcohol (TBA)	390	100	μg/L	53	1,2,3-Trichtoropropane	NÐ	40	μg/L
10	Dichloromethane	ND	40	μg/L	54	Isopropylbenzene	ND	10	μg/L
11	Freon-113	ND	10	μg/L	55	Bromobenzene	ND	10	μg/L
12	Carbon disulfide	ND	50	μg/L	56	n-Propylbenzene	ND	10	μg/L
13	trans-1,2-Dichloroethene	ND	10	μg/L	57	4-Chlorotoluene	ND	10	μg/L
14	Methyl tert-butyl ether (MTBE)	53	5.0	μg/L	58	2-Chlorotoluene	ND .	10	μg/Ł
15	1,1-Dichloroethane	ND	10	μg/L	59	1,3,5-Trimethylbenzene	310	10	μ g/L
16	Vinyl acetate	ND	1,000	μg/L	60	tert-Butylbenzene	ND	10	μg/L
17	2-Butanone (MEK)	ND	200	μg/L	61	1,2,4-Trimethylbenzene	440	10	μg/L
18	Di-isopropyl Ether (DIPE)	ND	10	μg/L	62	sec-Butylbenzene	ND	10	μg/L
19	cis-1,2-Dichloroethene	ND	10	μg/L	63	1,3-Dichlorobenzene	ND	10	μg/L
20	Bromochloromethane	ND	10	μg/L	64	1,4-Dichlorobenzene	ND	10	μg/L
21	Chloroform	ND	10	μg/L	65	4-Isopropyltoluene	ND	10	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	10	µg/L	66	1.2-Dichlorobenzene	ND	10	μg/L
23	2,2-Dichloropropane	ND	10	· μg/L	67	n-Butylbenzene	48	10	μg/L
24	1.2-Dichloroethane	ND	10	μg/L	68	1.2-Dibromo-3-chloropropane (DBCP)	ND	60	μg/L
25	1,1,1-Trichloroethane	ND	10	μg/L	69	1,2,4-Trichlorobenzene	ND	40	μg/L
26	1,1-Dichloropropene	ND	10	μg/L	70	Naphthalene	64	40	μg/L
27	Carbon tetrachloride	ND	10	µg/L	71	1,2,3-Trichlorobenzene	ND	40	μg/L
28	Benzene	430	5.0	μg/L	72	Surr: 1.2-Dichloroethane-d4	87	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	10	µg/L	73	Surr: Toluene-d8	107	(70-130)	%REC
30	Dibromomethane	ND	10	µg/L	74	Surr: 4-Bromofluorobenzene	89	(70-130)	%REC
31	1,2-Dichloropropane	ND	10	μg/L		•			
32	Trichloroethene	ND	10	µg/L					
33	Bromodichloromethane	ND	10	µg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	50	µg/L					
35	cis-1,3-Dichloropropene	ND	10	µg/L					
36	trans-1,3-Dichloropropene	ND	10	μg/L					
37	• •	ND	10	μg/L					
	.,.,	1 ''-	1	La. –					

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND

ND

ND

ND

ND = Not Detected

Toluene

42

2-Hexanone

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1.2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Roger Scholl

Kandy Danlmer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

10 μg/L

100

10

20 10

μg/L

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: MW-SF-1

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-13A

Attn:

Daniel Jablonski

Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/07/16 09:53

Received: 10/08/16

Extracted: 10/19/16 00:53 Analyzed: 10/19/16 00:53

Volatile Organics by GC/MS EPA Method 624/8260

			Repor	ting				Re	eporting
	Compound	Concentration	Lim	it		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	µg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	µg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	53	1,2,3-Trichtoropropane	ND	2.0	µg/L
10	Dichloromethane	ND	5.0	μg/L	54	Isopropylbenzene	ND	1.0	μg/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	µg/L
12	Carbon disulfide	ND	2.5	μg/L	56	n-Propylbenzene	ND	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chlorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	0.57	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	µg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	μg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	NÐ	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	µg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1,3-Dichlorobenzene	ND	1.0	μ g/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	µg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1,2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	µg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1,2-Dichloroethane	ND	0.50	µg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	. 70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	l ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μ g/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1,2-Dichloroethane-d4	95	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	73	Surr: Toluene-d8	104	(70-130)	%REC
30	Dibromomethane	ND	1.0	μg/L	74	Surr: 4-Bromofluorobenzene	87	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L					
32	Trichloroethene	l ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	μg/L					
36	trans-1,3-Dichloropropene	ND	0.50	μg/L					
37	1,1,2-Trichloroethane	ND	1.0	μg/L					
	T 1	NB	0.50						

ND = Not Detected

Toluene

2-Hexanone

1,3-Dichloropropane

Dibromochloromethane

1,2-Dibromoethane (EDB) Tetrachloroethene

1,1,1,2-Tetrachloroethane

Roger Scholl

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager

0.50

1.0

5.0

1.0

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16 **Report Date**

Page 1 of 1

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

CH2M Hill

1000 Wilshire Boulevard Los Angeles, CA 90017

Client I.D. Number: EXP-1

Job:

DFSP KMEP Norwalk

Alpha Analytical Number: CHH16101001-14A

Daniel Jablonski Attn: Phone: (213) 228-8271

Fax:

(714) 424-2135

Sampled: 10/07/16 11:45

Received: 10/08/16

Extracted: 10/19/16 00:28 Analyzed: 10/19/16 00:28

Volatile Organics by GC/MS EPA Method 624/8260

			Repo	rting			Reporting		
	Compound	Concentration	Lim	nit		Compound	Concentration		Limit
1	Dichlorodifluoromethane	ND	1.0	μg/L	45	Chlorobenzene	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	46	Ethylbenzene	ND	0.50	µg/L
3	Vinyl chloride	ND	0.50	μg/L	47	m,p-Xylene	ND	0.50	µg/L
4	Chloroethane	ND	1.0	μg/L	48	Bromoform	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	49	Xylenes, Total	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	50	Styrene	ND	1.0	μg/L
7	Acetone	ND	10	μg/L	51	o-Xylene	ND	0.50	μg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	52	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	53	1,2,3-Trichloropropane	ND	2.0	μg/L
10	Dichloromethane	ND	5.0	µg/L	54	Isopropylbenzene	ND	1.0	μ g/L
11	Freon-113	ND	10	µg/L	55	Bromobenzene	ND	1.0	μg/L
12	Carbon disulfide	l ND	2.5	μg/L	56	n-Propylbenzene	ND .	1.0	μg/L
13	trans-1,2-Dichloroethene	ND	1.0	μg/L	57	4-Chiorotoluene	ND	1.0	μg/L
14	Methyl tert-butyl ether (MTBE)	1.8	0.50	μg/L	58	2-Chlorotoluene	ND	1.0	μg/L
15	1,1-Dichloroethane	ND	1.0	μg/L	59	1,3,5-Trimethylbenzene	ND	1.0	μg/L
16	Vinyl acetate	ND	50	μg/L	60	tert-Butylbenzene	ND	1.0	µg/L
17	2-Butanone (MEK)	ND	10	μg/L	61	1,2,4-Trimethylbenzene	ND	1.0	μg/L
18	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	62	sec-Butylbenzene	ND	1.0	μg/L
19	cis-1,2-Dichloroethene	ND	1.0	μg/L	63	1.3-Dichlorobenzene	ND	1.0	μg/L
20	Bromochloromethane	ND	1.0	μg/L	64	1,4-Dichlorobenzene	ND	1.0	μg/L
21	Chloroform	ND	1.0	μg/L	65	4-Isopropyltoluene	ND	1.0	μg/L
22	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	66	1.2-Dichlorobenzene	ND	1.0	μg/L
23	2,2-Dichloropropane	ND	1.0	μg/L	67	n-Butylbenzene	ND	1.0	μg/L
24	1.2-Dichloroethane	ND	0.50	μg/L	68	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
25	1,1,1-Trichloroethane	ND	1.0	μg/L	69	1,2,4-Trichlorobenzene	ND	2.0	μg/L
26	1,1-Dichloropropene	ND	1.0	μg/L	70	Naphthalene	ND	10	μg/L
27	Carbon tetrachloride	ND	1.0	μg/L	71	1,2,3-Trichlorobenzene	ND	2.0	μg/L
28	Benzene	ND	0.50	μg/L	72	Surr: 1.2-Dichloroethane-d4	100	(70-130)	%REC
29	Tertiary Amyl Methyl Ether (TAME)	ND ND	1.0	µg/L	73	Surr: Toluene-d8	103	(70-130)	%REC
30	Dibromomethane	ND	1.0	µg/L	74	Surr: 4-Bromofluorobenzene	89	(70-130)	%REC
31	1,2-Dichloropropane	ND	1.0	μg/L		•	•	•	
32	Trichloroethene	l ND	1.0	μg/L					
33	Bromodichloromethane	ND	1.0	μg/L					
34	4-Methyl-2-pentanone (MIBK)	ND	10	μg/L					
35	cis-1,3-Dichloropropene	ND	0.50	µg/L					
36	trans-1,3-Dichloropropene	ND	0.50	µg/L					
37	1.1.2-Trichloroethane	ND	1.0	µg/L					
38	Toluene	ND	0.50	µg/L					

ND = Not Detected

1,3-Dichloropropane

Tetrachloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

2-Hexanone

Roger Scholl

ND

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director . Randy Gardner, Laboratory Manager Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

50 μg/L

1.0 µg/L

2.0

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

10/19/16 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: CHH16101001

Job:

DFSP KMEP Norwalk

Alpha's Sample ID	Client's Sample ID	Matrix	pН	
16101001-01A	GMW-O-21	Aqueous	2	-
16101001-02A	MW-SF-13	Aqueous	2	
16101001-03A	GMW-30	Aqueous	2	
16101001-04A	DUP-7	Aqueous	2	•
16101001-05A	EB-6	Aqueous	2	
16101001-06A	TB-4	Aqueous	2	
16101001-07A	MW-SF-15	Aqueous	2	
16101001-08A	MW-SF-4	Aqueous	2	
16101001-09A	GMW-O-20	Aqueous	2	
16101001-10A	GMW-O-23	Aqueous	2	
16101001-11A	GMW-O-14	Aqueous	2	
16101001-12A	MW-SF-6	Aqueous	2	
16101001-13A	MW-SF-1	Aqueous	2	
16101001-14A	EXP-1	Aqueous	2	

10/19/16

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-16		Work Order: 16101001									
Method Blar File ID: 16	nk		10/14/2016 18:03								
Sample ID: Analyte	MBLK-37320	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		LCL(ME)	•	Date: RPDRef	10/14/2016 12:34 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		ND 0.151	0.0	5 0.15		101	35	151			
Laboratory (Control Spike		Туре І		est Code: E atch ID: 373		thod SW80			10/14/2016 18:29	
Sample ID: Analyte	LCS-37320	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		: LCL(ME)	•	Date: RPDReft	10/14/2016 12:34 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.79 0.14	0.0	5 2.5 0.15		112 93	73 35	135 151			
Sample Mati	rix Spike	Type MS Test Code: EPA Method SW8015B/C Ext Batch ID: 37320 Analysis Date:							10/14/2016 19:21		
Sample ID: Analyte	16101001-14AMS	Units : mg/L Result	PQL		ANUAL_161 SpkRefVal		: LCL(ME)		Date: RPDRef\	10/14/2016 12:34 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane	-	2.79 0.269	0.	1 2.5 0.3	0	112 90	64 33	161 162			
Sample Mati	(atrix Spike Duplicate Type MSD Test Code: EPA Method SW8015B/C Ext						10/14/2016 19:48				
Sample ID: Analyte	16101001-14AMSD	Units : mg/L Result	PQL	Run ID: M	ANUAL_161	013L	LCL(ME)	Prep	Date:	10/14/2016 19:48 10/14/2016 12:34 /al %RPD(Limit)	Qual
TPH-E (DRO) Surr: Nonane		2.63 0.27	0.		0	105 90	64 33	161 162	2.79		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Oil Range Organics (ORO) C22-C40+

Jet Fuel Range Organics (JFRO) C9-C22. JFRO determination is based on its chromatographic fingerprint.

Diesel Range Organics (DRO) C13-C22

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-16	(QC Si	ımmar	y Repor	t			Work Orde 16101001	
Method Blank File ID: 41 Sample ID: MBLK MS09W1019A Analyte	Units : mg/L Result	Type M	Barrer Ba	atch ID: MS0 ANUAL_161	9W101 018A	18D	15B/C / SW8260B Analysis Date: Prep Date: UCL(ME) RPDRef	10/18/2016 22:52 10/18/2016 22:52	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 0.0101 0.0104 0.0093	0.05			101 104 93	70 70 70	130 130 130		
Laboratory Control Spike	Type LCS Test Code: EPA Method SW8015B/C / SW8260B								
File ID: 40 Sample ID: GLCS MS09W1019D	11.9			atch ID: MS(8D		10/18/2016 22:04	
Sample ID: GLCS MS09W1019D Analyte	Units : mg/L Result	PQL		ANUAL_161		LCL(ME)	Prep Date: UCL(ME) RPDRef	10/18/2016 22:04	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	0.422 0.0101 0.0105 0.00936	0.05			106 101 105 94	70 70 70 70 70	130 130 130 130		
Sample Matrix Spike		Type M	S To	est Code: El	A Met	hod SW80	15B/C / SW8260B		
File ID: 40			В	atch ID: MS0	9W101	8D	•	10/19/2016 05:42	
Sample ID: 16101001-03AGS Analyte	Units : mg/L			ANUAL_161		1.01.(145)	Prep Date:	10/19/2016 05:42	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2.15 0.0415 0.0543 0.0451	PQL 0.25	2 0.05 0.05 0.05	0.3647	89 83 109 90	46 70 70 70	UCL(ME) RPDRef 167 130 130 130	Val %RPD(Limit)	Qual
Sample Matrix Spike Duplicate		Type M	SD T	est Code: EF	PA Meti	nod SW80	15B/C / SW8260B		
File ID: 41				atch ID: MS0		8D	•	10/19/2016 06:06	
Sample ID: 16101001-03AGSD	Units : mg/L			ANUAL_161			Prep Date:	10/19/2016 06:06	
Analyte	Result	PQL				···············	UCL(ME) RPDRef		Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2.37 0.0424 0.0542 0.0458	0.25	2 0.05 0.05 0.05	0.3647	100 85 108 92	54 70 70 70	143 2.15 130 130 130	3 9.7(23)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Gasoline Range Organics (GRO) C4-C13 Gasoline Range Organics (GRO) C4-C13 Aeronautic Gas Range Organics (AGRO) C4-C10

Date: 20-Oct-16	(QC Sumn	nary Report		Work Orde 16101001	
Method Blank File ID: 2		Type MBLK	Test Code: EPA Method SW8 Batch ID: MS09W1018C		10/18/2016 22:52	
Sample ID: MBLK MS09W1019A	Units : μg/L	Run II	D: MANUAL_161018A	Prep Date:	10/18/2016 22:52	
Analyte	Result	PQL Spk	Val SpkRefVal %REC LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual
Dichlorodifluoromethane	ND	1				
Chloromethane Vinyl chloride	ND	2				
Chloroethane	ND ND	0.5 1				
Bromomethane	ND ND	2				
Trichlorofluoromethane	ND	10				
Acetone	ND	10				
1,1-Dichloroethene	ND	1 .				
Tertiary Butyl Alcohol (TBA)	ND	10				
Dichloromethane	ND	5				
Freon-113	ND	10				
Carbon disulfide trans-1,2-Dichloroethene	ND ND	2.5				
Methyl tert-butyl ether (MTBE)	ND ND	1 0.5				
1.1-Dichloroethane	ND	1				
Vinyl acetate	ND	50				
2-Butanone (MEK)	ND	10				
Di-isopropyl Ether (DIPE)	ND	1				
cis-1,2-Dichloroethene	ND	1				
Bromochloromethane	ND	1				
Chloroform Ethyl Tortion, Butyl Ethor (ETBE)	ND	1				
Ethyl Tertiary Butyl Ether (ETBE) 2,2-Dichloropropane	ND ND	1				
1,2-Dichloroethane	ND ND	0.5				
1,1,1-Trichloroethane	ND	0.5				
1,1-Dichloropropene	ND	i				
Carbon tetrachloride	ND	1				
Benzene	ND	0.5				
Tertiary Amyl Methyl Ether (TAME)	ND	1				
Dibromomethane	ND	1				
1,2-Dichloropropane Trichloroethene	ND	1				
Bromodichloromethane	ND ND	1 1				
4-Methyl-2-pentanone (MIBK)	ND	10				
cis-1,3-Dichloropropene	ND	0.5				
trans-1,3-Dichloropropene	ND	0.5				
1,1,2-Trichloroethane	ND	1				
Toluene	ND	0.5				
1,3-Dichloropropane 2-Hexanone	ND	1				
Dibromochloromethane	ND ND	5 1				
1,2-Dibromoethane (EDB)	ND	2				
Tetrachloroethene	ND	1				
1,1,1,2-Tetrachioroethane	ND	1				
Chlorobenzene	ND	1				
Ethylbenzene	ND	0.5				
m,p-Xylene Bromoform	ND	0.5				
Styrene	ND ND	1				
o-Xylene	ND	1 0.5				
1,1,2,2-Tetrachloroethane	ND	1				
1,2,3-Trichloropropane	ND	2				
Isopropylbenzene	ND	1				
Bromobenzene	ND	1				
n-Propylbenzene 4-Chlorotoluene	ND	1				
2-Chlorotoluene	ND ND	1				
1,3,5-Trimethylbenzene	ND ND	1				
tert-Butylbenzene	ND ND	1				
1,2,4-Trimethylbenzene	ND	1				
sec-Butylbenzene	ND	1				
1,3-Dichlorobenzene	ND	1				
1,4-Dichlorobenzene	ND	1				
4-Isopropyltoluene	ND ND	1				
1,2-Dichlorobenzene	ND	1				

Date: 20-Oct-16	(Work Order: 16101001					
n-Butylbenzene	ND	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
1,2-Dibromo-3-chloropropane (DBCP)	ND	5					
1,2,4-Trichlorobenzene	ND	2					
Naphthalene	ND	10					
1,2,3-Trichlorobenzene	ND	2					
Xylenes, Total	ND	0.5					
Surr: 1,2-Dichloroethane-d4	10.1	-	10	101	70	130	
Surr: Toluene-d8	10.4		10	104	70	130	
Surr: 4-Bromofluorobenzene	9.3		10	93	70	130	

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-16		Work Order: 16101001							
Laboratory Control Spike		Type LCS	Test C	ode: EPA Meth	od SW8	260B			
File ID: 1			Batch	ID: MS09W1018	3C	Analysis	Date: 10/18/2016 21:15	;	
Sample ID: LCS MS09W1019C	Units : µg/L	Rı	ın ID: MANU	AL_161018A		Prep Dat			
Analyte	Result	PQL			LCL(ME)	UCL(ME) RP	DRefVal %RPD(Limit)	Qua	
Dichlorodifluoromethane	12.3	1	10	123	32	145			
Chloromethane	9.6	2	10	96	40	145			
Vinyl chloride	9.37	- ī	10	94	70	130			
Chloroethane	11.5	1	10	115	38	156			
Bromomethane	4.58	2	10	23	13	162			
Trichlorofluoromethane	11.7	1	10	117	46	154			
Acetone	241	10	200	120	22	188			
1,1-Dichloroethene	10.3	1	10	103	70	130			
Tertiary Butyl Alcohol (TBA)	149	10	100	149	48	148		L51	
Dichloromethane	9.9	2	10	99	69	130			
Freon-113	12.1	1	10	121	70	136			
trans-1,2-Dichloroethene Methyl tert-butyl ether (MTBE)	10.4	1	10	104	70	130			
1,1-Dichloroethane	10.2 11.6	0.5	10	102 116	63 70	137			
2-Butanone (MEK)	231	-1 10	10 200	115	70 26	130			
Di-isopropyl Ether (DIPE)	231 11.9	10	10	115 119	26 69	183 133			
cis-1,2-Dichloroethene	11.1	1	10	111	70	130			
Bromochloromethane	10.4	1	10	104	70 70	133			
Chloroform	12	1	10	120	70	130			
Ethyl Tertiary Butyl Ether (ETBE)	11.7	1	10	117	66	135			
2,2-Dichloropropane	10.9	1	10	109	70	149			
1,2-Dichloroethane	13.1	1	10	131	70	133			
1,1,1-Trichloroethane	12.4	- 1	. 10	124	70	135			
1,1-Dichloropropene	12.1	1	10	121	70	130			
Carbon tetrachloride	12.9	1	10	129	63	143			
Benzene	11	0.5	10	110	70	130			
Tertiary Amyl Methyl Ether (TAME)	11.7	1	10	117	70	133			
Dibromomethane	11.3	1	10	113	70	130			
1,2-Dichloropropane Trichloroethene	12.2	1	10	122	70	130			
Bromodichloromethane	12.3	1	10	123	68 50	138			
4-Methyl-2-pentanone (MIBK)	12.2 33	2.5	10 25	122 132	58 59	147 140			
cis-1,3-Dichloropropene	11.3	2.5 1	25 10	113	70	130			
trans-1,3-Dichloropropene	10.1	1	10	101	70	131			
1,1,2-Trichloroethane	9.46	i	10	95	70	130			
Toluene	11.1	0.5	10	111	70	130			
1,3-Dichloropropane	10.1	1	10	101	70	130			
2-Hexanone	115	5	100	115	48	157			
Dibromochloromethane	10.3	1	10	103	49	147			
1,2-Dibromoethane (EDB)	18.9	2	20	94	70	131			
Tetrachloroethene	11.9	1	10	119	70	130			
1,1,1,2-Tetrachloroethane	10.2	1	10	102	70	130			
Chlorobenzene	9.29	1	10	93	70	130			
Ethylbenzene	10.6	0.5	10	106	70	130			
m,p-Xylene	10.2	0.5	10	102	65	139			
Bromoform Styrene	10.6	1	10	106	60	144			
Styrene o-Xylene	9.2	1	10	92 101	55 70	144			
1,1,2,2-Tetrachloroethane	10.1	0.5	10 10	101	70 70	130			
1,2,3-Trichloropropane	8.92 21.7	- 1 2	10 20	89 108	70 70	130 130			
Isopropylbenzene	11.2	1	10	112	69	136			
Bromobenzene	9.66	1	10	97	70	130			
n-Propylbenzene	10.6	1	10	106	70	132			
4-Chlorotoluene	10.7	i	10	107	70	132			
2-Chlorotoluene	10.4	i	10	104	70	130			
1,3,5-Trimethylbenzene	11.5	1	10	115	70	134			
tert-Butylbenzene	11.1	1	10	111	63	139			
1,2,4-Trimethylbenzene	11.6	1	10	116	70	133			
sec-Butylbenzene	10.7	1	10	107	70	132			
1,3-Dichlorobenzene	10.3	1	10	103	70	130			
1,4-Dichlorobenzene	10.2	1	10	102	70	130			
4-Isopropyltoluene	11.7	1	10	117	40	161			
1,2-Dichlorobenzene	9.98	1	10	99.8	70	130			
n-Butylbenzene	10.7	1	10	107	69	134			
1,2-Dibromo-3-chloropropane (DBCP)	47.7	3	50	95	67	130			

Date: 20-Oci-16		Work Order: 16101001					
1,2,4-Trichlorobenzene	8.54	2	10	85	62	131	
Naphthalene	6.64	. 2	10	66	39	149	
1,2,3-Trichlorobenzene	6.52	2	10	65	54	135	
Xylenes, Total	20.2	0.5	20	101	70	130	
Surr: 1,2-Dichloroethane-d4	10.5		10	105	70	130	
Surr: Toluene-d8	9.88		10	99	70	130	
Surr: 4-Bromofluorobenzene	8.7		10	87	70	130	

Date: 20-Oct-16	(QC Sı	ımmar	y Repor	t				Work 161(Orde :	r:
Sample Matrix Spike		Type M	S To	est Code: El	PA Met	hod SW82	260B				
File ID: 17			В	atch ID: MS	9W10	18C	Analy	/sis Date	10/19/2016 04	4:54	
Sample ID: 16101001-03AMS	Units : µg/L			ANUAL_161			•	Date:	10/19/2016 04		
Analyte	Result	PQL	SpkVal	SpkRefVai			UCL(ME)	RPDRe	fVal %RPD(Lim	it)	Qual
Dichlorodifluoromethane Chloromethane	73.1	2.5	50	0	146	12	150				
Vinyl chloride	49.8 56.3	10 2.5	50 50	0	99.6 113	26 46	146 142				
Chloroethane	58.1	2.5	50	ŏ	116	25	164				
Bromomethane Triphlareflyaremethans	16.9	10	50	,2.3	29	10	172				
Trichlorofluoromethane Acetone	53.1 979	2.5 50	50 1000	0	106 98	32 10	164 188				
1,1-Dichloroethene	55.3	2.5	50	0	111	62	133				
Tertiary Butyl Alcohol (TBA)	547	25	500	27.34	104	44	155				
Dichloromethane Freon-113	49 57.1	10 2.5	50 50	0	98 114	69 56	130 144				
trans-1,2-Dichloroethene	53.1	2.5	50	0	106	67	131				
Methyl tert-butyl ether (MTBE)	46.7	1.3	50	2.27	89	56	140				
1,1-Dichloroethane 2-Butanone (MEK)	53.5	2.5	50	1.74	104	67	130				
Di-isopropyl Ether (DIPE)	934 55	50 2.5	1000 50	0 6.01	93 98	26 59	183 138				
cis-1,2-Dichloroethene	54	2.5	50	0.01	108	70	130				
Bromochloromethane	50.3	2.5	50	0	101	70	134				
Chloroform Ethyl Tertiary Butyl Ether (ETBE)	52.3 50.8	2.5	50	0	105	69	130				
2,2-Dichloropropane	37.7	2.5 2.5	50 50	0	102 75	62 44	135 149				
1,2-Dichloroethane	51.8	2.5	50	1.23	101	64	139				
1,1,1-Trichloroethane	55.8	2.5	50	0	112	65	139				
1,1-Dichloropropene Carbon tetrachloride	54.1 56.6	2.5	50	0	108	68 56	134				
Benzene	56.6 77	2.5 1.3	50 50	23.89	113 106	56 67	146 134				
Tertiary Amyl Methyl Ether (TAME)	50.6	2.5	50	20.00	101	64	135			:	
Dibromomethane	53.4	2.5	50	0	107	70	132				
1,2-Dichloropropane Trichloroethene	51 54.2	2.5 2.5	50 50	0	102 108	69 68	134 138				
Bromodichloromethane	52.7	2.5	50	2.48	100	58	147				
4-Methyl-2-pentanone (MIBK)	117	13	125	0	94	49	140				
cis-1,3-Dichloropropene	45.2 40.5	2.5	50	0	90	61	130				
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	42.5 44.5	2.5 2.5	50 50	0	85 89	62 70	131 131				
Toluene	52.8	1.3	50	0.6	104	38	130				
1,3-Dichloropropane	45	2.5	50	0	90	70	130				
2-Hexanone Dibromochloromethane	421 47.2	25	500	0	84	25	157				
1,2-Dibromoethane (EDB)	47.2 88.5	2.5 5	50 100	0	94 88	49 70	147 131				
Tetrachloroethene	61.7	2.5	50	ŏ	123	63	134				
1,1,1,2-Tetrachloroethane	48.3	2.5	50	0	97	70	133				
Chlorobenzene Ethylbenzene	45.9 53.8	2.5 1.3	50 50	0	92 102	70 70	130 130				
m,p-Xylene	51.2	1.3	50 50	2.61 1.53	99	65	130				
Bromoform	50.7	2.5	50	0	101	60	144				
Styrene	41.8	2.5	50	0	84	53	144				
o-Xylene 1,1,2,2-Tetrachloroethane	49.9 43.9	1.3 2.5	50 50	1.49 0	97 88	69 67	130 134				
1,2,3-Trichloropropane	86.8	10	100	0	87	70	134				
Isopropylbenzene	53.8	2.5	50	Ö	108	64	136				
Bromobenzene	48.5	2.5	50	0	97	69	130				
n-Propylbenzene 4-Chlorotoluene	50.6 48.8	2.5 2.5	50 50	1.69 0	98 98	65 69	132 132				
2-Chlorotoluene	49	2.5	50	0	98	69	130				
1,3,5-Trimethylbenzene	50.9	2.5	50	1.47	99	64	135				
tert-Butylbenzene 1,2,4-Trimethylbenzene	50.3	2.5	50	0	101	63 63	139				
sec-Butylbenzene	54 50.4	2.5 2.5	50 50	2.59 0	103 101	62 68	135 132				
1,3-Dichlorobenzene	47	2.5	50	Ö	94	70	130				
1,4-Dichlorobenzene	47	2.5	50	0	94	70	130				
4-Isopropyltoluene 1,2-Dichlorobenzene	52 44.2	2.5 2.5	50 50	0	104 88	40 70	161 130				
n-Butylbenzene	44.2 45.2	2.5	50 50	0	90	70 58	135				
1,2-Dibromo-3-chloropropane (DBCP)	201	15	250	Ŏ	81	63	131				

Date: 20-Oct-16	(QC Sun	nmary R	lepor	t	· • • · · · ·		 Work Order: 16101001
1,2,4-Trichlorobenzene Naphthalene	35.8 26.4	10	50 50	0	72 52	57	134	
1,2,3-Trichlorobenzene	25.3	10 10	50 50	. 0	53 51	31 52	157 138	M2
Xylenes, Total Surr: 1,2-Dichloroethane-d4	101 43.3	1.3	100 50	3	98 87	70 70	130 130	
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	51.7 43.8		50 50		103 88	70 70	130 130	

Date:

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order: QC Summary Report 20-Oct-16 16101001 Sample Matrix Spike Duplicate Type MSD Test Code: EPA Method SW8260B File ID: 18 Batch ID: MS09W1018C Analysis Date: 10/19/2016 05:18 Sample ID: 16101001-03AMSD Run ID: MANUAL_161018A Units: µg/L Prep Date: 10/19/2016 05:18 Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Dichlorodifluoromethane 2.5 50 0 168 12 150 73.11 M1 13.9(38) Chloromethane 53.7 10 50 0 107 26 146 49.82 7.5(31) Vinyl chloride 57.9 2.5 50 0 116 46 142 56.32 2.7(25)Chloroethane 59.6 2.5 50 0 25 164 119 58.1 2.6(40)Bromomethane 20.5 10 50 2.3 36 10 172 16.93 19.0(40) Trichlorofluoromethane 56.4 2.5 50 0 113 32 164 53.09 6.1(34) Acetone 987 50 1000 ٥ 10 99 188 979.2 0.8(39)1.1-Dichloroethene 57.4 2.5 115 50 0 62 133 55.33 3.7(35) Tertiary Butyl Alcohol (TBA) 559 25 500 27.34 106 44 155 547.5 2.2(33) Dichloromethane 49.4 10 50 Ó 99 69 130 48.97 0.8(26)Freon-113 64.9 2.5 50 130 56 144 57.1 12.8(40) trans-1,2-Dichloroethene 54.5 2.5 50 0 67 109 131 53.08 2.6(27)Methyl tert-butyl ether (MTBE) 47 50 2.27 89 56 140 46.68 0.7(40) 1,1-Dichloroethane 54.1 2.5 50 1.74 105 67 130 53.49 1.1(20) 2-Butanone (MEK) 944 50 1000 0 94 26 183 933.8 1.1(22)Di-isopropyl Ether (DIPE) 2.5 55.4 99 50 6.01 59 138 55.04 0.7(20)cis-1,2-Dichloroethene 54.9 2.5 50 110 0 70 130 54.01 1.7(20)Bromochloromethane 51.8 2.5 50 0 104 70 134 50.34 2.9(20) Chloroform 51.9 2.5 50 0 104 69 130 52.25 0.6(22)Ethyl Tertiary Butyl Ether (ETBE) 50.9 2.5 0 102 62 50 135 50.77 0.3(40)2,2-Dichloropropane 37.6 2.5 0.3(23) 50 0 75 44 149 37.74 1,2-Dichloroethane 52.4 2.5 50 1.23 102 64 139 51.79 1.2(20)1,1,1-Trichloroethane 56.4 2.5 50 0 65 113 139 55.76 1.2(20) 1,1-Dichloropropene 54.6 2.5 50 0 109 68 134 54.08 0.9(20)Carbon tetrachloride 2.5 57.3 50 n 56 146 115 56.62 1.1(21) Benzene 78.1 1.3 50 23.89 108 67 134 76.98 1.4(21) Tertiary Amyl Methyl Ether (TAME) 51 2.5 50 0 102 64 135 50.55 0.8(31)Dibromomethane 53.3 2.5 50 0 107 70 132 53.39 0.2(20)1,2-Dichloropropane 52 2.5 50 0 104 69 134 50.97 2.0(20)Trichloroethene 54.5 2.5 50 0 109 68 138 54.2 0.6(20)Bromodichloromethane 53.8 2.5 50 2.48 103 58 147 52.66 2.1(20)4-Methyl-2-pentanone (MIBK) 116 13 125 0 92 49 140 117.3 1.5(24) cis-1,3-Dichloropropene 45.4 2.5 0 50 91 61 130 45.2 0.4(20)trans-1,3-Dichloropropene 43.7 50 0 87 62 131 42.52 2.8(21) 1,1,2-Trichloroethane 47 2 2.5 50 0 94 70 131 44.45 5.9(20) Toluene 53.1 1.3 50 0.6 105 38 130 52.77 0.7(20)1,3-Dichloropropane 46.3 2.5 50 0 93 70 130 45 2.7(20)2-Hexanone 428 25 0 500 86 421 25 157 1.8(23)Dibromochloromethane 47.9 2.5 50 0 96 49 147 47.18 1.6(20) 1,2-Dibromoethane (EDB) 89.6 70 5 100 0 90 131 88.49 1.3(20) Tetrachloroethene 61.8 2.5 0 50 124 63 134 61.72 0.2(20)1,1,1,2-Tetrachioroethane 50.1 2.5 50 0 100 70 133 48.29 3.7(20)Chlorobenzene 47.5 2.5 50 0 95 70 130 45.9 3.4(20)Ethylbenzene 55.3 1.3 50 2.61 105 70 130 53.82 2.7(20) m,p-Xylene 52.8 1.3 50 1.53 103 65 139 51.16 3.2(20)**Bromoform** 51.5 2.5 50 0 103 60 144 50.65 1.6(21)Styrene 42.7 2.5 50 0 85 53 144 41.75 2.3(31) o-Xylene 51.8 1.3 50 1.49 101 69 130 49.91 3.7(20)1,1,2,2-Tetrachloroethane 43.6 2.5 50 0 87 0.7(20) 67 43.89 134 1,2,3-Trichloropropane 85.7 10 100 0 86 70 130 86.75 1.2(20)Isopropylbenzene 55.7 2.5 50 0 111 64 136 53.83 3.3(20)Bromobenzene 49.5 2.5 50 0 99 69 130 48.47 2.0(20)n-Propylbenzene 51.3 2.5 50 1.69 99 65 132 50.62 1.3(40)4-Chlorotoluene 48.6 2.5 50 97 69 ٥ 132 0.4(20)488 2-Chlorotoluene 48.2 2.5 50 0 96 69 130 48.99 1.5(20)1,3,5-Trimethylbenzene 50.7 2.5 98 50 1.47 64 135 50.9 0.4(21)tert-Butylbenzene 50.9 2.5 50 0 102 63 139 50.27 1.2(20) 1,2,4-Trimethylbenzene 53.6 2.5 50 2.59 102 62 135 54.04 0.9(24)sec-Butylbenzene 50.4 2.5 50 n 101 68 132 50.4 0.1(20) 1.3-Dichlorobenzene 47.1 2.5 50 0 94 70 130 0.3(20)1,4-Dichlorobenzene 47.4 2.5 50 0 95 70 46.95 1.0(20)130 4-Isopropyltoluene 52.5 2.5 105 50 0 40 161 52.04 0.9(22)1,2-Dichlorobenzene 44.5 2.5 50 0 89 70 130 44.21 0.5(20)n-Butylbenzene 1.7(24) 46 2.5 50 0 92 58 135 45.2 1,2-Dibromo-3-chloropropane (DBCP) 208 250 83 131 201.3 3.4(29)

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-16		QC Sun	nmary R	lepor	t					
1,2,4-Trichlorobenzene Naphthalene 1,2,3-Trichlorobenzene	44.7 37.1 45	10 10 10	50 50 50	0 0	89 74 90	57 31 52	134 157 138	35.8 26.41 25.31	22.1(30) 33.7(40) 56.1(39)	R58
Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	105 42.9 53 43.3	1.3	100 50 50 50	3	102 86 106 87	70 70 70 70	130 130 130 130	101.1	3.4(22)	NĢO

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- R58 = MS/MSD RPD exceeded the laboratory control limit.
- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.
- M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.
- M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

Per client request, all 8010 analytes were added together and reported out as Total Halogens.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Page: 1 of 2

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

(213) 228-8271 x (213) 228-8271 x

Report Attention Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

21st Floor

CH2M Hill

Client:

Los Angeles, CA 90017

Phone Number

Report Due By: 5:00 PM On: 19-Oct-16 WorkOrder: CHHL16101001 EDD Required: Yes S daniel.jablonski@ch2m.com matthew.mayry@ch2m.com **EMail Address**

Sampled by: Daniel Mosso

Date Printed 10-Oct-16

Samples Received 08-Oct-16

Cooler Temp $3^{\circ}C$

= Final Rot. MBLK. LCS. MS/MSD With Surrogates Client's COC #: none

DFSP KMEP Norwalk

CC Level: 55	= rinal Rpt, MBLR, LCS, MS/MSD With Surrogates	, MO/MOD VVIIII OL	nogales							
									Requested Tests	
Alpha	Client	Collection No. of Bottles	No. of I	3ottles		TPH/E_W	TPH/P_W	Voc_w		
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT					Sample Remarks
CHH16101001-01A	GMW-0-21	AQ 10/07/16 07:33	9	0	_	TPHE(0.05) The sectate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-02A MW-SF-13	MW-SF-13	AQ 10/07/16 08:17	9	0		TPHE(0.05) T+Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-03A GMW-30	GMW-30	AQ 10/07/16 09:00	2	0	7	TPHE(0.05) 1 +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		One voa received broken
CHH16101001-04A DUP-7	DUP-7	AQ 10/07/16 00:00	9	0		TPHE(0.05) T+Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-05A	EB-6	AQ 10/07/16 09:10	9	0		TPHE(0.05) T+Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-06A TB-4	TB-4	AQ 10/07/16 07:00	2	0				TPHE(0.05) +Vinyl acetate		Reno TB 7/29/16
CHH16101001-07A MW-SF-15	MW-SF-15	AQ 10/07/16 13:30	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate		TPHE(0.05) +Vinyl acetate		
CHH16101001-08A MW-SF-4	MW-SF-4	AQ 10/07/16 13:20	9	0		TPHE(0.05) T +Vinyl acetate	TPHE(0.05) +Vinyl acetate	TPHE(0.05) +Vinyl acetate		

Security seals intact. Frozen ice. Saturday delivery. Samples kept cold and secure until login Monday. . Comments:

	Signature	Print Name	Company	Date/Time
Logged in by:		MeghanC.	Alpha Analytical, Inc.	371191/01/01

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Page: 2 of 2

S

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Due By: 5:00 PM On: 19-Oct-16 WorkOrder: CHHL16101001 daniel.jablonski@ch2m.com matthew.mayry@ch2m.com **EMail Address** (213) 228-8271 x (213) 228-8271 x Phone Number Report Attention Daniel Jablonski Matthew Mayry

1000 Wilshire Boulevard

CH2M Hill

Client:

Los Angeles, CA 90017

21st Floor

EDD Required: Yes

Sampled by: Daniel Mosso

Samples Received 08-Oct-16

Cooler Temp

10-Oct-16 Date Printed

> Job: DFSP KMEP Norwalk Client's COC #: none
>
> QC Level: S3 =

QC Level: S3	= Final Rpt, MBLK, LCS, MS/MSD With Surrogates	S, MS/MSD With S	urrogates	,,						
								Requested Tests	ed Tests	
Alpha	Client	Collection No. of Bottles	No. of	Bottles	L	TPH/E_W TPI	W_NHYP_W	v_oov		
Sample ID	Sample ID	Matrix Date	Alpha	Sub TAT	TAT					Sample Remarks
CHH16101001-09A GMW-O-20	GMW-O-20	AQ 10/07/16 12:57	9	0	7	TPHE(0.05)	PHE(0.05) Ti +Vinyl acetate	PHE(0.05) +Vinyl acctate		
CHH16101001-10A GMW-O-23	GMW-0-23	AQ 10/07/16 12:17	9	0		TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate	IE(0.05) T Vinyl cetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-11A GMW-O-14	GMW-0-14	AQ 10/07/16 11:27	9	0		TPHE(0.05) TPH +Vinyl +1 acetate ac	TPHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-12A MW-SF-6	MW-SF-6	AQ 10/07/16 10:37	9	0	7	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate	TE(0.05) T Vinyl cetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-13A MW-SF-1	MW-SF-1	AQ 10/07/16 09:53	9	0	7	TPHE(0.05) TPH +Vinyl +1 acetate ac	TPHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acetate		
CHH16101001-14A	EXP-1	AQ 10/07/16 11:45	9	0	_	TPHE(0.05) TPHE(0.05) +Vinyl +Vinyl acetate acetate	PHE(0.05) Ti +Vinyl acetate	TPHE(0.05) +Vinyl acetate		

Security seals intact. Frozen ice. Saturday delivery. Samples kept cold and secure until login Monday. . Comments:

	Signature	Print Name	Company	Date/Time
Logged in by:		Meghanc.	Alpha Analytical, Inc.	atil 9/01/01

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

LAB SAMPLE # 0 TIME ਰੱ CONDITION Alpha Analytical COC DATE 101 0% 7 5 98 1)9 2 Standard CHHILDINGIDOI-OI STATUS CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk Report to: Dan Jablonski ADD'L INFORMATION RESULTS NEEDED NO LATER THAN Billing Information: Kinder Morgan 土土 スア LAB RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT TIME Z Z 230 TIME SENT TIME X VOC's & Oxygenates (EPA 8260B) X 16.52 (M2108 A93) bH9T (PPA 8015M) 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 s S ર્જ غ Preservation Type CONTAINERS On it 2 7 |\(\) 15306 Norwalk Blvd, Norwalk PERFORMED BY ೨ ٥ 9 ۹ ೨ 9 ತಿ SAMPLING MATRIX AQ= Water BA Kinder Morgan **DFSP Norwalk** 1330 0100 0251 0733 200 812 1257 1530 TIME 1217 **198** TIME 10/2/16 TECH SERVICES, INC. DATE DATE BLAINE CHAIN OF CUSTODY 170-WY 42-4-MM (mu-0-23 RELEASED BY MJ-56-13 MU-55-15 RELEASED BY RELEASED BY 6 my 30 TB-4 SHIPPED VIA COMPLETED 42-SF-4 SAMPLE I.D. 10-0円 SAMPLING Duper CLIENT SITE

LAB SAMPLE # 4 CONDITION Alpha Analytical COC_ DATE Standard STATUS 7 7 CH2MHILL 1000 Wilshire Blvd 21st floor Los Angeles, CA 90017 CHH 16 10 100 1100 Town and CountryRd. Orange CA 95112 Kinder Morgan Norwalk ADD'L INFORMATION RESULTS NEEDED Billing Information: NO LATER THAN Kinder Morgan Dan Jablonski Report to: RECEIVED BY RECEIVED BY RECEIVED BY COOLER# CONDUCT ANALYSIS TO DETECT 700 TIME SENT TIME 4555 VOC's & Oxygenates X (EPA 8260B) (M&108 A93) bH9T , gH9T 1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555 202 Preservation Type CONTAINERS 7. 18 Hel 15306 Norwalk Blvd, Norwalk PERFORMED BY ૭ SAMPLING MATRIX AQ= Water 7 4 Kinder Morgan **DFSP Norwalk** 0953 6/7/k 1037 いだ TIME 1211 VIII 27 TIME TECH SERVICES, INC. 230 DATE DATE BLAINE CHAIN OF CUSTODY 41.0-mm7 RELEASED BY RELEASED BY RELEASED BY COMPLETED SHIPPED VIA Exp-1 M--56-6 SAMPLE I.D. M-2K-1 SAMPLING CLIENT SITE

APPENDIX C SUMMARY OF HISTORICAL GROUNDWATER ELEVATIONS – NOVEMBER 1996 THROUGH OCTOBER 2016

APPENDIX C

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

		 		<u> </u>		ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
D) (/	10/01/0010	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
BW-1	10/04/2010	73.17		25.94		47.23
BW-1	04/11/2011	73.17		25.36		47.81
BW-1	10/10/2011	73.17		25.03		48.14
BW-1	04/16/2012	73.17		26.20		46.97
BW-1	10/15/2012	73.17		25.26		47.91
BW-2	10/04/2010	73.57		26.02		47.55
BW-2	04/11/2011	73.57		25.30		48.27
BW-2	10/10/2011	73.57		23.81		49.76
BW-2	04/16/2012	73.57		26.29		47.28
BW-2	10/15/2012	73.57		25.58		47.99
BW-2	04/08/2013	73.57		27.65		45.92
BW-3	10/04/2010	74.16		27.80		46.36
BW-3	04/11/2011	74.16		26.14		48.02
BW-3	10/10/2011	74.16		26.91		47.25
BW-3	04/16/2012	74.16		27.37		46.79
BW-3	10/15/2012	74.16		26.19		47.97
BW-3	04/08/2013	74.16		28.85		45.31
BW-4	10/04/2010	74.61		27.10		47.51
BW-4	04/11/2011	74.61		26.23		48.38
BW-4	10/10/2011	74.61		26.30		48.31
BW-4	04/16/2012	74.61		27.52		47.09
BW-4	10/15/2012	74.61		26.93		47.68
BW-4	04/08/2013	74.61		29.00		45.61
BW-5	10/04/2010	73.59		26.03		47.56
BW-5	04/11/2011	73.59		25.18		48.41
BW-5	10/10/2011	73.59		25.19		48.40
BW-5	04/16/2012	73.59		26.57		47.02
BW-5	10/15/2012	73.59		26.11		47.48
BW-5	04/08/2013	73.59		28.05		45.54
BW-6	10/04/2010	73.48		26.36		47.12
BW-6	04/11/2011	73.48		25.34		48.14
BW-6	10/10/2011	73.48		25.74		47.74
BW-6	04/16/2012	73.48		26.73		46.75
BW-6	10/15/2012	73.48		26.00		47.48
BW-6	04/08/2013	73.48		28.34		45.14
BW-7	10/04/2010	74.65		27.55		47.10
BW-7	04/11/2011	74.65		26.70		47.10
BW-7	10/10/2011	74.65		26.83		47.82
BW-7	04/16/2012	74.65		27.71		46.94
BW-7				27.11		
	10/15/2012	74.65				47.50
BW-7	04/08/2013	74.65		29.01		45.64

APPENDIX C

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

				T 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
BW-8	10/04/2010	75.08		27.97		47.11
BW-8	04/11/2011	75.08		27.28		47.80
BW-8	10/10/2011	75.08		27.15		47.93
BW-8	04/16/2012	75.08		28.08		47.00
BW-8	10/15/2012	75.08		29.61		45.47
BW-8	04/08/2013	75.08		29.46		45.62
BW-9	10/04/2010	76.19		29.20		46.99
BW-9	04/11/2011	76.19		28.50		47.69
BW-9	10/10/2011	76.19		28.49		47.70
BW-9	04/16/2012	76.19		29.40		46.79
BW-9	10/15/2012	76.19		29.22		46.97
BW-9	04/08/2013	76.19		30.54		45.65
EXP-1	05/28/1996	78.44		48.29		30.15
EXP-1	11/20/1996	78.44		49.10		29.34
EXP-1	07/01/1997	78.44		47.89		30.55
EXP-1	12/31/1997	78.44		47.08		31.36
EXP-1	05/01/1998	78.44		45.16		33.28
EXP-1	05/25/1999	78.44		45.44		33.00
EXP-1	08/09/1999	78.44		47.60		30.84
EXP-1	09/23/1999	78.44		48.53		29.91
EXP-1	10/12/1999	78.44		48.51		29.93
EXP-1	11/15/1999	78.44		48.39		30.05
EXP-1	12/21/1999	78.44		47.69		30.75
EXP-1	01/20/2000	78.44		47.45		30.99
EXP-1	02/28/2000	78.44		46.92		31.52
EXP-1	03/28/2000	78.44		46.65		31.79
EXP-1	04/20/2000	78.44		47.20		31.24
EXP-1	05/15/2000	78.44		47.51		30.93
EXP-1	05/15/2000	78.44		47.55		30.89
EXP-1	06/30/2000	78.44		48.51		29.93
EXP-1	08/28/2000	78.44		49.50		28.94
EXP-1	02/05/2001	78.44		48.47		29.97
EXP-1	05/07/2001	78.44		48.09		30.35
EXP-1	05/07/2001	78.44		48.15		30.29
EXP-1	09/18/2001	78.44		50.22		28.22
EXP-1	11/05/2001	78.44		50.17		28.27
EXP-1	11/13/2001	78.44		49.31		29.13
EXP-1	11/13/2001	78.44		49.32		29.12
EXP-1	01/29/2002	78.44		49.07		29.37
EXP-1	04/08/2002	78.44		48.96		29.48
EXP-1	04/08/2002	78.44		49.20		29.46

APPENDIX C

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

		1				1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
EVD 4	07/00/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-1	07/29/2002	78.44		51.35		27.09
EXP-1	10/21/2002	78.44		51.91		26.53
EXP-1	10/21/2002	78.44		51.94		26.50
EXP-1	01/27/2003	78.44		49.60		28.84
EXP-1	04/07/2003	78.44		50.28		28.16
EXP-1	04/07/2003	78.44		50.30		28.14
EXP-1	07/30/2003	78.44		51.42		27.02
EXP-1	10/06/2003	78.44		51.76		26.68
EXP-1	10/06/2003	78.44		51.77		26.67
EXP-1	01/27/2004	78.44		51.25		27.19
EXP-1	04/19/2004	78.44		51.09		27.35
EXP-1	07/19/2004	78.44		52.91		25.53
EXP-1	11/01/2004	78.44		54.14		24.30
EXP-1	02/01/2005	78.44		52.90		25.54
EXP-1	05/02/2005	78.44		51.77		26.67
EXP-1	05/02/2005	78.44		51.91		26.53
EXP-1	08/01/2005	78.44		52.61		25.83
EXP-1	10/31/2005	78.44		52.59		25.85
EXP-1	02/27/2006	78.44		50.28		28.16
EXP-1	03/06/2006	78.44		50.63		27.81
EXP-1	05/01/2006	78.44		49.30		29.14
EXP-1	05/01/2006	78.44		49.70		28.74
EXP-1	08/26/2006	78.44		50.53		27.91
EXP-1	09/18/2006	78.44		50.56		27.88
EXP-1	12/01/2006	78.44		50.74		27.70
EXP-1	12/04/2006	78.44		50.28		28.16
EXP-1	03/12/2007	78.44		48.91		29.53
EXP-1	03/21/2007	78.44		48.82		29.62
EXP-1	04/27/2007	78.44		49.20		29.24
EXP-1	04/30/2007	78.44		48.85		29.59
EXP-1	08/28/2007	78.44		51.38		27.06
EXP-1	11/12/2007	78.44		52.37		26.07
EXP-1	11/12/2007	78.44		52.27		26.17
EXP-1	02/05/2008	78.44		52.15		26.29
EXP-1	02/19/2008	78.44		51.63		26.81
EXP-1	04/11/2008	78.44		51.51		26.93
EXP-1	04/14/2008	78.44		51.40		27.04
EXP-1	07/24/2008	78.44		52.92		25.52
EXP-1	08/11/2008	78.44		53.21		25.23
EXP-1	10/13/2008	78.44		53.75		24.69
EXP-1	10/13/2008	78.44		53.75		24.69

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>	ī					T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-1	02/09/2009	78.44		52.56		25.88
EXP-1	04/20/2009	78.44		53.41		25.03
EXP-1	07/16/2009	78.44		55.06		23.38
EXP-1	07/20/2009	78.44		54.83		23.61
EXP-1	10/19/2009	78.44		55.86		22.58
EXP-1	01/11/2010	78.44		55.80		22.64
EXP-1	03/15/2010	78.44		55.01		23.43
EXP-1	04/07/2010	78.44		55.29		23.15
EXP-1	04/12/2010	78.44		55.24		23.20
EXP-1	05/24/2010	78.44		55.38		23.06
EXP-1	05/28/2010	78.44		55.40		23.04
EXP-1	10/04/2010	78.44		56.44		22.00
EXP-1	01/06/2011	78.44		54.99		23.45
EXP-1	01/10/2011	78.44		54.77		23.67
EXP-1	04/07/2011	78.44		53.67		24.77
EXP-1	04/11/2011	78.44		53.98		24.46
EXP-1	07/07/2011	78.44		53.65		24.79
EXP-1	07/11/2011	78.44		53.51		24.93
EXP-1	10/06/2011	78.44		54.13		24.31
EXP-1	10/10/2011	78.44		53.75		24.69
EXP-1	01/09/2012	78.44		52.67		25.77
EXP-1	04/16/2012	78.44		52.29		26.15
EXP-1	07/09/2012	78.44		52.69		25.75
EXP-1	10/15/2012	78.44		53.63		24.81
EXP-1	01/10/2013	78.44		52.78		25.66
EXP-1	01/14/2013	78.44		52.99		25.45
EXP-1	04/03/2013	78.44		52.91		25.53
EXP-1	04/08/2013	78.44		52.51		25.93
EXP-1	04/08/2013	78.44		52.57		25.87
EXP-1	10/01/2013	78.44		55.34		23.10
EXP-1	10/07/2013	78.44		55.41		23.03
EXP-1	04/09/2014	78.44		55.42		23.02
EXP-1	04/14/2014	78.44		55.45		22.99
EXP-1	10/27/2014	78.44		58.29		20.15
EXP-1	10/27/2014	78.44		58.44		20.00
EXP-1	04/20/2015	78.44		57.93		20.51
EXP-1	04/20/2015	78.44		57.81		20.63
EXP-1	10/19/2015	78.44		59.37		19.07
EXP-1	10/19/2015	78.44		59.22		19.22
EXP-1	04/11/2016	78.44		59.50		18.94
EXP-1	04/13/2016	78.44		59.43		19.01

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	T T		1		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	1	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-1	10/3/2016	78.44		61.17		17.27
EXP-1	10/3/2016	78.44		61.31		17.13
EXP-2	05/28/1996	79.43		47.58		31.85
EXP-2	11/20/1996	79.43		48.20		31.23
EXP-2	07/01/1997	79.43		47.19		32.24
EXP-2	12/31/1997	79.43		46.33		33.10
EXP-2	05/01/1998	79.43		44.40		35.03
EXP-2	05/04/1999	79.43		44.05		35.38
EXP-2	05/25/1999	79.43		44.85		34.58
EXP-2	07/21/1999	79.43		46.67		32.76
EXP-2	08/09/1999	79.43		47.02		32.41
EXP-2	09/23/1999	79.43		48.90		30.53
EXP-2	10/12/1999	79.43		48.93		30.50
EXP-2	11/15/1999	79.43		47.76		31.67
EXP-2	12/21/1999	79.43		47.03		32.40
EXP-2	01/20/2000	79.43		46.85		32.58
EXP-2	02/28/2000	79.43		46.39		33.04
EXP-2	03/28/2000	79.43		46.15		33.28
EXP-2	04/20/2000	79.43		46.69		32.74
EXP-2	05/15/2000	79.43		47.04		32.39
EXP-2	05/15/2000	79.43		47.05		32.38
EXP-2	06/30/2000	79.43		48.01		31.42
EXP-2	08/28/2000	79.43		48.96		30.47
EXP-2	11/13/2000	79.43		48.71		30.72
EXP-2	11/13/2000	79.43		48.74		30.69
EXP-2	02/05/2001	79.43		47.83		31.60
EXP-2	05/07/2001	79.43		47.58		31.85
EXP-2	05/07/2001	79.43		47.61		31.82
EXP-2	09/18/2001	79.43		49.75		29.68
EXP-2	11/05/2001	79.43		49.60		29.83
EXP-2	01/29/2002	79.43		48.56		30.87
EXP-2	04/08/2002	79.43		48.63		30.80
EXP-2	04/08/2002	79.43		48.72		30.71
EXP-2	07/29/2002	79.43		50.90		28.53
EXP-2	10/21/2002	79.43		51.46		27.97
EXP-2	10/21/2002	79.43		51.51		27.92
EXP-2	01/27/2003	79.43		49.29		30.14
EXP-2	04/07/2003	79.43		49.29		29.48
EXP-2	04/07/2003	79.43		50.05		29.48
		+				
EXP-2	07/30/2003	79.43		51.15		28.28
EXP-2	10/06/2003	79.43		51.62		27.81

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	T T		 		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	1	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-2	01/27/2004	79.43		51.09		28.34
EXP-2	04/19/2004	79.43		51.08		28.35
EXP-2	04/19/2004	79.43		50.00		29.43
EXP-2	07/19/2004	79.43		52.90		26.53
EXP-2	11/01/2004	79.43		53.98		25.45
EXP-2	02/01/2005	79.43		52.89		26.54
EXP-2	05/02/2005	79.43		51.87		27.56
EXP-2	05/02/2005	79.43		51.75		27.68
EXP-2	08/01/2005	79.43		52.65		26.78
EXP-2	10/31/2005	79.43		52.55		26.88
EXP-2	02/27/2006	79.43		50.30		29.13
EXP-2	05/01/2006	79.43		49.69		29.74
EXP-2	05/01/2006	79.43		49.31		30.12
EXP-2	09/18/2006	79.43		51.53		27.90
EXP-2	12/01/2006	79.43		50.60		28.83
EXP-2	12/04/2006	79.43		50.19		29.24
EXP-2	03/12/2007	79.43		48.92		30.51
EXP-2	04/30/2007	79.43		49.31		30.12
EXP-2	04/30/2007	79.43		48.87		30.56
EXP-2	08/28/2007	79.43		51.31		28.12
EXP-2	11/12/2007	79.43		52.27		27.16
EXP-2	02/19/2008	79.43		51.49		27.94
EXP-2	04/11/2008	79.43		51.46		27.97
EXP-2	04/14/2008	79.43		51.35		28.08
EXP-2	07/24/2008	79.43		53.08		26.35
EXP-2	08/11/2008	79.43		53.28		26.15
EXP-2	10/13/2008	79.43		53.76		25.67
EXP-2	10/14/2008	79.43		53.76		25.67
EXP-2	02/09/2009	79.43		52.81		26.62
EXP-2	04/20/2009	79.43		54.83		24.60
EXP-2	07/16/2009	79.43		54.91		24.52
EXP-2	07/20/2009	79.43		54.91		24.52
EXP-2	10/19/2009	79.43		55.90		23.53
EXP-2	01/11/2010	79.43		55.93		23.50
EXP-2	03/15/2010	79.43		55.22		24.21
EXP-2	04/07/2010	79.43		55.52		23.91
EXP-2	04/07/2010	79.43		55.82		23.61
EXP-2	05/24/2010	79.43		55.66		23.77
EXP-2	05/28/2010	79.43		55.69		23.74
		+		1		ł
EXP-2	10/04/2010	79.43		56.65		22.78
EXP-2	01/06/2011	79.43		55.48		23.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	1 1		1 1		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-2	01/10/2011	79.43		55.18		24.25
EXP-2	04/06/2011	79.43		54.07		25.36
EXP-2	04/11/2011	79.43		54.44		24.99
EXP-2	07/07/2011	79.43		54.18		25.25
EXP-2	07/11/2011	79.43		53.94		25.49
EXP-2	10/06/2011	79.43		54.26		25.17
EXP-2	10/10/2011	79.43		53.21		26.22
EXP-2	01/09/2012	79.43		52.98		26.45
EXP-2	04/16/2012	79.43		52.63		26.80
EXP-2	07/09/2012	79.43		53.08		26.35
EXP-2	10/15/2012	79.43		53.96		25.47
EXP-2	01/10/2013	79.43		53.22		26.21
EXP-2	01/14/2013	79.43		53.02		26.41
EXP-2	04/02/2013	79.43		53.33		26.10
EXP-2	04/08/2013	79.43		52.97		26.46
EXP-2	10/01/2013	79.43		55.89		23.54
EXP-2	10/07/2013	79.43		55.88		23.55
EXP-2	04/07/2014	79.43		56.07		23.36
EXP-2	04/14/2014	79.43		56.10		23.33
EXP-2	10/27/2014	79.43		58.94		20.49
EXP-2	10/27/2014	79.43		59.11		20.32
EXP-2	04/20/2015	79.43		58.72		20.71
EXP-2	04/20/2015	79.43		58.53		20.90
EXP-2	10/19/2015	79.43		60.23		19.20
EXP-2	10/19/2015	79.43		60.23		19.20
EXP-2	04/11/2016	79.43		60.31		19.12
EXP-2	04/11/2016	79.43		60.25		19.18
EXP-2	10/3/2016	79.43		62.18		17.25
EXP-2	10/3/2016	79.43		61.88		17.55
EXP-3	05/28/1996	77.58		47.40		30.18
EXP-3	11/20/1996	77.58		48.25		29.33
EXP-3	07/01/1997	77.58		47.15		30.43
EXP-3	12/31/1997	77.58		46.21		31.37
EXP-3	05/01/1998	77.58		44.19		33.39
EXP-3	05/04/1999	77.58		43.88		33.70
EXP-3	05/26/1999	77.58		44.72		32.86
EXP-3	08/09/1999	77.58		46.98		30.60
EXP-3	09/23/1999	77.58		47.78		29.80
EXP-3	10/12/1999	77.58		47.76		29.82
EXP-3	11/15/1999	77.58		47.65		29.93
EXP-3	12/21/1999	77.58		46.85		30.73

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
EVD 2	04/00/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-3	01/20/2000	77.58		46.57		31.01
EXP-3	02/28/2000	77.58		46.01		31.57
EXP-3	03/28/2000	77.58		45.79		31.79
EXP-3	04/20/2000	77.58		46.35		31.23
EXP-3	05/15/2000	77.58		46.68		30.90
EXP-3	05/15/2000	77.58		46.63		30.95
EXP-3	06/30/2000	77.58		47.75		29.83
EXP-3	08/28/2000	77.58		48.77		28.81
EXP-3	11/13/2000	77.58		48.51		29.07
EXP-3	11/13/2000	77.58		48.41		29.17
EXP-3	02/05/2001	77.58		47.58		30.00
EXP-3	05/07/2001	77.58		47.29		30.29
EXP-3	05/07/2001	77.58		47.26		30.32
EXP-3	09/18/2001	77.58		49.46		28.12
EXP-3	11/05/2001	77.58		49.32		28.26
EXP-3	01/29/2002	77.58		48.19		29.39
EXP-3	04/08/2002	77.58		48.25		29.33
EXP-3	04/08/2002	77.58		48.21		29.37
EXP-3	07/29/2002	77.58		50.59		26.99
EXP-3	10/21/2002	77.58		51.16		26.42
EXP-3	10/21/2002	77.58		51.11		26.47
EXP-3	01/27/2003	77.58		48.62		28.96
EXP-3	04/07/2003	77.58		49.55		28.03
EXP-3	04/07/2003	77.58		49.46		28.12
EXP-3	07/30/2003	77.58		50.59		26.99
EXP-3	10/06/2003	77.58		50.95		26.63
EXP-3	10/06/2003	77.58		51.01		26.57
EXP-3	01/27/2004	77.58		50.35		27.23
EXP-3	04/19/2004	77.58		50.22		27.36
EXP-3	04/19/2004	77.58		50.19		27.39
EXP-3	07/19/2004	77.58		52.19		25.39
EXP-3	11/01/2004	77.58		53.26		24.32
EXP-3	02/01/2005	77.58		51.94		25.64
EXP-3	05/02/2005	77.58		50.90		26.68
EXP-3	05/02/2005	77.58		49.83		27.75
EXP-3	08/01/2005	77.58		51.82		25.76
EXP-3	10/31/2005	77.58		51.62		25.76
EXP-3				+		
	02/27/2006	77.58		49.29		28.29
EXP-3	05/01/2006	77.58		48.74		28.84
EXP-3	05/01/2006 09/18/2006	77.58 77.58		48.31 50.14		29.27 27.44

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	<u> </u>					1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-3	12/01/2006	77.58		49.74		27.84
EXP-3	12/04/2006	77.58		49.41		28.17
EXP-3	03/12/2007	77.58		47.95		29.63
EXP-3	04/30/2007	77.58		48.31		29.27
EXP-3	04/30/2007	77.58		47.86		29.72
EXP-3	08/28/2007	77.58		50.61		26.97
EXP-3	11/12/2007	77.58		51.57		26.01
EXP-3	11/12/2007	77.58		51.56		26.02
EXP-3	02/05/2008	77.58		51.23		26.35
EXP-3	02/19/2008	77.58		50.70		26.88
EXP-3	04/14/2008	77.58		50.63		26.95
EXP-3	04/14/2008	77.58		50.60		26.98
EXP-3	07/24/2008	77.58		52.78		24.80
EXP-3	08/11/2008	77.58		52.45		25.13
EXP-3	10/13/2008	77.58		52.97		24.61
EXP-3	10/14/2008	77.58		52.97		24.61
EXP-3	02/10/2009	77.58		52.16		25.42
EXP-3	04/20/2009	77.58		52.97		24.61
EXP-3	07/16/2009	77.58		54.02		23.56
EXP-3	07/20/2009	77.58		53.93		23.65
EXP-3	10/19/2009	77.58		55.40		22.18
EXP-3	01/11/2010	77.58		54.51		23.07
EXP-3	03/15/2010	77.58		54.10		23.48
EXP-3	04/07/2010	77.58		54.36		23.22
EXP-3	04/12/2010	77.58		54.82		22.76
EXP-3	05/24/2010	77.58		54.54		23.04
EXP-3	05/28/2010	77.58		54.51		23.07
EXP-3	10/04/2010	77.58		55.42		22.16
EXP-3	01/08/2011	77.58		53.91		23.67
EXP-3	01/10/2011	77.58		53.88		23.70
EXP-3	04/07/2011	77.58		52.66		24.92
EXP-3	04/11/2011	77.58		52.92		24.66
EXP-3	07/08/2011	77.58		52.73		24.85
EXP-3	07/00/2011	77.58		52.54		25.04
EXP-3	10/06/2011	77.58		53.23		24.35
EXP-3	10/10/2011	77.58		52.74		24.84
EXP-3	01/09/2012	77.58		52.74		25.91
EXP-3	04/16/2012	77.58		51.07		26.24
				+		
EXP-3	07/09/2012	77.58		51.87		25.71
EXP-3	08/29/2012	77.58		52.69		24.89
EXP-3	10/15/2012	77.58		52.80		24.78

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T			T T		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-3	01/11/2013	77.58		51.94		25.64
EXP-3	01/14/2013	77.58		51.70		25.88
EXP-3	04/03/2013	77.58		52.01		25.57
EXP-3	04/08/2013	77.58		51.65		25.93
EXP-3	10/02/2013	77.58		54.61		22.97
EXP-3	10/07/2013	77.58		54.62		22.96
EXP-3	04/09/2014	77.58		54.55		23.03
EXP-3	04/14/2014	77.58		54.68		22.90
EXP-3	10/27/2014	77.58		57.55		20.03
EXP-3	10/27/2014	77.58		57.70		19.88
EXP-3	04/20/2015	77.58		57.09		20.49
EXP-3	04/20/2015	77.58		56.91		20.67
EXP-3	10/19/2015	77.58		58.43		19.15
EXP-3	10/20/2015	77.58		58.50		19.08
EXP-3	04/11/2016	77.58		58.80		18.78
EXP-3	04/12/2016	77.58		58.72		18.86
EXP-3	10/3/2016	77.58		60.92		16.66
EXP-3	10/3/2016	77.58		60.52		17.06
EXP-4	02/03/1999	79.81		43.49		36.32
EXP-4	05/04/1999	79.81		43.43		36.38
EXP-4	07/21/1999	79.81		46.03		33.78
EXP-4	08/09/1999	79.81		46.49		33.32
EXP-4	09/23/1999	79.81		47.29		32.52
EXP-4	10/12/1999	79.81		47.30		32.51
EXP-4	11/15/1999	79.81		47.18		32.63
EXP-4	12/21/1999	79.81		46.42		33.39
EXP-4	01/20/2000	79.81		46.29		33.52
EXP-4	02/28/2000	79.81		45.89		33.92
EXP-4	03/28/2000	79.81		45.61		34.20
EXP-4	04/20/2000	79.81		46.12		33.69
EXP-4	05/15/2000	79.81		46.39		33.42
EXP-4	06/30/2000	79.81		47.42		32.39
EXP-4	08/28/2000	79.81		48.35		31.46
EXP-4	11/13/2000	79.81		48.15		31.66
EXP-4	02/05/2001	79.81		47.26		32.55
EXP-4	05/07/2001	79.81		47.01		32.80
EXP-4	09/18/2001	79.81		49.10		30.71
EXP-4	11/05/2001	79.81		48.97		30.84
EXP-4	01/29/2002	79.81		47.97		31.84
EXP-4	04/08/2002	79.81		48.01		31.80
EXP-4	10/21/2002	79.81		51.45		28.36

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-4	04/07/2003	79.81		49.51		30.30
EXP-4	10/06/2003	79.81		51.14		28.67
EXP-4	01/11/2004	79.81		53.61		26.20
EXP-4	04/19/2004	79.81		50.59		29.22
EXP-4	05/02/2005	79.81		51.43		28.38
EXP-4	10/31/2005	79.81		49.21		30.60
EXP-4	05/01/2006	79.81		49.00		30.81
EXP-4	09/18/2006	79.81		49.73		30.08
EXP-4	12/04/2006	79.81		44.51		35.30
EXP-4	04/30/2007	79.81		48.59		31.22
EXP-4	11/12/2007	79.81		51.35		28.46
EXP-4	04/14/2008	79.81		50.95		28.86
EXP-4	10/13/2008	79.81		53.29		26.52
EXP-4	04/20/2009	79.81		53.54		26.27
EXP-4	07/20/2009	79.81		54.51		25.30
EXP-4	10/19/2009	79.81		55.42		24.39
EXP-4	05/24/2010	79.81		55.10		24.71
EXP-4	05/28/2010	79.81		55.10		24.71
EXP-4	10/04/2010	79.81		56.23		23.58
EXP-4	04/11/2011	79.81		54.10		25.71
EXP-4	10/10/2011	79.81		53.93		25.88
EXP-4	04/16/2012	79.81		52.49		27.32
EXP-4	10/15/2012	79.81		53.74		26.07
EXP-4	04/08/2013	79.81		52.51		27.30
EXP-4	10/07/2013	79.81		55.62		24.19
EXP-4	04/14/2014	79.81		55.92		23.89
EXP-4	10/27/2014	79.81		58.95		20.86
EXP-4	04/20/2015	79.81		58.43		21.38
EXP-4	10/19/2015	79.81		60.00		19.81
EXP-4	04/11/2016	79.81		60.30		19.51
EXP-4	10/3/2016	79.81		62.71		17.10
EXP-5	02/03/1999	72.41		39.50		32.91
EXP-5	05/03/1999	72.41		39.30		33.11
EXP-5	07/21/1999	72.41		42.10		30.31
EXP-5	08/09/1999	72.41		42.60		29.81
EXP-5	09/23/1999	72.41		43.41		29.00
EXP-5	10/12/1999	72.41		43.41		29.00
EXP-5	11/15/1999	72.41		43.39		29.02
EXP-5	12/21/1999	72.41		43.21		30.11
				+		
EXP-5 EXP-5	01/20/2000 02/28/2000	72.41 72.41		42.07 41.45		30.34 30.96

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	· · · · · · · · · · · · · · · · · · ·		1		<u> </u>
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-5	03/28/2000	72.41		41.20		31.21
EXP-5	04/20/2000	72.41		41.78		30.63
EXP-5	05/15/2000	72.41		42.16		30.25
EXP-5	06/30/2000	72.41		43.26		29.15
EXP-5	08/28/2000	72.41		44.32		28.09
EXP-5	11/13/2000	72.41		44.02		28.39
EXP-5	02/05/2001	72.41		42.95		29.46
EXP-5	05/07/2001	72.41		43.46		28.95
EXP-5	09/18/2001	72.41		45.01		27.40
EXP-5	11/05/2001	72.41		44.81		27.60
EXP-5	01/29/2002	72.41		43.55		28.86
EXP-5	04/08/2002	72.41		43.72		28.69
EXP-5	07/29/2002	72.41		46.12		26.29
EXP-5	10/21/2002	72.41		46.61		25.80
EXP-5	01/27/2003	72.41		43.89		28.52
EXP-5	04/07/2003	72.41		44.70		27.71
EXP-5	07/30/2003	72.41		45.89		26.52
EXP-5	10/06/2003	72.41		46.35		26.06
EXP-5	01/11/2004	72.41		48.53		23.88
EXP-5	01/27/2004	72.41		45.57		26.84
EXP-5	04/19/2004	72.41		45.41		27.00
EXP-5	07/19/2004	72.41		47.55		24.86
EXP-5	02/01/2005	72.41		47.07		25.34
EXP-5	05/02/2005	72.41		45.81		26.60
EXP-5	08/01/2005	72.41		45.37		27.04
EXP-5	10/31/2005	72.41		46.83		25.58
EXP-5	02/27/2006	72.41		47.21		25.20
EXP-5	05/01/2006	72.41		43.34		29.07
EXP-5	09/18/2006	72.41		44.88		27.53
EXP-5	12/04/2006	72.41		49.73		22.68
EXP-5	03/12/2007	72.41		43.02		29.39
EXP-5	04/30/2007	72.41		43.02		29.39
EXP-5	08/28/2007	72.41		45.86		26.55
EXP-5	11/12/2007	72.41		46.37		26.04
EXP-5	02/19/2008	72.41		45.90		26.51
EXP-5	04/14/2008	72.41		45.73		26.68
EXP-5	08/11/2008	72.41		47.68		24.73
EXP-5	10/13/2008	72.41		48.19		24.73
EXP-5	04/20/2009	72.41		47.86		24.55
EXP-5	07/20/2009	72.41		49.10		23.31
EXP-5	10/19/2009	72.41		50.61		21.80

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
5\/D 5	00/45/00/40	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
EXP-5	03/15/2010	72.41		49.02		23.39
EXP-5	05/24/2010	72.41		49.54		22.87
EXP-5	05/28/2010	72.41		49.49		22.92
EXP-5	10/04/2010	72.41		50.35		22.06
EXP-5	01/10/2011	72.41		48.69		23.72
EXP-5	04/11/2011	72.41		49.82		22.59
EXP-5	07/11/2011	72.41		47.42		24.99
EXP-5	10/10/2011	72.41		49.58		22.83
EXP-5	01/09/2012	72.41		46.53		25.88
EXP-5	04/16/2012	72.41		46.21		26.20
EXP-5	07/09/2012	72.41		46.88		25.53
EXP-5	10/15/2012	72.41		47.78		24.63
EXP-5	01/14/2013	72.41		46.64		25.77
EXP-5	04/08/2013	72.41		46.58		25.83
EXP-5	10/07/2013	72.41		50.13		22.28
EXP-5	04/14/2014	72.41		49.42		22.99
EXP-5	10/27/2014	72.41		52.58		19.83
EXP-5	04/20/2015	72.41		51.71		20.70
EXP-5	10/19/2015	72.41		53.27		19.14
EXP-5	04/11/2016	72.41		53.40		19.01
EXP-5	10/3/2016	72.41		55.40		17.01
GMW-1	05/28/1996	74.77		26.93		47.84
GMW-1	11/20/1996	74.77		27.73		47.04
GMW-1	07/01/1997	74.77		27.97		46.80
GMW-1	12/31/1997	74.77		27.85		46.92
GMW-1	05/01/1998	74.77		24.77		50.00
GMW-1	05/04/1999	74.77		25.75		49.02
GMW-1	08/09/1999	74.77		26.24		48.53
GMW-1	11/15/1999	74.77		26.39		48.38
GMW-1	05/15/2000	74.77		26.26		48.51
GMW-1	11/13/2000	74.77		26.95		47.82
GMW-1	05/07/2001	74.77		25.50		49.27
GMW-1	11/05/2001	74.77		25.53		49.24
GMW-1	04/08/2002	74.77		26.10		49.24
				26.10		1
GMW-1	10/21/2002	74.77		+		47.95
GMW-1	04/07/2003	74.77		26.17		48.60
GMW-1	07/30/2003	74.77		26.11		48.66
GMW-1	10/06/2003	74.77		26.22		48.55
GMW-1	01/11/2004	74.77		27.59		47.18
GMW-1 GMW-1	01/27/2004 04/19/2004	74.77 74.77		26.57 27.25		48.20 47.52

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	1	 		1 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-1	07/19/2004	74.77		26.84		47.93
GMW-1	02/01/2005	74.77		25.79		48.98
GMW-1	05/02/2005	74.77		20.84		53.93
GMW-1	08/01/2005	74.77		21.92		52.85
GMW-1	10/31/2005	74.77		26.96		47.81
GMW-1	02/27/2006	74.77		23.15		51.62
GMW-1	05/01/2006	74.77		23.30		51.47
GMW-1	09/18/2006	74.77		23.70		51.07
GMW-1	12/04/2006	74.77		24.06		50.71
GMW-1	03/12/2007	74.77		24.18		50.59
GMW-1	04/30/2007	74.77		23.21		51.56
GMW-1	08/28/2007	74.77		19.70		55.07
GMW-1	11/12/2007	74.77		23.70		51.07
GMW-1	02/19/2008	74.77		25.20		49.57
GMW-1	04/14/2008	74.77		25.12		49.65
GMW-1	10/13/2008	74.77		25.84		48.93
GMW-1	04/20/2009	74.77		26.18		48.59
GMW-1	10/19/2009	74.77		27.52		47.25
GMW-1	05/24/2010	74.77		26.95		47.82
GMW-1	05/28/2010	74.77		26.91		47.86
GMW-1	10/04/2010	74.77		26.95		47.82
GMW-1	01/10/2011	74.77		28.22		46.55
GMW-1	04/11/2011	74.77		25.98		48.79
GMW-1	10/10/2011	74.77		26.15		48.62
GMW-1	01/09/2012	74.77		26.68		48.09
GMW-1	04/16/2012	74.77		28.03		46.74
GMW-1	07/09/2012	74.77		29.14		45.63
GMW-1	10/15/2012	74.77		29.49		45.28
GMW-1	01/14/2013	74.77		29.54		45.23
GMW-1	04/08/2013	74.77		29.34		45.43
GMW-1	10/07/2013	74.77		30.25		44.52
GMW-1	04/14/2014	74.77		30.42		44.35
GMW-1	10/27/2014	74.77		30.78		43.99
GMW-1	04/20/2015	74.77		31.19		43.58
GMW-1	10/19/2015	74.77		31.89		42.88
GMW-1	04/11/2016	74.77		34.00		42.88
GMW-1	10/3/2016	74.77		35.80		38.97
GMW-2	05/28/1996	73.57		26.10		47.47
GMW-2	11/20/1996	73.57		26.77		46.80
GMW-2	07/01/1997	73.57		27.63		45.94
GMW-2	12/31/1997	73.57		26.94		46.63

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	1			1 1		ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-2	05/01/1998	73.57		24.02		49.55
GMW-2	05/04/1999	73.57		25.38		48.19
GMW-2	08/09/1999	73.57		25.68		47.89
GMW-2	11/15/1999	73.57		25.49		48.08
GMW-2	05/15/2000	73.57		25.63		47.94
GMW-2	11/13/2000	73.57		26.42		47.15
GMW-2	05/07/2001	73.57		25.65		47.92
GMW-2	11/05/2001	73.57		24.61		48.96
GMW-2	04/08/2002	73.57		25.36		48.21
GMW-2	10/21/2002	73.57		25.91		47.66
GMW-2	04/07/2003	73.57		25.09		48.48
GMW-2	10/06/2003	73.57		25.47		48.10
GMW-2	01/11/2004	73.57		26.76		46.81
GMW-2	04/19/2004	73.57		26.63		46.94
GMW-2	05/02/2005	73.57		21.51		52.06
GMW-2	10/31/2005	73.57		26.42		47.15
GMW-2	05/09/2006	73.57		22.53		51.04
GMW-2	12/04/2006	73.57		23.40		50.17
GMW-2	04/30/2007	73.57		23.61		49.96
GMW-2	11/12/2007	73.57		23.94		49.63
GMW-2	04/14/2008	73.57		24.24		49.33
GMW-2	10/13/2008	73.57		24.95		48.62
GMW-2	04/20/2009	73.57		25.00		48.57
GMW-2	10/19/2009	73.57		26.22		47.35
GMW-2	05/24/2010	73.57		25.80		47.77
GMW-2	05/28/2010	73.57		25.80		47.77
GMW-2	10/04/2010	73.57		25.95		47.62
GMW-2	10/10/2011	73.57		25.17		48.40
GMW-3	11/20/1996	75.10		27.76		47.34
GMW-3	07/01/1997	75.10		27.02		48.08
GMW-3	12/31/1997	75.10		27.66		47.44
GMW-3	05/01/1998	75.10		34.12		40.98
GMW-3	05/04/1999	75.10		25.69		49.41
GMW-3	08/09/1999	75.10		26.15		48.95
GMW-3	11/15/1999	75.10		26.54		48.56
GMW-3	05/15/2000	75.10		26.29		48.81
GMW-3	11/13/2000	75.10		26.97		48.13
GMW-3	05/07/2001	75.10		25.10		50.00
GMW-3	08/07/2001	75.10		28.61		46.49
GMW-3	11/05/2001	75.10		25.63		49.47
GMW-3	04/08/2002	75.10		26.26		48.84

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01414	40/04/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-3	10/21/2002	75.10		27.05		48.05
GMW-3	01/27/2003	75.10		26.74		48.36
GMW-3	04/07/2003	75.10		26.26		48.84
GMW-3	07/31/2003	75.10		25.96		49.14
GMW-3	10/06/2003	75.10		26.23		48.87
GMW-3	01/11/2004	75.10		27.56		47.54
GMW-3	01/27/2004	75.10		26.68		48.42
GMW-3	04/19/2004	75.10		26.93		48.17
GMW-3	07/19/2004	75.10		26.92		48.18
GMW-3	05/02/2005	75.10		21.53		53.57
GMW-3	10/31/2005	75.10	26.11	26.13	0.02	NC
GMW-3	02/27/2006	75.10		23.73		51.37
GMW-3	05/01/2006	75.10		23.78		51.32
GMW-3	12/04/2006	75.10		24.73		50.37
GMW-3	04/30/2007	75.10		24.99		50.11
GMW-3	11/12/2007	75.10		25.00		50.10
GMW-3	04/14/2008	75.10		25.52		49.58
GMW-3	04/14/2008	75.10		25.40		49.70
GMW-3	10/13/2008	75.10		26.35		48.75
GMW-3	04/20/2009	75.10		26.26		48.84
GMW-3	10/19/2009	75.10		27.81		47.29
GMW-3	05/24/2010	75.10		27.18		47.92
GMW-3	05/28/2010	75.10		27.11		47.99
GMW-3	10/04/2010	75.10		27.37		47.73
GMW-3	04/11/2011	75.10		26.17		48.93
GMW-3	10/10/2011	75.10		26.68		48.42
GMW-3	04/16/2012	75.10		27.93		47.17
GMW-3	06/14/2013	75.10		29.98		45.12
GMW-3	04/14/2014	75.10		30.55		44.55
GMW-3	10/27/2014	75.10		30.90		44.20
GMW-3	04/20/2015	75.10		31.40		43.70
GMW-3	10/19/2015	75.10		32.12		42.98
GMW-4	05/28/1996	75.45	27.34	28.02	0.68	NC
GMW-4	11/20/1996	75.45	28.25	28.32	0.08	NC NC
GMW-4	07/01/1997	75.45	20.20	27.76		47.69
GMW-4		<u> </u>		27.76		48.20
	12/31/1997	75.45				
GMW-4	05/01/1998	75.45	 06.4F	24.69	0.00	50.76
GMW-4	05/04/1999	75.45	26.15	26.23	0.08	NC NC
GMW-4	08/09/1999	75.45	26.65	26.70	0.05	NC 40,44
GMW-4	11/15/1999	75.45		27.04		48.41
GMW-4	05/15/2000	75.45		27.42		48.03

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well Date Elevation (feet MSL) Product (feet btc) Groundwater (feet btc) Thickness (feet) GMW-4 11/13/2000 75.45 27.40 27.46 0.06 GMW-4 05/07/2001 75.45 25.72 GMW-4 09/18/2001 75.45 25.89 25.92 0.03 GMW-4 11/05/2001 75.45 26.01 26.02 0.01 GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 04/08/2002 75.45 27.56 27.59 0.03 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2006	roundwater Elevation (feet MSL) NC 49.73 NC NC NC NC NC NC NC NC NC A8.61 48.75 NC NC NC NC NC NC NC NC NC N
GMW-4 11/13/2000 75.45 27.40 27.46 0.06 GMW-4 05/07/2001 75.45 25.72 GMW-4 09/18/2001 75.45 25.89 25.92 0.03 GMW-4 11/05/2001 75.45 26.01 26.02 0.01 GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/07/2003 75.45 26.70 GMW-4 04/06/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.15 26.19 0.04 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2006 75.45 23.98 24.0	NC 49.73 NC NC NC NC 48.61 48.75 NC NC
GMW-4 05/07/2001 75.45 25.72 GMW-4 09/18/2001 75.45 25.89 25.92 0.03 GMW-4 11/05/2001 75.45 26.01 26.02 0.01 GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/07/2003 75.45 26.70 GMW-4 04/06/2003 75.45 26.68 26.70 0.02 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 05/02/2005 75.45 23.98 24.08 0.10 GMW-4 05/01/2006 75.45 25.08 <	49.73 NC NC NC NC 48.61 48.75 NC NC
GMW-4 09/18/2001 75.45 25.89 25.92 0.03 GMW-4 11/05/2001 75.45 26.01 26.02 0.01 GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 04/19/2004 75.45 22.30 22.31 0.01 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65	NC NC NC NC 48.61 48.75 NC NC
GMW-4 11/05/2001 75.45 26.01 26.02 0.01 GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 <	NC NC NC 48.61 48.75 NC NC
GMW-4 04/08/2002 75.45 26.70 26.74 0.04 GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 05/02/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 05/01/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45	NC NC 48.61 48.75 NC NC
GMW-4 10/21/2002 75.45 27.56 27.59 0.03 GMW-4 04/07/2003 75.45 26.84 GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45	NC 48.61 48.75 NC NC
GMW-4 04/07/2003 75.45 26.84 GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.08 25.12 0.04 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 04/20/2009 75.45 <td< td=""><td>48.61 48.75 NC NC</td></td<>	48.61 48.75 NC NC
GMW-4 04/22/2003 75.45 26.70 GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65 0.01 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 04/14/2008 75.45 27.00 GMW-4 04/20/2009 75.45	48.75 NC NC NC
GMW-4 10/06/2003 75.45 26.68 26.70 0.02 GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 04/14/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 05/24/2010 75.45	NC NC NC
GMW-4 04/19/2004 75.45 26.15 26.19 0.04 GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 04/20/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 04/20/2009 75.45 27.86 0.05 GMW-4 05/24/2010 75.45 2	NC NC
GMW-4 05/02/2005 75.45 22.30 22.31 0.01 GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 04/14/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 04/20/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45	NC
GMW-4 10/31/2005 75.45 18.10 23.84 5.74 GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.48 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72	
GMW-4 05/01/2006 75.45 23.98 24.08 0.10 GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	
GMW-4 12/04/2006 75.45 25.08 25.12 0.04 GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	NC
GMW-4 04/30/2007 75.45 25.31 GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	NC
GMW-4 11/12/2007 75.45 25.64 25.65 0.01 GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	NC
GMW-4 04/14/2008 75.45 25.99 GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	50.14
GMW-4 04/14/2008 75.45 26.00 GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	NC
GMW-4 11/21/2008 75.45 27.00 GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	49.46
GMW-4 04/20/2009 75.45 26.76 GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	49.45
GMW-4 10/19/2009 75.45 27.81 27.86 0.05 GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	48.45
GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	48.69
GMW-4 05/24/2010 75.45 27.55 GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	NC
GMW-4 05/28/2010 75.45 27.48 GMW-4 10/04/2010 75.45 27.72 27.76 0.04	47.90
GMW-4 10/04/2010 75.45 27.72 27.76 0.04	47.97
	NC
GMW-4 04/11/2011 75.45 26.59	48.86
GMW-4 10/10/2011 75.45 27.11	48.34
GMW-4 04/16/2012 75.45 28.58 28.68 0.10	NC
GMW-4 04/08/2013 75.45 29.95 30.08 0.13	NC
GMW-4 10/07/2013 75.45 30.33 30.43 0.10	NC
GMW-4 04/14/2014 75.45 30.47 31.06 0.59	NC
GMW-4 10/27/2014 75.45 31.32 31.34 0.02	NC
GMW-4 Well decommissioned in December 2014 prior to remedial excavation	
GMW-5 05/28/1996 77.61 30.52	47.09
GMW-5 11/20/1996 77.61 31.25	46.36
GMW-5 07/01/1997 77.61 30.95	
GMW-5 12/31/1997 77.61 31.16	46 66
GMW-5 12/31/1997 77.61 31.10 GMW-5 05/01/1998 77.61 28.20	46.66 46.45
GMW-5 05/01/1998 77.61 28.20	46.45
CMW 5 05/45/2000 77.04 20.04	46.45 49.41
	46.45 49.41 48.60
GMW-5 11/13/2000 77.61 29.23 GMW-5 05/07/2001 77.61 28.82	46.45 49.41

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		1		1 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-5	04/08/2002	77.61		29.95		47.66
GMW-5	10/21/2002	77.61		30.11		47.50
GMW-5	04/07/2003	77.61		29.68		47.93
GMW-5	10/06/2003	77.61		29.55		48.06
GMW-5	04/19/2004	77.61		30.53		47.08
GMW-5	05/02/2005	77.61		25.73		51.88
GMW-5	03/06/2006	77.61		27.02		50.59
GMW-5	05/01/2006	77.61		27.32		50.29
GMW-5	08/26/2006	77.61		27.67		49.94
GMW-5	12/01/2006	77.61		28.03		49.58
GMW-5	03/21/2007	77.61		27.91		49.70
GMW-5	04/27/2007	77.61		28.50		49.11
GMW-5	08/28/2007	77.61		28.19		49.42
GMW-5	11/12/2007	77.61		28.98		48.63
GMW-5	02/05/2008	77.61		28.93		48.68
GMW-5	04/11/2008	77.61		28.86		48.75
GMW-5	07/24/2008	77.61		29.41		48.20
GMW-5	10/13/2008	77.61		29.97		47.64
GMW-5	02/09/2009	77.61		29.88		47.73
GMW-5	07/16/2009	77.61		29.93		47.68
GMW-5	04/07/2010	77.61		30.35		47.26
GMW-5	10/01/2010	77.61		30.59		47.02
GMW-5	01/06/2011	77.61		30.70		46.91
GMW-5	04/08/2011	77.61		29.52		48.09
GMW-5	07/07/2011	77.61		29.76		47.85
GMW-5	10/06/2011	77.61		30.16		47.45
GMW-5	04/12/2012	77.61		31.33		46.28
GMW-5	01/10/2013	77.61		32.38		45.23
GMW-5	04/02/2013	77.61		32.34		45.27
GMW-5	10/01/2013	77.61		33.08		44.53
GMW-5	04/07/2014	77.61		33.76		43.85
GMW-5	04/14/2014	77.61		33.62		43.99
GMW-5	10/27/2014	77.61		34.12		43.49
GMW-5	04/20/2015	77.61		34.46		43.15
GMW-6	11/20/1996	77.31		30.76		46.55
GMW-6	07/01/1997	77.31		30.12		47.19
GMW-6	12/31/1997	77.31		30.52		46.79
GMW-6	05/01/1998	77.31		27.48		49.83
GMW-6	05/25/1999	77.31		28.44		48.87
GMW-6	05/15/2000	77.31		29.34		47.97
GMW-6	11/13/2000	77.31		28.67		48.64

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	I					T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-6	05/07/2001	77.31		28.05		49.26
GMW-6	04/08/2002	77.31		29.35		47.96
GMW-6	10/21/2002	77.31		29.90		47.41
GMW-6	04/07/2003	77.31		29.20		48.11
GMW-6	10/06/2003	77.31		29.04		48.27
GMW-6	04/19/2004	77.31		29.97		47.34
GMW-6	11/01/2004	77.31		29.90		47.41
GMW-6	05/02/2005	77.31		24.97		52.34
GMW-6	03/06/2006	77.31		26.54		50.77
GMW-6	05/01/2006	77.31		26.75		50.56
GMW-6	08/26/2006	77.31		27.12		50.19
GMW-6	12/01/2006	77.31		27.52		49.79
GMW-6	03/21/2007	77.31		28.06		49.25
GMW-6	04/27/2007	77.31		28.02		49.29
GMW-6	08/28/2007	77.31		28.51		48.80
GMW-6	11/12/2007	77.31		28.48		48.83
GMW-6	02/05/2008	77.31		29.32		47.99
GMW-6	04/11/2008	77.31		28.34		48.97
GMW-6	07/24/2008	77.31		28.81		48.50
GMW-6	10/13/2008	77.31		29.48		47.83
GMW-6	02/09/2009	77.31		29.62		47.69
GMW-6	04/20/2009	77.31		29.21		48.10
GMW-6	07/16/2009	77.31		29.51		47.80
GMW-6	10/19/2009	77.31		29.94		47.37
GMW-6	04/07/2010	77.31		29.74		47.57
GMW-6	04/12/2010	77.31		29.42		47.89
GMW-6	01/06/2011	77.31		30.23		47.08
GMW-6	02/24/2011	77.31		29.29		48.02
GMW-6	04/08/2011	77.31		28.86		48.45
GMW-6	07/07/2011	77.31		29.16		48.15
GMW-6	10/06/2011	77.31		29.62		47.69
GMW-6	04/12/2012	77.31		30.86		46.45
GMW-6		77.31				
	04/19/2012	+		30.57		46.74 45.35
GMW-6	01/10/2013	77.31		31.96		
GMW-6	04/02/2013	77.31		31.91		45.40
GMW-6	04/08/2013	77.31		31.91		45.40
GMW-6	10/01/2013	77.31		32.66		44.65
GMW-6	04/07/2014	77.31		33.33		43.98
GMW-6	04/14/2014	77.31		33.18		44.13
GMW-6	10/27/2014	77.31		33.65		43.66
GMW-6	04/20/2015	77.31		33.95		43.36

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-6	10/19/2015	77.31	(leet bic)	34.72	(leet)	42.59
		+				
GMW-6	04/12/2016	77.31		35.25		42.06
GMW-6	10/3/2016	77.31	07.04	35.63	 5.00	41.68
GMW-7	05/28/1996	75.84	27.21	32.89	5.68	NC
GMW-7	07/01/1997	75.84	28.30	31.57	3.27	NC
GMW-7	12/31/1997	75.84	28.30	32.10	3.80	NC
GMW-7	05/01/1998	75.84	20.80	25.90	5.10	NC
GMW-7	05/25/1999	75.84	26.18	30.37	4.19	NC
GMW-7	05/15/2000	75.84		30.13		45.71
GMW-7	11/13/2000	75.84		29.17		46.67
GMW-7	05/07/2001	75.84	26.45	27.40	0.95	NC
GMW-7	04/08/2002	75.84		28.77		47.07
GMW-7	09/19/2002	75.84		28.73		47.11
GMW-7	10/21/2002	75.84		28.05		47.79
GMW-7	04/07/2003	75.84	27.77	28.15	0.38	NC
GMW-7	10/06/2003	75.84	27.60	27.78	0.18	NC
GMW-7	04/19/2004	75.84	29.05	29.17	0.12	NC
GMW-7	11/01/2004	75.84	27.76	28.01	0.25	NC
GMW-7	02/28/2005	75.84		24.65		51.19
GMW-7	05/02/2005	75.84		23.90		51.94
GMW-7	03/06/2006	75.84		25.40		50.44
GMW-7	05/01/2006	75.84		25.30		50.54
GMW-7	08/26/2006	75.84		25.66		50.18
GMW-7	12/01/2006	75.84		25.98		49.86
GMW-7	03/21/2007	75.84		26.58		49.26
GMW-7	04/30/2007	75.84		26.49		49.35
GMW-7	08/28/2007	75.84		26.92		48.92
GMW-7	11/12/2007	75.84		27.08		48.76
GMW-7	02/05/2008	75.84		27.61		48.23
GMW-7	04/14/2008	75.84		26.70		49.14
GMW-7	10/14/2008	75.84	27.76	27.79	0.03	NC
GMW-7	02/10/2009	75.84		26.23		49.61
GMW-7	07/17/2009	75.84		27.65		48.19
GMW-7	04/08/2010	75.84		28.90		46.94
GMW-7	10/01/2010	75.84		28.54		47.30
GMW-7	01/08/2011	75.84		28.62		47.22
GMW-7	04/12/2012	75.84		29.28		46.56
GMW-7	10/02/2013	75.84	31.28	31.41	0.13	40.36 NC
GMW-7	04/07/2014	75.84	32.01	32.05	0.13	NC NC
		1		+		
GMW-7	04/16/2014	75.84	31.88	31.92	0.04	NC NC
GMW-7	10/27/2014	75.84	32.20	32.22	0.02	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		Top of Casing	Depth to	Depth to	Measured Product	Groundwater
Well	Date	Elevation	Product	Groundwater	Thickness	Elevation
CMM/7	04/00/0045	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-7	04/20/2015	75.84		32.59		43.25
GMW-7	04/11/2016	75.84		33.99		41.85
GMW-7	10/3/2016	75.84		34.36		41.48
GMW-8	05/28/1996	73.20		26.42		46.78
GMW-8	11/20/1996	73.20		26.72		46.48
GMW-8	07/01/1997	73.20		28.07		45.13
GMW-8	12/31/1997	73.20		26.85		46.35
GMW-8	05/01/1998	73.20		24.24		48.96
GMW-8	05/04/1999	73.20		25.51		47.69
GMW-8	11/15/1999	73.20		25.66		47.54
GMW-8	05/15/2000	73.20		26.03		47.17
GMW-8	11/13/2000	73.20		26.45		46.75
GMW-8	05/07/2001	73.20		24.49		48.71
GMW-8	11/05/2001	73.20		24.38		48.82
GMW-8	04/08/2002	73.20		25.49		47.71
GMW-8	10/21/2002	73.20		26.43		46.77
GMW-8	04/07/2003	73.20		24.93		48.27
GMW-8	10/06/2003	73.20		25.72		47.48
GMW-8	01/11/2004	73.20		26.95		46.25
GMW-8	04/19/2004	73.20		27.00		46.20
GMW-8	05/02/2005	73.20		21.74		51.46
GMW-8	10/31/2005	73.20		27.13		46.07
GMW-8	05/01/2006	73.20		22.59		50.61
GMW-8	12/04/2006	73.20		23.34		49.86
GMW-8	04/30/2007	73.20		23.46		49.74
GMW-8	11/12/2007	73.20		23.83		49.37
GMW-8	04/14/2008	73.20		24.29		48.91
GMW-8	10/13/2008	73.20		24.43		48.77
GMW-8	04/20/2009	73.20		24.88		48.32
GMW-8	10/19/2009	73.20		25.69		47.51
GMW-8	05/24/2010	73.20		25.98		47.22
GMW-8	05/28/2010	73.20		25.87		47.33
GMW-8	10/04/2010	73.20		25.80		47.40
GMW-8	06/14/2013	73.20		29.02		44.18
GMW-8	04/14/2014	73.20		29.60		43.60
GMW-8	10/27/2014	73.20		29.96		43.24
GMW-8	04/20/2015	73.20		30.43		42.77
GMW-8	10/19/2015	73.20		31.13		42.07
GMW-8	04/11/2016	73.20		32.20		41.00
GMW-8	10/3/2016	73.20		33.47		39.73
GMW-9	08/07/2001	74.44	27.23	27.74	0.51	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-9	10/21/2002	74.44	28.95	28.97	0.02	NC
GMW-9	04/07/2003	74.44	29.56	29.59	0.03	NC
GMW-9	10/06/2003	74.44	28.14	28.30	0.16	NC
GMW-9	04/19/2004	74.44		28.71		45.73
GMW-9	05/02/2005	74.44		24.72		49.72
GMW-9	10/31/2005	74.44	25.31	25.56	0.25	NC
GMW-9	05/01/2006	74.44	25.65	25.86	0.21	NC
GMW-9	12/04/2006	74.44	27.79	27.88	0.09	NC
GMW-9	04/30/2007	74.44		26.71		47.73
GMW-9	11/12/2007	74.44	27.04	27.32	0.28	NC
GMW-9	08/08/2008	74.44	27.96	28.01	0.05	NC
GMW-9	10/16/2008	74.77	28.35	28.36	0.01	NC
GMW-9	04/21/2009	74.44		28.16		46.28
GMW-9	05/24/2010	74.44		30.47		43.97
GMW-9	05/28/2010	74.44		30.35		44.09
GMW-9	10/04/2010	74.44		30.30		44.14
GMW-9	01/10/2011	74.44		32.02		42.42
GMW-9	04/11/2011	74.44		25.41		49.03
GMW-9	10/10/2011	74.44		28.91		45.53
GMW-9	04/16/2012	74.44		31.15		43.29
GMW-9	07/09/2012			31.64		
GMW-9	10/15/2012	77.16		31.82		45.34
GMW-9	01/14/2013	77.16		31.88		45.28
GMW-9	04/08/2013	77.16		31.83		45.33
GMW-9	10/07/2013	77.16	31.25	35.30	4.05	NC
GMW-9	04/14/2014	77.16	31.65	37.66	6.01	NC
GMW-9	07/03/2014	77.16	32.59	39.26	6.67	NC
GMW-9	10/27/2014	77.16	32.42	36.04	3.62	NC
GMW-9	04/20/2015	77.16	32.99	36.98	3.99	NC
GMW-9	10/20/2015	77.16	34.37	34.61	0.24	NC
GMW-9	04/11/2016	77.16		36.20		40.96
GMW-9	10/3/2016	77.16		38.02		39.14
GMW-10	10/21/2002	74.67		33.71		40.96
GMW-10	11/04/2002	74.67	26.25	34.00	7.75	NC
GMW-10	04/07/2003	74.67	26.47	26.47	0.00	NC
GMW-10	10/06/2003	72.90	26.51	26.72	0.21	NC
GMW-10	04/19/2004	74.67		28.42		46.25
GMW-10	05/02/2005	74.67	21.16	27.53	6.37	NC
GMW-10	10/31/2005	74.67	26.03	26.10	0.07	NC
GMW-10	05/01/2006	74.67	23.65	24.18	0.53	NC
GMW-10	12/04/2006	74.67	24.38	25.55	1.17	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

 -				1 1		
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-10	04/30/2007	74.67		25.90		48.77
GMW-10	11/12/2007	74.67	25.02	25.82	0.80	NC
GMW-10	04/14/2008	74.67	25.38	25.44	0.06	NC
GMW-10	10/13/2008	74.67	20.00	24.16		50.51
GMW-10	04/20/2009	74.67		24.46		50.21
GMW-10	10/19/2009	74.67		27.20		47.47
GMW-10	05/24/2010	74.67		26.72		47.95
GMW-10	05/28/2010	74.67		26.70		47.97
GMW-10		1				
	10/04/2010	74.67		27.15		47.52
GMW-10	04/11/2011	74.67		25.21		49.46
GMW-10	10/10/2011	74.67		27.75		46.92
GMW-10	04/27/2012	74.67		28.47		46.20
GMW-10	10/15/2012	74.67	29.02	29.15	0.13	NC
GMW-10	04/08/2013	74.67	28.12	33.64	5.52	NC
GMW-10	10/07/2013		29.32	31.85	2.53	NC
GMW-10	04/14/2014	73.35	29.01	29.43	0.42	NC
GMW-10	10/27/2014		29.12	30.19	1.07	NC
GMW-10	04/20/2015	73.35	28.42	34.99	6.57	NC
GMW-10	10/20/2015	73.35	31.02	32.96	1.94	NC
GMW-10	04/11/2016	73.35	32.10	33.70	1.60	NC
GMW-10	10/3/2016	73.35	33.65	35.10	1.45	NC
GMW-11	05/28/1996	72.90		25.19		47.71
GMW-11	11/20/1996	72.90		26.35		46.55
GMW-11	07/01/1997	72.90		26.17		46.73
GMW-11	12/31/1997	72.90		26.73		46.17
GMW-11	05/01/1998	72.90		23.37		49.53
GMW-11	05/04/1999	72.90		24.46		48.44
GMW-11	11/15/1999	72.90		25.11		47.79
GMW-11	05/15/2000	72.90		24.96		47.94
GMW-11	11/13/2000	72.90		25.64		47.26
GMW-11	05/07/2001	72.90		23.81		49.09
GMW-11	08/07/2001	72.90	25.21	27.21	2.00	NC
GMW-11	11/05/2001	72.90		23.79		49.11
GMW-11	04/08/2002	72.90		25.62		47.28
GMW-11	10/21/2002	72.90		25.38		47.52
GMW-11	04/07/2003	72.90		24.37		48.53
GMW-11	10/06/2003	72.90		24.67		48.23
GMW-11	04/19/2004	72.90		25.16		47.74
GMW-11	10/31/2005	72.90		23.10		49.80
GMW-11	05/01/2006	72.90		22.26		50.64
GMW-11	05/09/2006	72.90		22.09		50.81

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

·		<u> </u>		T		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
010444	40/04/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-11	12/01/2006	72.90		23.20		49.70
GMW-11	04/30/2007	72.90		23.26		49.64
GMW-11	04/30/2007	72.90		23.32		49.58
GMW-11	04/14/2008	72.90		23.75		49.15
GMW-11	04/14/2008	72.90		23.77		49.13
GMW-11	10/13/2008	72.90		24.62		48.28
GMW-11	10/14/2008	72.90		24.82		48.08
GMW-11	04/20/2009	72.90		24.65		48.25
GMW-11	10/19/2009	72.90		25.69		47.21
GMW-11	05/24/2010	72.90		25.45		47.45
GMW-11	05/28/2010	72.90		25.39		47.51
GMW-11	10/04/2010	72.90		25.48		47.42
GMW-11	04/11/2011	72.90		24.14		48.76
GMW-11	10/10/2011	72.90		24.98		47.92
GMW-11	04/16/2012	72.90		26.03		46.87
GMW-11	10/15/2012	72.90		27.05		45.85
GMW-11	04/08/2013	72.90		27.92		44.98
GMW-11	04/15/2016	72.90		31.67		41.23
GMW-12	05/28/1996	75.21	27.36	28.02	0.66	NC
GMW-12	11/20/1996	75.21		28.25		46.96
GMW-12	07/01/1997	75.21		27.65		47.56
GMW-12	12/31/1997	75.21		28.05		47.16
GMW-12	05/01/1998	75.21		25.06		50.15
GMW-12	05/25/1999	75.21		26.17		49.04
GMW-12	05/15/2000	75.21		26.81		48.40
GMW-12	11/13/2000	75.21		27.40		47.81
GMW-12	05/07/2001	75.21		25.65		49.56
GMW-12	08/07/2001	75.21	25.74	26.15	0.41	NC
GMW-12	04/08/2002	75.21		26.89		48.32
GMW-12	10/21/2002	75.21		27.40		47.81
GMW-12	04/07/2003	75.21		26.60		48.61
GMW-12	10/06/2003	75.21		26.45		48.76
GMW-12	04/19/2004	75.21		27.54		47.67
GMW-12	11/01/2004	75.21		27.76		47.45
GMW-12	05/02/2005	75.21		21.20		54.01
GMW-12	05/01/2006	75.21		24.03		51.18
GMW-12	12/04/2006	75.21		25.03		50.18
GMW-12	04/30/2007	75.21		25.51		49.70
GMW-12	11/12/2007	75.21		25.46		49.75
		+		+		
GMW-12 GMW-12	04/14/2008 07/24/2008	75.21 75.21		25.72 26.06		49.49 49.15

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>				1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
0144/40	40/44/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-12	10/14/2008	75.21		26.83		48.38
GMW-12	02/10/2009	75.21		26.39		48.82
GMW-12	04/20/2009	75.21		26.38		48.83
GMW-12	10/19/2009	75.21		27.62		47.59
GMW-12	04/08/2010	75.21		27.17		48.04
GMW-12	04/12/2010	75.21		26.83		48.38
GMW-12	01/08/2011	75.21		28.05		47.16
GMW-12	04/07/2011	75.21		26.54		48.67
GMW-12	07/08/2011	75.21		26.57		48.64
GMW-12	10/07/2011	75.21		27.25		47.96
GMW-12	04/12/2012	75.21		28.38		46.83
GMW-12	04/16/2012	75.21		28.25		46.96
GMW-12	01/10/2013	75.21		29.97		45.24
GMW-12	04/03/2013	75.21		29.88		45.33
GMW-12	04/08/2013	75.21		29.94		45.27
GMW-12	10/02/2013	75.21		30.54		44.67
GMW-12	04/07/2014	75.21		31.46		43.75
GMW-12	04/16/2014	75.21		30.96		44.25
GMW-12	10/27/2014	75.21		31.39		43.82
GMW-12	04/20/2015	75.21		31.74		43.47
GMW-12	10/3/2016	75.21		34.45		40.76
GMW-13	05/28/1996	74.17		26.91		47.26
GMW-13	11/20/1996	74.17		26.89		47.28
GMW-13	07/01/1997	74.17		25.92		48.25
GMW-13	12/31/1997	74.17		25.58		48.59
GMW-13	05/01/1998	74.17		23.10		51.07
GMW-13	05/04/1999	74.17		24.75		49.42
GMW-13	11/15/1999	74.17		25.65		48.52
GMW-13	05/15/2000	74.17		25.38		48.79
GMW-13	11/13/2000	74.17		26.02		48.15
GMW-13	05/07/2001	74.17		24.28		49.89
GMW-13	11/05/2001	74.17		24.67		49.50
GMW-13	02/01/2002	74.17		24.65		49.52
GMW-13	04/08/2002	74.17		25.40		48.77
GMW-13	10/21/2002	74.17		26.15		48.02
GMW-13	04/07/2003	74.17		25.32		48.85
GMW-13	10/06/2003	74.17		25.13		49.04
GMW-13						
	01/11/2004	74.17		26.58		47.59
GMW-13	04/19/2004	74.17		26.96		47.21
GMW-13	05/02/2005	74.17		20.54		53.63
GMW-13	10/31/2005	74.17		22.32		51.85

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-13	05/01/2006	74.17		22.82		51.35
GMW-13	12/04/2006	74.17		23.75		50.42
GMW-13	04/30/2007	74.17		24.10		50.07
GMW-13	11/12/2007	74.17		24.89		49.28
GMW-13	04/14/2008	74.17		24.60		49.57
GMW-13	10/13/2008	74.17		26.27		47.90
GMW-13	04/20/2009	74.17		25.41		48.76
GMW-13	10/19/2009	74.17		26.45		47.72
GMW-13	05/24/2010	74.17		25.86		48.31
GMW-13	05/28/2010	74.17		25.63		48.54
GMW-13	10/04/2010	74.17		26.41		47.76
GMW-13	04/11/2011	74.17		25.23		48.94
GMW-13	10/10/2011	74.17		25.92		48.25
GMW-13	04/16/2012	74.17		27.09		47.08
GMW-13	10/15/2012	74.17		27.89		46.28
GMW-13	04/08/2013	74.17		28.67		45.50
GMW-13	10/07/2013	74.17		29.65		44.52
GMW-13	04/14/2014	74.17		29.66		44.51
GMW-13	10/27/2014	74.17		30.02		44.15
GMW-13	04/20/2015	74.17		30.39		43.78
GMW-13	10/19/2015	74.17		31.16		43.01
GMW-13	04/11/2016	74.17		32.13		42.04
GMW-13	10/3/2016	74.17		33.20		40.97
GMW-14	05/04/1999	74.72		25.37		49.35
GMW-14	08/09/1999	74.72		25.95		48.77
GMW-14	11/15/1999	74.72		26.27		48.45
GMW-14	05/15/2000	74.72		26.02		48.70
GMW-14	11/13/2000	74.72		26.67		48.05
GMW-14	05/07/2001	74.72		24.92		49.80
GMW-14	11/05/2001	74.72		25.28		49.44
GMW-14	04/08/2002	74.72		26.00		48.72
GMW-14	10/21/2002	74.72		26.79		47.93
GMW-14	04/07/2003	74.72		25.25		49.47
GMW-14	10/06/2003	74.72		25.91		48.81
GMW-14	01/11/2004	74.72		27.21		47.51
GMW-14	04/19/2004	74.72		28.69		46.03
GMW-14	05/02/2005	74.72		21.29		53.43
GMW-14	10/31/2005	74.72		22.96		51.76
GMW-14	05/01/2006	74.72		23.44		51.28
GMW-14	12/04/2006	74.72		24.39		50.33
GMW-14	04/30/2007	74.72		24.61		50.11

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-14	11/12/2007	74.72		24.55		50.17
GMW-14	04/14/2008	74.72		28.15		46.57
GMW-14	10/13/2008	74.72		27.23		47.49
GMW-14	04/20/2009	74.72		25.97		48.75
GMW-14	10/19/2009	74.72		27.31		47.41
GMW-14	10/04/2010	74.72		26.99		47.73
GMW-14	04/11/2011	74.72		25.88		48.84
GMW-14	10/10/2011	74.72		26.71		48.01
GMW-14	04/16/2012	74.72		27.98		46.74
GMW-14	10/15/2012	74.72		28.91		45.81
GMW-14	04/08/2013	74.72		29.20		45.52
GMW-14	10/07/2013	74.72		30.15		44.57
GMW-14	04/14/2014	74.72		30.25		44.47
GMW-14	10/27/2014	74.72		30.63		44.09
GMW-14		ell decommission	ed in Decembe		medial excavati	
GMW-15	05/28/1996	76.21	28.71	29.16	0.45	NC
GMW-15	11/20/1996	76.21		29.70		46.51
GMW-15	07/01/1997	76.21		29.39		46.82
GMW-15	12/31/1997	76.21		29.40		46.81
GMW-15	05/01/1998	76.21		26.71		49.50
GMW-15	05/25/1999	76.21		27.51		48.70
GMW-15	05/15/2000	76.21		22.59		53.62
GMW-15	05/15/2000	76.21		28.39		47.82
GMW-15	11/13/2000	76.21		27.75		48.46
GMW-15	11/13/2000	76.21		28.80		47.41
GMW-15	05/07/2001	76.21		26.60		49.61
GMW-15	05/07/2001	76.21		27.02		49.19
GMW-15	04/08/2002	76.21		28.51		47.70
GMW-15	10/21/2002	76.21		28.49		47.72
GMW-15	04/07/2003	76.21		28.25		47.96
GMW-15	10/06/2003	76.21		28.00		48.21
GMW-15		76.21		29.23		
	04/19/2004	+				46.98
GMW-15	11/01/2004	76.21		28.91		47.30
GMW-15	05/02/2005	76.21		23.85		52.36
GMW-15	03/06/2006	76.21		25.42		50.79
GMW-15	05/01/2006	76.21		25.70		50.51
GMW-15	08/26/2006	76.21		26.05		50.16
GMW-15	12/01/2006	76.21		26.45		49.76
GMW-15	03/21/2007	76.21		26.38		49.83
GMW-15	04/27/2007	76.21		26.90		49.31
GMW-15	08/28/2007	76.21		26.70		49.51

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1		
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-15	11/12/2007	76.21		27.38		48.83
GMW-15	02/05/2008	76.21		27.78		48.43
GMW-15	04/11/2008	76.21		27.29		48.92
GMW-15	07/24/2008	76.21		27.52		48.69
GMW-15	10/13/2008	76.21		28.36		47.85
GMW-15	02/09/2009	76.21		28.51		47.70
GMW-15	04/20/2009	76.21		28.31		47.90
GMW-15	07/16/2009	76.21		28.32		47.89
GMW-15	10/19/2009	76.21		28.90		47.31
GMW-15	04/08/2010	76.21		28.51		47.70
GMW-15	04/12/2010	76.21		28.24		47.97
GMW-15	01/06/2011	76.21		29.10		47.11
GMW-15	04/08/2011	76.21		27.81		48.40
GMW-15	07/07/2011	76.21		28.05		48.16
GMW-15	10/06/2011	76.21		28.53		47.68
GMW-15	04/12/2012	76.21		29.75		46.46
GMW-15	04/19/2012	76.21		29.45		46.76
GMW-15	01/10/2013	76.21		30.88		45.33
GMW-15	04/02/2013	76.21		30.82		45.39
GMW-15	04/08/2013	76.21		30.78		45.43
GMW-15	10/01/2013	76.21		31.60		44.61
GMW-15	04/07/2014	76.21		32.30		43.91
GMW-15	04/15/2014	76.21		32.02		44.19
GMW-15	10/27/2014	76.21		32.58		43.63
GMW-15	04/22/2015	76.21		32.92		43.29
GMW-15	10/19/2015	76.21		33.62		42.59
GMW-15	04/11/2016	76.21		35.19		41.02
GMW-15	10/3/2016	76.21		34.51		41.70
GMW-16	05/28/1996	77.00		29.86		47.14
GMW-16	11/20/1996	77.00		30.60		46.40
GMW-16	07/01/1997	77.00		31.61		45.39
GMW-16		77.00				
	12/31/1997	+		30.60		46.40
GMW-16	05/01/1998	77.00		27.73		49.27
GMW-16	05/25/1999	77.00		28.46		48.54
GMW-16	05/15/2000	77.00		29.50		47.50
GMW-16	11/13/2000	77.00		28.67		48.33
GMW-16	05/07/2001	77.00		28.38		48.62
GMW-16	04/08/2002	77.00		29.42		47.58
GMW-16	10/21/2002	77.00		29.15		47.85
GMW-16	04/07/2003	77.00		29.20		47.80
GMW-16	10/06/2003	77.00		28.92		48.08

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 40 A 4 C	0.4/4.0/0.004	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-16	04/19/2004	77.00		30.03		46.97
GMW-16	11/05/2004	77.00		29.53		47.47
GMW-16	05/02/2005	77.00		25.05		51.95
GMW-16	03/06/2006	77.00		26.35		50.65
GMW-16	05/01/2006	77.00		26.65		50.35
GMW-16	08/26/2006	77.00		26.98		50.02
GMW-16	12/01/2006	77.00		27.31		49.69
GMW-16	03/21/2007	77.00		27.51		49.49
GMW-16	04/27/2007	77.00		27.72		49.28
GMW-16	08/28/2007	77.00		27.99		49.01
GMW-16	11/12/2007	77.00		28.33		48.67
GMW-16	02/05/2008	77.00		28.68		48.32
GMW-16	04/11/2008	77.00		28.13		48.87
GMW-16	07/24/2008	77.00		28.56		48.44
GMW-16	10/13/2008	77.00		29.21		47.79
GMW-16	02/09/2009	77.00		29.18		47.82
GMW-16	04/20/2009	77.00		30.50		46.50
GMW-16	07/16/2009	77.00		29.52		47.48
GMW-16	10/19/2009	77.00		30.24		46.76
GMW-16	04/07/2010	77.00		29.68		47.32
GMW-16	04/12/2010	77.00		29.38		47.62
GMW-16	01/08/2011	77.00		26.47		50.53
GMW-16	07/07/2011	77.00		29.04		47.96
GMW-16	10/06/2011	77.00		29.48		47.52
GMW-16	04/12/2012	77.00		30.53		46.47
GMW-16	04/18/2012	77.00		30.29		46.71
GMW-16	01/11/2013	77.00		31.68		45.32
GMW-16	04/02/2013	77.00		31.66		45.34
GMW-16	04/08/2013	77.00		31.65		45.35
GMW-16	10/02/2013	77.00		32.35		44.65
GMW-16	04/09/2014	77.00		33.03		43.97
GMW-16	04/14/2014	77.00		32.95		44.05
GMW-16	10/27/2014	77.00		33.43		43.57
GMW-16	04/22/2015	77.00		33.22		43.78
GMW-17	05/28/1996	74.66	26.65	30.51	3.86	43.76 NC
GMW-17	11/20/1996	74.66	27.27	31.79	4.52	NC NC
			27.38		5.33	NC NC
GMW-17	07/01/1997	74.66		32.71		NC NC
GMW-17	12/31/1997	74.66	26.92	32.74	5.82	
GMW-17	05/01/1998	74.66	25.04	25.19	0.15	NC
GMW-17	05/25/1999	74.66	05.40	27.06	0.05	47.60
GMW-17	05/15/2000	74.66	25.13	25.18	0.05	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	Г	 		T 1		T
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-17	11/13/2000	74.66		26.52		48.14
GMW-17	05/07/2001	74.66		25.32		49.34
GMW-17	04/08/2002	74.66		26.70		47.96
GMW-17	09/19/2002	74.66	27.70	27.89	0.19	NC
GMW-17	10/21/2002	74.66	21.10	27.67	0.19	46.99
GMW-17	04/07/2003	74.66		26.60		48.06
GMW-17	10/06/2003	74.66		26.60		48.06
GMW-17	04/19/2004	74.66		25.58		49.08
GMW-17	11/01/2004	74.66		27.51		47.15
GMW-17	02/28/2005	74.66		22.85		51.81
GMW-17	05/02/2005	74.66		21.23		53.43
GMW-17	03/06/2006	74.66		23.76		50.90
GMW-17	05/01/2006	74.66		+		50.91
	08/26/2006			23.75		
GMW-17		74.66		24.36		50.30
GMW-17	12/01/2006	74.66		24.86		49.80
GMW-17	03/21/2007	74.66		25.04		49.62
GMW-17	04/30/2007	74.66		25.23		49.43
GMW-17	08/28/2007	74.66		25.42		49.24
GMW-17	11/12/2007	74.66		25.63		49.03
GMW-17	02/05/2008	74.66		26.25		48.41
GMW-17	04/11/2008	74.66		25.10		49.56
GMW-17	07/24/2008	74.66		25.91		48.75
GMW-17	10/14/2008	74.66		26.35		48.31
GMW-17	02/10/2009	74.66		27.05		47.61
GMW-17	04/20/2009	74.66		26.00		48.66
GMW-17	07/16/2009	74.66		27.15		47.51
GMW-17	10/19/2009	74.66		27.51		47.15
GMW-17	04/08/2010	74.66		25.92		48.74
GMW-17	04/12/2010	74.66		25.83		48.83
GMW-17	04/08/2011	74.66		24.04		50.62
GMW-17	07/08/2011	74.66		25.50		49.16
GMW-17	10/06/2011	74.66		26.20		48.46
GMW-17	04/12/2012	74.66		27.94		46.72
GMW-17	04/20/2012	74.66		27.77		46.89
GMW-17	01/11/2013	74.66		29.50		45.16
GMW-17	04/03/2013	74.66		29.38		45.28
GMW-17	04/08/2013	74.66		29.34		45.32
GMW-17	10/02/2013	74.66		30.11		44.55
GMW-17	04/09/2014	74.66		30.83		43.83
GMW-17	04/17/2014	74.66		30.72		43.94
GMW-17	10/27/2014	74.66		31.03		43.63

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-17	We	ell decommission			,	
GMW-18	11/20/1996	75.36	28.40	32.50	4.10	NC
GMW-18	07/01/1997	75.36	27.70	31.50	3.80	NC
GMW-18	12/31/1997	75.36	28.01	32.08	4.07	NC
GMW-18	05/01/1998	75.36	18.61	24.64	6.03	NC
GMW-18	05/25/1999	75.36	25.77	29.48	3.71	NC
GMW-18	05/15/2000	75.36	26.28	30.35	4.07	NC
GMW-18	11/18/2000	75.36		28.77		46.59
GMW-18	05/07/2001	75.36	24.80	29.70	4.90	NC
GMW-18	04/08/2002	75.36		27.74		47.62
GMW-18	09/19/2002	75.36	27.97	28.02	0.05	NC
GMW-18	10/21/2002	75.36		28.74		46.62
GMW-18	04/07/2003	75.36		27.06		48.30
GMW-18	10/06/2003	75.36	26.66	27.40	0.74	NC
GMW-18	04/19/2004	75.36		27.33		48.03
GMW-18	11/01/2004	75.36	27.27	27.44	0.17	NC
GMW-18	02/28/2005	75.36	23.85	23.87	0.02	NC NC
GMW-18	05/02/2005	75.36	20.00	22.40	0.02	52.96
GMW-18	03/06/2006	75.36		24.21		51.15
GMW-18	05/01/2006	75.36		24.50		50.86
GMW-18	08/26/2006	75.36		24.91		50.45
GMW-18	12/01/2006	75.36		25.20		50.16
GMW-18	03/21/2007	75.36		25.18		50.18
GMW-18	04/30/2007	75.36		25.72		49.64
GMW-18	08/28/2007	75.36		25.62		49.74
GMW-18	11/12/2007	75.36		26.29		49.07
GMW-18	02/05/2008	75.36		26.73		48.63
GMW-18	04/14/2008	75.36		25.91		49.45
GMW-18	10/14/2008	75.36		27.00		48.36
GMW-18	02/10/2009	75.36		26.50		48.86
GMW-18	04/20/2009	75.36		26.80		48.56
GMW-18	07/17/2009	75.36		27.41		47.95
GMW-18	10/19/2009	75.36		27.91		47.45
GMW-18	04/08/2010	75.36		27.30		48.06
GMW-18	04/12/2010	75.36		27.44		47.92
GMW-18	10/01/2010	75.36		27.80		47.56
GMW-18	01/08/2011	75.36		27.86		47.50
GMW-18	04/12/2012	75.36		28.54		46.82
GMW-18	04/20/2012	75.36		28.45		46.91
GMW-18	04/05/2013	75.36	29.66	30.33	0.67	NC
GMW-18	04/08/2013	75.36	29.64	30.21	0.57	NC NC
OIVIVV-10	07/00/2013	13.30	23.04	JU.Z I	0.51	INC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		, , , , , , , , , , , , , , , , , , , 				
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ONANA 40	40/00/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-18	10/02/2013	75.36	30.24	32.17	1.93	NC
GMW-18	04/07/2014	75.36	30.95	33.15	2.20	NC
GMW-18	04/16/2014	75.36	30.92	33.08	2.16	NC
GMW-18	10/27/2014	75.36		31.13		44.23
GMW-18	04/20/2015	75.36		31.47		43.89
GMW-18	10/3/2016	75.36	33.27	35.34	2.07	NC
GMW-19	05/28/1996	76.83		30.39		46.44
GMW-19	11/20/1996	76.83		30.39		46.44
GMW-19	07/01/1997	76.83		29.82		47.01
GMW-19	12/31/1997	76.83		30.08		46.75
GMW-19	05/01/1998	76.83		26.97		49.86
GMW-19	05/25/1999	76.83		28.00		48.83
GMW-19	05/15/2000	76.83		28.85		47.98
GMW-19	11/13/2000	76.83		28.21		48.62
GMW-19	05/07/2001	76.83		27.44		49.39
GMW-19	04/08/2002	76.83		29.08		47.75
GMW-19	09/19/2002	76.83		28.63		48.20
GMW-19	10/21/2002	76.83		29.22		47.61
GMW-19	04/07/2003	76.83		28.58		48.25
GMW-19	10/06/2003	76.83		28.45		48.38
GMW-19	04/19/2004	76.83		29.44		47.39
GMW-19	11/01/2004	76.83		27.92		48.91
GMW-19	02/28/2005	76.83		25.69		51.14
GMW-19	05/02/2005	76.83		24.47		52.36
GMW-19	03/06/2006	76.83		26.32		50.51
GMW-19	05/01/2006	76.83		26.24		50.59
GMW-19	08/26/2006	76.83		26.64		50.19
GMW-19	12/01/2006	76.83		26.92		49.91
GMW-19	03/21/2007	76.83		27.41		49.42
GMW-19	04/30/2007	76.83		27.48		49.35
GMW-19	08/28/2007	76.83		28.00		48.83
GMW-19	11/12/2007	76.83		28.04		48.79
GMW-19	02/05/2008	76.83		28.67		48.16
GMW-19	04/14/2008	76.83		27.64		49.19
GMW-19	07/24/2008	76.83		27.97		48.86
GMW-19	10/14/2008	76.83		28.76		48.07
GMW-19	02/10/2009	76.83		27.35		49.48
GMW-19	04/20/2009	76.83		28.71		48.12
GMW-19	07/17/2009	76.83		28.79		48.04
GMW-19	10/19/2009	76.83		29.54		47.29
GMW-19	04/08/2010	76.83		29.05		47.78

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

l I						1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation
CMM 40	04/40/0040	(feet MSL)	(feet btc)		(feet)	(feet MSL)
GMW-19	04/12/2010	76.83		29.16		47.67
GMW-19	10/06/2011	76.83		29.06		47.77
GMW-19	04/12/2012	76.83		30.26		46.57
GMW-19	04/18/2012	76.83		30.09		46.74
GMW-19	01/10/2013	76.83		31.56		45.27
GMW-19	04/03/2013	76.83		31.49		45.34
GMW-19	04/08/2013	76.83		31.60		45.23
GMW-19	10/02/2013	76.83		32.29		44.54
GMW-19	04/07/2014	76.83		33.00		43.83
GMW-19	04/14/2014	76.83		32.79		44.04
GMW-19	10/27/2014	76.83		33.20		43.63
GMW-19	04/20/2015	76.83		33.53		43.30
GMW-19	10/19/2015	76.83		34.33		42.50
GMW-20	05/28/1996	75.10		27.65		47.45
GMW-20	11/20/1996	75.10		28.53		46.57
GMW-20	07/01/1997	75.10		28.26		46.84
GMW-20	12/31/1997	75.10		28.23		46.87
GMW-20	05/01/1998	75.10		25.50		49.60
GMW-20	05/25/1999	75.10		26.25		48.85
GMW-20	05/15/2000	75.10		26.95		48.15
GMW-20	11/13/2000	75.10		27.56		47.54
GMW-20	05/07/2001	75.10		25.75		49.35
GMW-20	08/07/2001	75.10	25.55	26.67	1.12	NC
GMW-20	04/08/2002	75.10		26.77		48.33
GMW-20	10/21/2002	75.10		27.16		47.94
GMW-20	04/07/2003	75.10		26.62		48.48
GMW-20	10/06/2003	75.10		26.62		48.48
GMW-20	04/19/2004	75.10		27.88		47.22
GMW-20	11/01/2004	75.10		27.79		47.31
GMW-20	05/02/2005	75.10		22.20		52.90
GMW-20	05/01/2006	75.10		24.28		50.82
GMW-20	12/01/2006	75.10		25.17		49.93
GMW-20	04/30/2007	75.10		25.63		49.47
GMW-20	11/12/2007	75.10		26.08		49.02
GMW-20	04/14/2008	75.10		25.74		49.36
GMW-20	10/14/2008	75.10 75.10		26.89		48.21
GMW-20	10/01/2010	75.10		27.64		47.46
GMW-20	01/08/2011	75.10		27.81		47.40
GMW-20	04/12/2012	75.10		28.41		46.69
		+				
GMW-20 GMW-20	10/02/2013 04/09/2014	75.10 75.10		30.54 31.18		44.56 43.92

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-20	10/27/2014	75.10		31.43		43.67
GMW-20	04/20/2015	75.10		31.79		43.31
GMW-20	10/19/2015	75.10		32.55		42.55
GMW-20	04/11/2016	75.10		33.52		41.58
GMW-20	10/03/2016	75.10		34.19		40.91
GMW-21	05/28/1996	76.23	27.89	33.21	5.32	NC
GMW-21	11/20/1996	76.23	28.95	33.05	4.10	NC
GMW-21	07/01/1997	76.23	29.13	30.13	1.00	NC
GMW-21	04/08/2002	76.23		28.84		47.39
GMW-21	10/06/2003	76.23	27.90	28.17	0.27	NC
GMW-21	04/19/2004	76.23	29.14	29.57	0.43	NC
GMW-21	11/01/2004	76.23	28.68	28.91	0.23	NC
GMW-21	05/02/2005	76.23	23.79	24.56	0.77	NC
GMW-21	05/01/2006	76.23	25.21	26.99	1.78	NC
GMW-21	08/26/2006	76.23	25.54	25.79	0.25	NC
GMW-21	12/01/2006	76.23	25.99	27.83	1.84	NC
GMW-21	04/27/2007	76.23		26.41		49.82
GMW-21	11/09/2007	76.23	27.34	27.37	0.03	NC
GMW-21	02/05/2008	76.23		27.79		48.44
GMW-21	10/13/2008	76.23		28.18		48.05
GMW-21	02/09/2009	76.23		27.48		48.75
GMW-21	07/17/2009	76.23		28.40		47.83
GMW-21	04/07/2010	76.23		28.81		47.42
GMW-21	01/06/2011	76.23		26.85		49.38
GMW-21	04/06/2011	76.23		27.78		48.45
GMW-21	07/07/2011	76.23		27.95		48.28
GMW-21	10/06/2011	76.23		28.41		47.82
GMW-21	04/12/2012	76.23		29.48		46.75
GMW-21	01/10/2013	76.23	30.43	31.90	1.47	NC
GMW-21	04/02/2013	76.23	30.66	30.73	0.07	NC
GMW-21	04/08/2013	76.23	30.56	31.05	0.49	NC
GMW-21	10/01/2013	76.23	31.32	32.00	0.68	NC
GMW-21	04/07/2014	76.23	32.21	32.26	0.05	NC
GMW-21	04/14/2014	76.23	32.22	32.29	0.07	NC
GMW-21	10/27/2014	76.23		32.52		43.71
GMW-21	04/20/2015	76.23		32.82		43.41
GMW-21	10/20/2015	76.23	33.48	33.49	0.01	NC
GMW-21	04/11/2016	76.23		33.96		42.27
GMW-21	10/3/2016	76.23		34.38		41.85
GMW-22	05/28/1996	74.17	29.75	34.31	4.56	NC
GMW-22	11/20/1996	74.17	29.78	33.02	3.24	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-22	07/01/1997	74.17	30.91	34.32	3.41	NC
GMW-22	12/31/1997	74.17	29.98	33.75	3.77	NC
GMW-22	05/01/1998	74.17	19.13	26.55	7.42	NC
GMW-22	05/15/2000	74.17	26.45	30.67	4.22	NC
GMW-22	11/13/2000	74.17	28.67	31.82	3.15	NC
GMW-22	05/07/2001	74.17	27.88	32.30	4.42	NC
GMW-22	08/07/2001	74.17	25.78	29.76	3.98	NC
GMW-22	11/05/2001	74.17	25.76	31.05	5.10	NC
GMW-22	04/08/2002	74.17	26.55	26.59	0.04	NC NC
GMW-22	05/02/2005	74.17	23.09	26.46	3.37	NC NC
GMW-22	10/31/2005	74.17	23.09	27.80	5.57	46.37
GMW-22	05/01/2006	74.17	24.70	24.94	0.24	NC
GMW-22	12/04/2006	74.17		25.43	0.24	48.74
GMW-22	04/30/2007	74.17		25.79		48.38
GMW-22	11/12/2007	74.17	25.91	26.45	0.54	46.36 NC
GMW-22	08/12/2007	74.17		26.70		47.47
GMW-22	10/31/2008		27.04	28.25	1.21	NC
		74.17	27.04			47.20
GMW-22 GMW-22	11/04/2008 04/21/2009	74.17 74.17	27.20	26.97 27.30	0.10	47.20 NC
GMW-22		+	21.20		0.10	
	10/04/2010	74.17		27.65		46.52
GMW-22	04/11/2011	74.17		26.45		47.72
GMW-22	10/10/2011	74.17		29.68		44.49
GMW-22 GMW-22	04/16/2012	74.17		31.15		43.02 46.19
_	10/15/2012	77.24		31.05		
GMW-22	04/08/2013	77.24		31.92	0.00	45.32
GMW-22	10/07/2013	77.24	31.65	34.28	2.63	NC NC
GMW-22	04/14/2014	77.24	32.30	35.59	3.29	NC NC
GMW-22	10/27/2014	77.24	32.41	35.74	3.33	NC NC
GMW-22	04/20/2015	77.24	32.84	36.64	3.80	NC NC
GMW-22	10/20/2015	77.24	34.92	36.10	1.18	NC NC
GMW-22	04/11/2016	77.24	35.50	38.59	3.09	NC
GMW-22	10/3/2016	77.24	07.40	37.70	0.05	39.54
GMW-23	05/28/1996	74.85	27.12	28.07	0.95	NC NC
GMW-23	11/20/1996	74.85	26.66	28.42	1.76	NC NC
GMW-23	07/01/1997	74.85	28.99	30.34	1.35	NC NC
GMW-23	12/31/1997	74.85	28.04	28.92	0.88	NC NC
GMW-23	05/01/1998	74.85	25.43	25.44	0.01	NC NC
GMW-23	05/04/1999	74.85	26.65	27.09	0.44	NC NC
GMW-23	08/09/1999	74.85	26.39	28.52	2.13	NC NC
GMW-23	11/15/1999	74.85	26.79	29.60	2.81	NC NC
GMW-23	05/15/2000	74.85	26.90	29.87	2.97	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-23	11/13/2000	74.85	27.00	31.18	4.18	NC
GMW-23	05/07/2001	74.85	28.62	28.63	0.01	NC NC
GMW-23	08/07/2001	74.85	25.54	26.07	0.53	NC NC
GMW-23	11/05/2001	74.85	25.85	26.32	0.47	NC NC
GMW-23	04/08/2002	74.85	26.40	26.81	0.41	NC
GMW-23	10/21/2002	74.85	28.07	28.94	0.87	NC
GMW-23	04/07/2003	74.85	26.67	26.70	0.03	NC
GMW-23	10/06/2003	74.85	26.35	27.32	0.97	NC
GMW-23	04/19/2004	74.85	26.94	26.95	0.01	NC
GMW-23	05/02/2005	74.85		23.34		51.51
GMW-23	10/31/2005	74.85	26.08	26.13	0.05	NC
GMW-23	05/01/2006	74.85		23.99		50.86
GMW-23	12/04/2006	74.85		24.82		50.03
GMW-23	04/30/2007	74.85		24.98		49.87
GMW-23	11/12/2007	74.85		25.41		49.44
GMW-23	04/14/2008	74.85		25.62		49.23
GMW-23	10/13/2008	74.85		26.21		48.64
GMW-23	04/20/2009	74.85		26.29		48.56
GMW-23	10/19/2009	74.85		27.51		47.34
GMW-23	05/24/2010	74.85		27.32		47.53
GMW-23	05/28/2010	74.85		27.27		47.58
GMW-23	10/04/2010	74.85		27.31		47.54
GMW-23	04/11/2011	74.85		26.40		48.45
GMW-23	10/10/2011	74.85		26.57		48.28
GMW-23	04/16/2012	74.85		28.73		46.12
GMW-23	10/15/2012	74.85		28.45		46.40
GMW-23	04/08/2013	74.85		29.31		45.54
GMW-23	10/07/2013	74.85		30.27		44.58
GMW-23	04/14/2014	74.85		30.23		44.62
GMW-23	10/27/2014	74.85		31.08		43.77
GMW-23	04/20/2015	74.85		31.94		42.91
GMW-23	10/19/2015	74.85	31.84	32.80	0.96	NC
		74.85				NC
GMW-23 GMW-23	04/11/2016 10/3/2016	74.85	34.10	34.12 36.15	0.02	38.70
GMW-24	08/07/2001	74.04	27.80	28.68	0.88	NC NC
GMW-24	05/02/2005	74.04	25.49	25.70	0.21	NC NC
GMW-24	10/31/2005	74.04	26.29	26.34	0.05	NC NC
GMW-24	05/01/2006	74.04	26.07	27.29	1.22	NC NC
GMW-24	12/04/2006	74.04	26.73	27.26	0.53	NC
GMW-24	04/30/2007	74.04		27.07		46.97
GMW-24	11/12/2007	74.04	27.46	27.50	0.04	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
10/17/2008				· · ·	NC
	+		_		NC NC
		20.30		1.34	44.13
					44.54
					45.83
			 		45.26
					NC
					NC
	1				NC
			1		NC
					NC
					NC
04/20/2015	77.48	33.82	36.29	2.47	NC
10/20/2015	77.48		35.44		42.04
04/11/2016	77.48		37.10		40.38
10/3/2016	77.48		39.31		38.17
05/28/1996	74.29	27.88	32.71	4.83	NC
11/20/1996	74.29	27.75	31.91	4.16	NC
07/01/1997	74.29	28.37	34.58	6.21	NC
12/31/1997	74.29	27.86	33.59	5.73	NC
05/01/1998	74.29	16.76	24.44	7.68	NC
05/04/1999	74.29	26.58	30.40	3.82	NC
08/09/1999	74.29	26.73	29.99	3.26	NC
11/15/1999	74.29	27.75	28.95	1.20	NC
05/15/2000	74.29	27.39	28.17	0.78	NC
11/13/2000	74.29	27.97	29.52	1.55	NC
05/07/2001	74.29	26.27	28.62	2.35	NC
08/07/2001	74.29	25.73	28.14	2.41	NC
			1		NC
	1				NC
	1				NC
					49.51
		25.41	1	0.06	NC
					48.42
					47.64
	1				47.69
					NC
					46.48
	1				46.03
	<u> </u>		+ +		45.94
	1				45.94
	04/11/2016 10/3/2016 05/28/1996 11/20/1996 07/01/1997 12/31/1997 05/01/1998 05/04/1999 08/09/1999 11/15/1999 05/15/2000	10/21/2008 74.04 04/21/2009 74.04 10/04/2010 74.04 04/11/2011 74.04 10/10/2011 74.04 04/16/2012 74.04 06/14/2013 77.48 10/07/2013 77.48 04/14/2014 77.48 07/03/2014 77.48 10/27/2014 77.48 10/20/2015 77.48 10/3/2016 77.48 10/3/2016 77.48 05/28/1996 74.29 11/20/1996 74.29 05/01/1997 74.29 05/01/1998 74.29 05/04/1999 74.29 11/15/1999 74.29 05/07/2001 74.29 05/07/2001 74.29 05/07/2001 74.29 05/02/2005 74.29 05/02/2005 74.29 05/01/2006 74.29 05/01/2006 74.29 05/01/2006 74.29 04/30/2007 74.29	10/21/2008 74.04 28.30 04/21/2009 74.04 10/04/2010 74.04 04/11/2011 74.04 10/10/2011 74.04 04/16/2012 74.04 30.31 06/14/2013 77.48 32.40 10/07/2013 77.48 31.61 04/14/2014 77.48 32.01 07/03/2014 77.48 32.91 04/20/2015 77.48 33.82 10/20/2015 77.48 33.82 10/20/2016 77.48 04/11/2016 77.48 05/28/1996 74.29 27.88 11/20/1996 74.29 27.86 05/01/1997 74.29 27.86 05/04/1999 74.29 26.58 08/09/1999 74.29 26.73 11/15/1999 74.29 27.39 11/15/2000 74.29 27.39 11/15/2001 74.29 27.3	10/21/2008 74.04 28.30 29.64 04/21/2009 74.04 29.91 10/04/2010 74.04 29.50 04/11/2011 74.04 28.21 10/10/2011 74.04 30.31 30.49 06/14/2013 77.48 32.40 33.35 10/07/2013 77.48 31.61 35.42 04/14/2014 77.48 32.01 37.74 07/03/2014 77.48 32.91 36.82 04/20/2015 77.48 33.82 36.29 10/20/2015 77.48 35.44 04/11/2016 77.48 37.10 10/3/2016 77.48 37.10 10/3/2016 77.48 39.31 05/28/1996 74.29 27.88 32.71 11/20/1996 74.29 27.86 33.59 05/01/1997 74.29 27.86 33.59 05/01/1998 74.29 27.86	10/21/2008 74.04 28.30 29.64 1.34 04/21/2009 74.04 29.91 10/04/2010 74.04 29.50 04/11/2011 74.04 28.21 04/16/2012 74.04 28.78 04/16/2013 77.48 30.31 30.49 0.18 06/14/2013 77.48 32.40 33.35 0.95 10/07/2013 77.48 31.61 35.42 3.81 04/14/2014 77.48 32.01 37.74 5.73 07/03/2014 77.48 32.91 36.82 3.91 04/20/2015 77.48 32.91 36.82 3.91 04/20/2015 77.48 35.44 04/11/2016 77.48 37.10 10/3/2016 77.48 37.10 10/3/2016 74.29 27.88 32.71 4.83

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				T
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-25	10/04/2010	74.29	(leet bic)	29.25	(leet)	45.04
				+		
GMW-25	04/11/2011	74.29		26.21		48.08
GMW-25	10/10/2011	74.29		30.02		44.27
GMW-25	04/16/2012	74.29		31.30		42.99
GMW-25	10/15/2012	78.14		31.88		46.26
GMW-25	04/08/2013	78.14		32.11		46.03
GMW-25	10/07/2013	78.14	33.10	33.23	0.13	NC
GMW-25	04/14/2014	78.14	33.00	37.40	4.40	NC
GMW-25	10/27/2014	78.14	33.95	34.78	0.83	NC
GMW-25	04/20/2015	78.14	34.47	35.19	0.72	NC
GMW-25	10/20/2015	78.14	35.38	35.40	0.02	NC
GMW-25	04/12/2016	78.14		37.15		40.99
GMW-25	10/3/2016	78.14		38.70		39.44
GMW-26	05/28/1996	74.45		27.20		47.25
GMW-26	11/20/1996	74.45		27.82		46.63
GMW-26	07/01/1997	74.45		29.03		45.42
GMW-26	12/31/1997	74.45		29.14		45.31
GMW-26	05/01/1998	74.45		25.45		49.00
GMW-26	05/04/1999	74.45		26.52		47.93
GMW-26	08/09/1999	74.45		26.55		47.90
GMW-26	11/15/1999	74.45		25.46		48.99
GMW-26	05/15/2000	74.45		26.54		47.91
GMW-26	11/13/2000	74.45		27.67		46.78
GMW-26	05/07/2001	74.45		25.84		48.61
GMW-26	11/05/2001	74.45		25.73		48.72
GMW-26	04/08/2002	74.45		26.40		48.05
GMW-26	10/21/2002	74.45		26.82		47.63
GMW-26	04/07/2003	74.45		25.28		49.17
GMW-26	07/07/2003	74.52		26.53		47.99
GMW-26	10/06/2003	74.52		26.30		48.22
GMW-26	01/11/2004	74.52		27.87		46.65
GMW-26	01/20/2004	74.52		26.83		47.69
GMW-26	04/19/2004	74.52		27.91		46.61
GMW-26	04/19/2004	74.52		27.32		47.20
GMW-26	06/07/2004	74.52		27.95		46.57
GMW-26	07/08/2004	74.52		27.72		46.80
GMW-26	05/02/2005	74.52		23.05		51.47
GMW-26	10/31/2005	74.52		23.62		50.90
GMW-26	05/22/2006	74.52		23.62		50.38
		+				
GMW-26	12/04/2006	74.52		24.69		49.83
GMW-26	04/30/2007	74.52		24.68		49.84

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1		I		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON #144 OO	44400007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-26	11/12/2007	74.52		25.06		49.46
GMW-26	04/14/2008	74.52		25.39		49.13
GMW-26	10/13/2008	74.52		25.92		48.60
GMW-26	04/20/2009	74.52		26.12		48.40
GMW-26	10/19/2009	74.52		26.96		47.56
GMW-26	05/24/2010	74.52		27.70		46.82
GMW-26	05/28/2010	74.52		27.47		47.05
GMW-26	10/04/2010	74.52		36.51		38.01
GMW-26	04/11/2011	74.52		27.22		47.30
GMW-26	10/10/2011	74.52		26.38		48.14
GMW-26	04/16/2012	74.52		27.86		46.66
GMW-26	10/15/2012	74.52		28.40		46.12
GMW-26	04/08/2013	74.52		28.98		45.54
GMW-26	10/07/2013	74.52		29.94		44.58
GMW-26	04/14/2014	74.52		30.28		44.24
GMW-26	10/27/2014	74.52		30.68		43.84
GMW-26	04/20/2015	74.52		31.18		43.34
GMW-26	10/19/2015	74.52		31.73		42.79
GMW-26	04/11/2016	74.52		35.55		38.97
GMW-26	10/3/2016	74.52		35.12		39.40
GMW-27	05/28/1996	74.39		27.00		47.39
GMW-27	12/31/1997	74.39	27.76	28.43	0.67	NC
GMW-27	05/01/1998	74.39		25.07		49.32
GMW-27	05/07/1999	74.39		26.44		47.95
GMW-27	08/09/1999	74.39		26.46		47.93
GMW-27	11/15/1999	74.39		26.71		47.68
GMW-27	05/15/2000	74.39		26.44		47.95
GMW-27	11/13/2000	74.39		27.52		46.87
GMW-27	05/07/2001	74.39		25.67		48.72
GMW-27	08/07/2001	74.39		25.25		49.14
GMW-27	11/05/2001	74.39		25.65		48.74
GMW-27	04/08/2002	74.39		28.79		45.60
GMW-27	10/21/2002	74.39		26.72		47.67
GMW-27	04/07/2003	74.39		26.13		48.26
GMW-27	10/06/2003	74.39		26.32		48.07
GMW-27	01/11/2004	74.41		27.82		46.59
GMW-27	01/27/2004	74.41		26.52		47.87
GMW-27	04/19/2004	74.41		27.62		46.79
		+		+		
GMW-27	04/27/2004	74.41		27.00		47.41
GMW-27 GMW-27	06/07/2004 07/08/2004	74.41 74.41		27.70 27.46		46.71 46.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-27	05/02/2005	74.41		24.01		50.40
GMW-27	10/31/2005	74.41		23.03		51.38
GMW-27	05/09/2006	74.41		23.51		50.90
GMW-27	12/04/2006	74.41		24.45		49.96
GMW-27	04/30/2007	74.41		24.52		49.89
GMW-27	11/12/2007	74.41		24.90		49.51
GMW-27	04/14/2008	74.41		25.21		49.20
GMW-27	08/11/2008	74.41		29.68		44.73
GMW-27	10/13/2008	74.41		25.81		48.60
GMW-27	11/21/2008	74.41		26.20		48.21
GMW-27	04/20/2009	74.41		26.04		48.37
GMW-27	10/19/2009	74.41		27.39		47.02
GMW-27	05/24/2010	74.41		26.90		47.51
GMW-27	05/28/2010	74.41		26.96		47.45
GMW-27	10/04/2010	74.41		26.95		47.46
GMW-27	01/10/2011	74.41		27.97		46.44
GMW-27	04/11/2011	74.41		26.33		48.08
GMW-27	10/10/2011	74.41		26.17		48.24
GMW-27	01/09/2012	74.41		26.84		47.57
GMW-27	04/16/2012	74.41		27.85		46.56
GMW-27	07/09/2012	74.41		27.94		46.47
GMW-27	10/15/2012	74.41		29.05		45.36
GMW-27	01/14/2013	74.41		29.07		45.34
GMW-27	04/08/2013	74.41		28.96		45.45
GMW-27	10/07/2013	74.41		29.45		44.96
GMW-27	04/14/2014	74.41		30.19		44.22
GMW-27	10/27/2014	74.41		30.51		43.90
GMW-27			ed in Decembe	er 2014 prior to re		
GMW-28	05/28/1996	74.62		27.22		47.40
GMW-28	11/20/1996	74.62		27.86		46.76
GMW-28	07/01/1997	74.62		29.03		45.59
GMW-28	12/31/1997	74.62	28.00	28.65	0.65	NC
GMW-28	05/01/1998	74.62	24.77	25.42	0.65	NC
GMW-28	08/09/1999	74.62		26.64		47.98
GMW-28	11/15/1999	74.62		26.80		47.82
GMW-28	11/13/2000	74.62		27.50		47.12
GMW-28	08/07/2001	74.62		25.47		49.15
GMW-28	11/05/2001	74.62		25.85		48.77
GMW-28	04/08/2002	74.62		26.21		48.41
GMW-28	10/21/2002	74.62		26.96		47.66
GMW-28	04/07/2003	74.62		26.35		48.27

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>				1 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-28	07/07/2003	74.68		26.43		48.25
GMW-28	10/06/2003	74.62		26.31		48.31
GMW-28	01/11/2004	74.68		27.68		47.00
GMW-28	01/20/2004	74.68		26.85		47.83
GMW-28	04/19/2004	74.68		27.58		47.10
GMW-28	04/27/2004	74.68		27.13		47.55
GMW-28	06/07/2004	74.68		27.70		46.98
GMW-28	07/08/2004	74.68		27.59		47.09
GMW-28	05/02/2005	74.68		23.71		50.97
GMW-28	10/31/2005	74.68		25.16		49.52
GMW-28	11/12/2007	74.62		25.16		49.46
GMW-28	04/14/2008	74.62		25.50		49.12
GMW-28	11/04/2008	74.62		26.61		48.01
GMW-28	04/20/2009	74.68		26.18		48.50
GMW-28	10/19/2009	74.68		27.21		47.47
GMW-28	05/24/2010	74.68		27.11		47.57
GMW-28	05/28/2010	74.68		27.12		47.56
GMW-28	10/04/2010	74.68		27.11		47.57
GMW-28	04/11/2011	74.68		29.32		45.36
GMW-28	10/10/2011	74.68		26.41		48.27
GMW-28	04/16/2012	74.68		28.32		46.36
GMW-28	10/15/2012	74.68		28.50		46.18
GMW-28	04/08/2013	74.68		28.99		45.69
GMW-28	10/07/2013	74.68		29.46		45.22
GMW-28	04/14/2014	74.68		30.23		44.45
GMW-28	10/27/2014	74.68		31.16		43.52
GMW-28	10/27/2014	74.68		30.60		44.08
GMW-28	04/20/2015	74.68		31.23		43.45
GMW-28	10/19/2015	74.68		32.00		42.68
GMW-28	04/11/2016	74.68		34.10		40.58
GMW-28	10/3/2016	74.68		35.81		38.87
GMW-29	11/20/1996	74.86		30.60		44.26
GMW-29	07/01/1997	74.86		29.58		45.28
GMW-29	12/31/1997	74.86	30.01	31.70	0.70	45.26 NC
GMW-29			30.91	28.43	0.79	NC NC
	05/01/1998	74.86	27.81		0.62	
GMW-29	05/04/1999	74.86		31.35		43.51
GMW-29	08/09/1999	74.86		28.90		45.96
GMW-29	11/13/2000	74.86		31.30		43.56
GMW-29	11/13/2000	74.86		28.51		46.35
GMW-29	05/07/2001	74.86		28.64		46.22
GMW-29	05/10/2001	74.86		28.43		46.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation
CMM/ 20	00/07/2004	(feet MSL)	(feet btc)		(feet)	(feet MSL)
GMW-29	08/07/2001	74.86		28.25		46.61
GMW-29	11/05/2001	74.86		28.46		46.40
GMW-29	04/08/2002	74.86		26.54		48.32
GMW-29	10/21/2002	74.86		26.98		47.88
GMW-29	04/07/2003	74.86		29.20		45.66
GMW-29	07/07/2003	77.57		29.09		48.48
GMW-29	10/06/2003	74.86		29.00		45.86
GMW-29	01/11/2004	77.57		27.47		50.10
GMW-29	01/20/2004	77.57		29.46		48.11
GMW-29	04/19/2004	77.57		29.94		47.63
GMW-29	04/27/2004	77.57		29.80		47.77
GMW-29	06/07/2004	77.57		29.93		47.64
GMW-29	07/08/2004	77.57		30.06		47.51
GMW-29	05/02/2005	77.57		26.63		50.94
GMW-29	10/31/2005	77.57		25.42		52.15
GMW-29	05/01/2006	77.57		26.64		50.93
GMW-29	12/04/2006	77.57		27.34		50.23
GMW-29	04/30/2007	77.57		27.48		50.09
GMW-29	11/12/2007	77.57		27.95		49.62
GMW-29	04/14/2008	77.57		28.31		49.26
GMW-29	04/14/2008	77.57		29.46		48.11
GMW-29	10/13/2008	77.57		28.72		48.85
GMW-29	04/20/2009	77.57		28.86		48.71
GMW-29	10/19/2009	77.57		29.70		47.87
GMW-29	05/24/2010	77.57		29.92		47.65
GMW-29	05/28/2010	77.57		29.88		47.69
GMW-29	10/04/2010	77.57		27.30		50.27
GMW-29	04/11/2011	77.57		29.52		48.05
GMW-29	10/10/2011	77.57		26.50		51.07
GMW-29	04/16/2012	77.57		28.14		49.43
GMW-29	10/15/2012	77.57		28.41		49.16
GMW-29	04/08/2013	77.57		28.95		48.62
GMW-29	10/07/2013	77.57		30.30		47.27
GMW-29	04/14/2014	77.57		31.62		45.95
GMW-29	10/27/2014	77.57		32.42		45.95
GMW-29	04/20/2015	77.57		32.62		44.95
GMW-29	10/27/2015	77.57	31.86	35.37	3.51	44.95 NC
GMW-29	04/11/2016	77.57	33.55	34.95	1.40	NC NC
		+				
GMW-29	10/3/2016	77.57	35.75	36.00	0.25	NC NC
GMW-30	05/28/1996	74.91	26.69	29.41	2.72	NC NC
GMW-30	11/20/1996	74.91	27.51	29.60	2.09	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
0144400	07/04/4007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-30	07/01/1997	74.91	28.96	30.32	1.36	NC
GMW-30	12/31/1997	74.91	27.80	29.74	1.94	NC
GMW-30	05/01/1998	74.91	19.11	24.27	5.16	NC
GMW-30	05/04/1999	74.91	25.45	31.56	6.11	NC
GMW-30	08/09/1999	74.91	25.76	30.10	4.34	NC
GMW-30	11/15/1999	74.91	27.20	27.57	0.37	NC
GMW-30	05/15/2000	74.91	27.27	27.60	0.33	NC
GMW-30	11/13/2000	74.91	26.55	26.59	0.04	NC
GMW-30	05/07/2001	74.91		28.47		46.44
GMW-30	08/07/2001	74.91		25.60		49.31
GMW-30	11/05/2001	74.91	25.96	26.00	0.04	NC
GMW-30	04/08/2002	74.91	26.35	26.53	0.18	NC
GMW-30	10/21/2002	74.91	27.32	27.51	0.19	NC
GMW-30	04/07/2003	74.91	26.75	26.77	0.02	NC
GMW-30	10/06/2003	74.91	26.45	26.51	0.06	NC
GMW-30	01/11/2004	74.91	27.91	27.97	0.06	NC
GMW-30	04/19/2004	74.91	27.49	27.60	0.11	NC
GMW-30	05/10/2005	74.91		23.63		51.28
GMW-30	10/31/2005	74.91		26.71		48.20
GMW-30	05/01/2006	74.91		23.91		51.00
GMW-30	12/04/2006	74.91		24.73		50.18
GMW-30	04/30/2007	74.91		24.99		49.92
GMW-30	08/28/2007	74.91		24.65		50.26
GMW-30	11/12/2007	74.91		25.38		49.53
GMW-30	04/14/2008	74.91		25.65		49.26
GMW-30	11/04/2008	74.91		26.52		48.39
GMW-30	04/20/2009	74.91		26.30		48.61
GMW-30	10/19/2009	74.91		27.40		47.51
GMW-30	05/24/2010	74.91		27.32		47.59
GMW-30	05/28/2010	74.91		27.18		47.73
GMW-30	10/04/2010	74.91		27.30		47.61
GMW-30	01/10/2011	74.91		28.61		46.30
GMW-30	04/11/2011	74.91		26.43		48.48
GMW-30	10/10/2011	74.91		26.55		48.36
GMW-30	01/09/2012	74.91		27.12		47.79
GMW-30	04/16/2012	74.91		29.09		45.82
GMW-30	07/09/2012	74.91		28.43		46.48
GMW-30	10/15/2012	74.91		28.40		46.51
GMW-30	01/14/2013	74.91		29.59		45.32
GMW-30	04/08/2013	74.91		29.31		45.60
GMW-30	10/07/2013	74.91		30.32		44.59

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>	<u> </u>	<u> </u>		T T		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-30	04/14/2014	74.91		30.60		44.31
GMW-30	10/27/2014	74.91	30.12	33.74	3.62	NC
GMW-30	04/20/2015	74.91	31.01	32.77	1.76	NC NC
GMW-30	10/19/2015	74.91	31.80	32.92	1.12	NC
GMW-30	04/11/2016	74.91	51.00	34.01	1.12	40.90
GMW-30	10/3/2016	74.91		36.30		38.61
GMW-31	05/28/1996	76.50		29.31		47.19
GMW-31	11/20/1996	76.50		30.18		46.32
GMW-31	07/01/1997	76.50		30.11		46.39
GMW-31	12/31/1997	76.50		30.03		46.47
GMW-31	05/01/1998	76.50		27.26		49.24
GMW-31	05/25/1999	76.50		28.07		48.43
GMW-31	05/15/2000	76.50		28.70		47.80
GMW-31	11/13/2000	76.50		28.33		48.17
GMW-31	05/07/2001	76.50		27.48		49.02
GMW-31	04/08/2002	76.50		28.94		47.56
GMW-31	10/21/2002	76.50		28.72		47.78
GMW-31	04/07/2003	76.50		28.44		48.06
GMW-31	10/06/2003	76.50		28.48		48.02
GMW-31	04/19/2004	76.50		29.99		46.51
GMW-31	11/01/2004	76.50		29.16		47.34
GMW-31	05/02/2005	76.50		24.57		51.93
GMW-31	05/01/2006	76.50		26.10		50.40
GMW-31	08/26/2006	76.50		26.49		50.01
GMW-31	12/01/2006	76.50		26.84		49.66
GMW-31	04/30/2007	76.50		27.34		49.16
GMW-31	11/12/2007	76.50		27.91		48.59
GMW-31	04/11/2008	76.50		27.57		48.93
GMW-31	07/24/2008	76.50		27.91		48.59
GMW-31	10/14/2008	76.50		28.57		47.93
GMW-31	02/10/2009	76.50		28.87		47.63
GMW-31	04/20/2009	76.50		28.41		48.09
GMW-31	10/19/2009	76.50		29.28		47.22
GMW-31	04/08/2010	76.50		28.91		47.59
GMW-31	04/12/2010	76.50		28.71		47.79
GMW-31	01/07/2011	76.50		29.40		47.10
GMW-31	04/08/2011	76.50		28.13		48.37
GMW-31	07/08/2011	76.50		28.34		48.16
GMW-31	10/06/2011	76.50		28.87		47.63
GMW-31	04/12/2012	76.50		30.04		46.46
GMW-31	04/16/2012	76.50		29.81		46.69

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01111	0.4.4.4.100.4.0	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-31	01/11/2013	76.50		31.35		45.15
GMW-31	04/03/2013	76.50		31.26		45.24
GMW-31	04/08/2013	76.50		31.08		45.42
GMW-31	10/02/2013	76.50		31.98		44.52
GMW-31	04/07/2014	76.50		32.76		43.74
GMW-31	04/14/2014	76.50		32.36		44.14
GMW-31	10/27/2014	76.50		32.88		43.62
GMW-31	04/20/2015	76.50		33.21		43.29
GMW-32	05/28/1996	74.62		26.78		47.84
GMW-32	11/20/1996	74.62		27.79		46.83
GMW-32	07/01/1997	74.62		26.99		47.63
GMW-32	12/31/1997	74.62		27.38		47.24
GMW-32	05/01/1998	74.62		24.23		50.39
GMW-32	05/25/1999	74.62		25.52		49.10
GMW-32	05/15/2000	74.62		26.16		48.46
GMW-32	11/13/2000	74.62		26.73		47.89
GMW-32	05/07/2001	74.62		24.93		49.69
GMW-32	02/01/2002	74.62		25.35		49.27
GMW-32	04/08/2002	74.62		26.52		48.10
GMW-32	10/21/2002	74.62		27.09		47.53
GMW-32	04/07/2003	74.62		25.15		49.47
GMW-32	10/06/2003	74.62		25.89		48.73
GMW-32	04/19/2004	74.62		26.78		47.84
GMW-32	11/01/2004	74.62		27.30		47.32
GMW-32	05/02/2005	74.62		20.42		54.20
GMW-32	03/06/2006	74.62		23.10		51.52
GMW-32	05/01/2006	74.62		22.98		51.64
GMW-32	08/26/2006	74.62		23.64		50.98
GMW-32	12/01/2006	74.62		24.50		50.12
GMW-32	03/21/2007	74.62		24.51		50.11
GMW-32	04/30/2007	74.62		25.03		49.59
GMW-32	08/28/2007	74.62		24.78		49.84
GMW-32	11/12/2007	74.62		25.62		49.00
GMW-32	02/05/2008	74.62		25.93		48.69
GMW-32	04/14/2008	74.62		25.93		49.51
GMW-32	07/24/2008	74.62		25.52		49.10
GMW-32	10/14/2008	74.62		26.35		48.27
GMW-32	02/10/2009	74.62		26.15		48.47
GMW-32	04/20/2009	74.62		27.28		47.34
GMW-32	07/16/2009	74.62		26.71		47.91
GMW-32	10/19/2009	74.62		27.24		47.38

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-32	04/08/2010	74.62		26.61		48.01
GMW-32	04/12/2010	74.62		26.82		47.80
GMW-32	04/07/2011	74.62		25.72		48.90
GMW-32	10/06/2011	74.62		26.71		47.91
GMW-32	04/12/2012	74.62		27.94		46.68
GMW-32	04/19/2012	74.62		27.83		46.79
GMW-32	01/10/2013	74.62		29.31		45.31
GMW-32	04/03/2013	74.62		29.34		45.28
GMW-32	04/08/2013	74.62		29.32		45.30
GMW-32	10/02/2013	74.62		29.98		44.64
GMW-32	04/09/2014	74.62		30.60		44.02
GMW-32	04/16/2014	74.62		30.30		44.32
GMW-32	10/27/2014	74.62		30.72		43.90
GMW-32		ell decommission	ed in Decembe	r 2014 prior to re	medial excavati	
GMW-33	05/28/1996	74.88		27.02		47.86
GMW-33	11/20/1996	74.88		27.97		46.91
GMW-33	07/01/1997	74.88		26.84		48.04
GMW-33	12/31/1997	74.88		27.52		47.36
GMW-33	05/01/1998	74.88		24.08		50.80
GMW-33	05/25/1999	74.88		25.62		49.26
GMW-33	05/15/2000	74.88		26.50		48.38
GMW-33	11/13/2000	74.88		26.90		47.98
GMW-33	05/07/2001	74.88		25.18		49.70
GMW-33	02/01/2002	74.88		25.32		49.76
GMW-33	04/08/2002	74.88		26.55		48.33
GMW-33	10/21/2002	74.88		27.15		47.73
		+ +				
GMW-33	04/07/2003	74.88		26.22		48.66
GMW-33	10/06/2003	74.88		26.06		48.82
GMW-33	04/19/2004	74.88		28.89		45.99
GMW-33	11/01/2004	74.88		27.47		47.41
GMW-33	05/02/2005	74.88		21.50		53.38
GMW-33	03/06/2006	74.88		23.94		50.94
GMW-33	05/01/2006	74.88		23.90		50.98
GMW-33	08/26/2006	74.88		24.38		50.50
GMW-33	12/01/2006	74.88		24.90		49.98
GMW-33	03/21/2007	74.88		25.61		49.27
GMW-33	04/30/2007	74.88		25.44		49.44
GMW-33	08/28/2007	74.88		25.94		48.94
GMW-33	11/12/2007	74.88		25.97		48.91
GMW-33	02/05/2008	74.88		26.87		48.01
GMW-33	04/11/2008	74.88		25.58		49.30

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-33	07/24/2008	74.88		26.11		48.77
GMW-33	10/13/2008	74.88		26.93		47.95
GMW-33	02/10/2009	74.88		27.05		47.83
GMW-33	07/16/2009	74.88		27.41		47.47
GMW-33	04/07/2010	74.88		26.82		48.06
GMW-33	10/01/2010	74.88		27.43		47.45
GMW-34	05/28/1996	75.25	26.83	30.96	4.13	NC
GMW-34	11/20/1996	75.25	27.69	31.87	4.18	NC
GMW-34	07/01/1997	75.25	28.10	32.06	3.96	NC
GMW-34	12/31/1997	75.25	27.88	31.81	3.93	NC
GMW-34	05/01/1998	75.25	25.66	25.92	0.26	NC
GMW-34	05/25/1999	75.25		26.80		48.45
GMW-34	05/15/2000	75.25		27.46		47.79
GMW-34	11/13/2000	75.25		27.05		48.20
GMW-34	05/07/2001	75.25		26.12		49.13
GMW-34	04/08/2002	75.25		27.26		47.99
GMW-34	10/21/2002	75.25		27.64		47.61
GMW-34	04/07/2003	75.25		26.98		48.27
GMW-34	10/06/2003	75.25		27.03		48.22
GMW-34	04/19/2004	75.25		28.53		46.72
GMW-34	11/01/2004	75.25		28.26		46.99
GMW-34	05/02/2005	75.25		22.79		52.46
GMW-34	05/01/2006	75.25		24.50		50.75
GMW-34	12/01/2006	75.25		25.56		49.69
GMW-34	04/30/2007	75.25		25.88		49.37
GMW-34	10/01/2010	75.25		27.85		47.40
GMW-35	05/28/1996	76.12	27.54	32.06	4.52	NC
GMW-35	11/20/1996	76.12	28.69	33.01	4.32	NC
GMW-35	07/01/1997	76.12	27.75	31.38	3.63	NC
GMW-35	12/31/1997	76.12	28.10	32.18	4.08	NC
GMW-35	05/01/1998	76.12	24.97	25.28	0.31	NC
GMW-35	05/25/1999	76.12	26.93	27.65	0.72	NC
GMW-35	05/15/2000	76.12	27.67	28.26	0.59	NC
GMW-35	11/13/2000	76.12		29.38		46.74
GMW-35	05/07/2001	76.12		26.80		49.32
GMW-35	04/08/2002	76.12		28.39		47.73
GMW-35	09/19/2002	76.12	28.56	28.95	0.39	NC
GMW-35	10/21/2002	76.12		29.03		47.09
GMW-35	04/07/2003	76.12	28.10	28.15	0.05	NC
GMW-35	10/06/2003	76.12		27.58		48.54
GMW-35	04/19/2004	76.12	28.46	28.49	0.03	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		<u> </u>		<u> </u>		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-35	11/01/2004					NC
		76.12	28.71	28.78	0.07	
GMW-35	02/28/2005	76.12		24.73		51.39
GMW-35	05/02/2005	76.12		23.26		52.86
GMW-35	03/06/2006	76.12		25.14		50.98
GMW-35	05/01/2006	76.12		25.37		50.75
GMW-35	08/26/2006	76.12		25.83		50.29
GMW-35	12/01/2006	76.12		26.27		49.85
GMW-35	03/21/2007	76.12		26.72		49.40
GMW-35	04/30/2007	76.12		26.74		49.38
GMW-35	08/28/2007	76.12		27.02		49.10
GMW-35	11/12/2007	76.12		27.32		48.80
GMW-35	02/05/2008	76.12		27.98		48.14
GMW-35	04/14/2008	76.12		26.85		49.27
GMW-35	10/13/2008	76.12	28.28	28.31	0.03	NC
GMW-35	02/10/2009	76.12		27.70		48.42
GMW-35	04/20/2009	76.12		28.94		47.18
GMW-35	07/17/2009	76.12		28.12		48.00
GMW-35	04/08/2010	76.12		27.07		49.05
GMW-35	04/12/2010	76.12		28.41		47.71
GMW-35	10/01/2010	76.12		28.73		47.39
GMW-35	01/08/2011	76.12	29.03	29.04	0.01	NC
GMW-35	04/12/2012	76.12	29.44	29.51	0.07	NC
GMW-35	04/20/2012	76.12		29.38		46.74
GMW-35	04/05/2013	76.12	30.61	30.83	0.22	NC
GMW-35	04/08/2013	76.12	30.58	30.80	0.22	NC
GMW-35	10/02/2013	76.12	31.38	31.71	0.33	NC
GMW-35	04/09/2014	76.12	31.95	31.97	0.02	NC
GMW-35	04/16/2014	76.12	31.95	32.15	0.20	NC
GMW-35	10/27/2014	76.12	32.16	32.18	0.02	NC
GMW-35	W	ell decommission	ed in Decembe	r 2014 prior to re	medial excavati	on
GMW-36	05/28/1996	74.53	25.71	26.88	1.17	NC
GMW-36	11/20/1996	74.53	26.56	26.82	0.26	NC
GMW-36	07/01/1997	74.53	25.09	25.71	0.62	NC
GMW-36	12/31/1997	74.53		26.74		47.79
GMW-36	05/04/1999	74.53		23.68		50.85
GMW-36	08/09/1999	74.53		24.80		49.73
GMW-36	11/15/1999	74.53		25.48		49.05
GMW-36	05/15/2000	74.53		25.01		49.52
GMW-36	11/13/2000	74.53		25.96		48.57
GMW-36	02/05/2001	74.53		25.41		49.12
GMW-36	05/07/2001	74.53		23.37		51.16

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-36	05/10/2001	74.53		23.43		51.10
GMW-36	09/18/2001	74.53		23.95		50.58
GMW-36	11/05/2001	74.53		24.24		50.29
GMW-36	01/29/2002	74.53		24.60		49.93
GMW-36	04/08/2002	74.53		24.92		49.61
GMW-36	07/29/2002	74.53		25.92		48.61
GMW-36	10/21/2002	74.53	25.54	29.46	3.92	NC
GMW-36	11/04/2002	74.53	25.55	29.05	3.50	NC
GMW-36	01/27/2003	74.53	26.75	28.02	1.27	NC
GMW-36	04/07/2003	74.53	26.63	27.47	0.84	NC
GMW-36	05/02/2005	74.53	20.03	21.23	1.20	NC
GMW-36	10/31/2005	74.53	22.69	22.73	0.04	NC
GMW-36	05/01/2006	74.53	22.80	22.91	0.11	NC
GMW-36	12/04/2006	74.53		23.86		50.67
GMW-36	03/12/2007	74.53		24.29		50.24
GMW-36	04/30/2007	74.53		24.40		50.13
GMW-36	08/28/2007	74.53		24.31		50.22
GMW-36	11/12/2007	74.53	24.85	24.86	0.01	NC
GMW-36	02/19/2008	74.53		25.50		49.03
GMW-36	04/14/2008	74.53		24.61		49.92
GMW-36	08/08/2008	74.53	26.14	26.20	0.06	NC
GMW-36	10/16/2008	74.77	26.09	26.11	0.02	NC
GMW-36	04/20/2009	74.53	25.59	25.63	0.04	NC
GMW-36	07/20/2009	74.53		25.90		48.63
GMW-36	10/19/2009	74.53	26.45	26.56	0.11	NC
GMW-36	03/15/2010	74.53		26.80		47.73
GMW-36	04/16/2010	74.53		26.90		47.63
GMW-36	05/24/2010	74.53	25.90	25.96	0.06	NC
GMW-36	05/28/2010	74.53	25.88	25.94	0.06	NC
GMW-36	06/22/2010	74.53	25.91	25.94	0.03	NC
GMW-36	10/04/2010	74.53		26.90		47.63
GMW-36	11/23/2010	74.53	27.10	27.35	0.25	NC
GMW-36	12/22/2010	74.53	26.84	28.35	1.51	NC
GMW-36	01/10/2011	74.53	27.70	29.10	1.40	NC
GMW-36	04/12/2011	74.53	25.05	26.98	1.93	NC
GMW-36	10/10/2011	74.53		25.96		48.57
GMW-36	12/21/2011	74.53		28.17		46.36
GMW-36	01/09/2012	74.53		27.26		47.27
GMW-36	02/23/2012	74.53		27.85		46.68
GMW-36	04/16/2012	74.53		27.34		47.19
GMW-36	06/15/2012	76.66		33.27		43.39

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-36	07/09/2012	76.66		33.71		42.95
GMW-36	10/15/2012	76.66		32.11		44.55
GMW-36	11/29/2012	76.66	31.68	33.93	2.25	NC
GMW-36	12/26/2012	76.66	30.36	34.86	4.50	NC
GMW-36	01/14/2013	76.66	30.42	34.12	3.70	NC
GMW-36	04/10/2013	76.66	29.75	32.42	2.67	NC
GMW-36	10/07/2013	76.66	30.72	34.65	3.93	NC
GMW-36	04/25/2014	76.66	31.12	34.71	3.59	NC
GMW-36	10/27/2014	76.66	31.79	33.02	1.23	NC
GMW-36	04/20/2015	76.66	32.20	33.64	1.44	NC
GMW-36	10/21/2015	76.66	33.16	33.55	0.39	NC
GMW-36	04/12/2016	76.66	34.03	34.30	0.27	NC
GMW-36	10/3/2016	76.66	34.65	35.05	0.40	NC
GMW-37	11/20/1996	77.32		29.76		47.56
GMW-37	07/01/1997	77.32		28.37		48.95
GMW-37	12/31/1997	77.32		28.71		48.61
GMW-37	05/03/1999	77.32		27.76		49.56
GMW-37	08/09/1999	77.32		28.10		49.22
GMW-37	11/15/1999	77.32		28.57		48.75
GMW-37	05/15/2000	77.32		28.19		49.13
GMW-37	11/13/2000	77.32		28.89		48.43
GMW-37	02/05/2001	77.32		28.65		48.67
GMW-37	05/07/2001	77.32		26.94		50.38
GMW-37	09/18/2001	77.32		27.43		49.89
GMW-37	11/05/2001	77.32		27.56		49.76
GMW-37	01/29/2002	77.32		27.89		49.43
GMW-37	04/08/2002	77.32		27.94		49.38
GMW-37	10/21/2002	77.32		29.11		48.21
GMW-37	01/27/2003	77.32		28.74		48.58
GMW-37	04/07/2003	77.32		28.30		49.02
GMW-37	07/31/2003	77.32		28.02		49.30
GMW-37	10/06/2003	77.32		27.92		49.40
GMW-37	01/11/2004	77.32		29.62		47.70
GMW-37	01/27/2004	77.32		28.81		48.51
GMW-37	04/19/2004	77.32		28.91		48.41
GMW-37	07/19/2004	77.32		28.91		48.41
GMW-37	02/01/2005	77.32		27.77		49.55
GMW-37	05/02/2005	77.32		23.34		53.98
GMW-37	08/01/2005	77.32		24.61		52.71
GMW-37	10/31/2005	77.32		25.35		51.97
GMW-37	02/27/2006	77.32		25.81		51.51

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						•
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ONANA 07	05/04/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-37	05/01/2006	77.32		25.86		51.46
GMW-37	09/18/2006	77.32		24.62		52.70
GMW-37	12/04/2006	77.32		26.83		50.49
GMW-37	04/30/2007	77.32		27.18		50.14
GMW-37	11/12/2007	77.32		27.61		49.71
GMW-37	04/14/2008	77.32		27.60		49.72
GMW-37	10/13/2008	77.32		28.56		48.76
GMW-37	04/20/2009	77.32		28.54		48.78
GMW-37	10/19/2009	77.32		29.47		47.85
GMW-37	05/24/2010	77.32		29.25		48.07
GMW-37	05/28/2010	77.32		29.20		48.12
GMW-37	10/04/2010	77.32		29.50		47.82
GMW-37	01/10/2011	77.32		29.90		47.42
GMW-37	04/11/2011	77.32		28.31		49.01
GMW-37	10/10/2011	77.32		29.00		48.32
GMW-37	01/09/2012	77.32		29.72		47.60
GMW-37	04/16/2012	77.32		30.10		47.22
GMW-37	07/09/2012	77.32		30.86		46.46
GMW-37	10/15/2012	77.32		30.90		46.42
GMW-37	01/14/2013	77.32		31.79		45.53
GMW-37	04/08/2013	77.32		31.69		45.63
GMW-37	10/07/2013	77.32		32.51		44.81
GMW-37	04/14/2014	77.32		32.55		44.77
GMW-37	10/27/2014	77.32		32.57		44.75
GMW-37	04/20/2015	77.32		33.51		43.81
GMW-37	10/19/2015	77.32		34.11		43.21
GMW-37	04/11/2016	77.32		35.20		42.12
GMW-37	10/3/2016	77.32		35.10		42.22
GMW-38	05/28/1996	75.47		27.15		48.32
GMW-38	11/20/1996	75.47		28.09		47.38
GMW-38	05/03/1999	75.47		26.08		49.39
GMW-38	08/09/1999	75.47		26.42		49.05
GMW-38	11/15/1999	75.47		26.97		48.50
GMW-38	05/15/2000	75.47		26.53		48.94
GMW-38	11/13/2000	75.47		27.24		48.23
GMW-38	05/07/2001	75.47		25.14		50.33
GMW-38	11/05/2001	75.47		25.84		49.63
				+		
GMW-38	02/01/2002	75.47		25.91		49.56
GMW-38	04/08/2002	75.47		26.52		48.95
GMW-38	10/21/2002	75.47		27.39		48.08
GMW-38	01/27/2003	75.47		27.05		48.42

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
CNAVA/ 20	04/07/2002	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-38	04/07/2003	75.47		26.47		49.00
GMW-38	07/31/2003	75.47		26.26		49.21
GMW-38	10/06/2003	75.47		26.51		48.96
GMW-38	01/11/2004	75.47		27.91		47.56
GMW-38	01/27/2004	75.47		27.04		48.43
GMW-38	04/19/2004	75.47		27.15		48.32
GMW-38	07/19/2004	75.47		27.26		48.21
GMW-38	02/01/2005	75.47		25.99		49.48
GMW-38	05/02/2005	75.47		28.53		46.94
GMW-38	08/01/2005	75.47		22.91		52.56
GMW-38	10/31/2005	75.47		23.65		51.82
GMW-38	02/27/2006	75.47		24.04		51.43
GMW-38	05/01/2006	75.47		24.09		51.38
GMW-38	09/18/2006	75.47		24.85		50.62
GMW-38	12/04/2006	75.47		25.07		50.40
GMW-38	03/12/2007	75.47		25.48		49.99
GMW-38	04/30/2007	75.47		25.42		50.05
GMW-38	08/28/2007	75.47		25.29		50.18
GMW-38	11/12/2007	75.47		25.89		49.58
GMW-38	04/14/2008	75.47		25.81		49.66
GMW-38	10/13/2008	75.47		26.72		48.75
GMW-38	04/20/2009	75.47		27.05		48.42
GMW-38	07/20/2009	75.47		27.21		48.26
GMW-38	10/19/2009	75.47		27.78		47.69
GMW-38	03/15/2010	75.47		27.92		47.55
GMW-38	05/24/2010	75.47		27.50		47.97
GMW-38	05/28/2010	75.47		27.40		48.07
GMW-38	10/04/2010	75.47		27.77		47.70
GMW-38	01/10/2011	75.47		28.00		47.47
GMW-38	04/11/2011	75.47		26.49		48.98
GMW-38	07/11/2011	75.47		26.83		48.64
GMW-38	10/10/2011	75.47		27.28		48.19
GMW-38	01/09/2012	75.47		27.90		47.57
GMW-38	04/16/2012	75.47		28.32		47.15
GMW-38	07/09/2012	75.47		28.97		46.50
GMW-38	10/15/2012	75.47		29.75		45.72
GMW-38	01/14/2013	75.47		30.18		45.29
GMW-38	04/08/2013	75.47		30.07		45.40
GMW-38	10/07/2013	75.47		30.31		45.16
GMW-38	04/14/2014	75.47		30.76		44.71
GMW-38	10/27/2014	75.47		31.16		44.31

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON414/ 00	04/00/0045	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-38	04/20/2015	75.47		31.59		43.88
GMW-38	10/19/2015	75.47		32.33		43.14
GMW-38	04/11/2016	75.47		33.45		42.02
GMW-38	10/3/2016	75.47		34.10		41.37
GMW-39	05/28/1996	75.05		26.67		48.38
GMW-39	11/20/1996	75.05		27.68		47.37
GMW-39	05/03/1999	75.05		25.50		49.55
GMW-39	08/09/1999	75.05		25.99		49.06
GMW-39	11/15/1999	75.05		26.52		48.53
GMW-39	05/15/2000	75.05		25.95		49.10
GMW-39	11/13/2000	75.05		26.88		48.17
GMW-39	05/07/2001	75.05		24.64		50.41
GMW-39	11/05/2001	75.05		25.28		49.77
GMW-39	02/01/2002	75.05		25.20		49.85
GMW-39	04/08/2002	75.05		26.11		48.94
GMW-39	10/21/2002	75.05		27.19		47.86
GMW-39	01/27/2003	75.05		26.67		48.38
GMW-39	04/07/2003	75.05		26.05		49.00
GMW-39	07/31/2003	75.05		25.79		49.26
GMW-39	10/06/2003	75.05		26.04		49.01
GMW-39	01/11/2004	75.05		27.54		47.51
GMW-39	01/27/2004	75.05		26.63		48.42
GMW-39	04/19/2004	75.05		26.04		49.01
GMW-39	07/19/2004	75.05		26.78		48.27
GMW-39	02/01/2005	75.05		25.41		49.64
GMW-39	05/02/2005	75.05		20.34		54.71
GMW-39	08/01/2005	75.05		22.23		52.82
GMW-39	10/31/2005	75.05		22.90		52.15
GMW-39	02/27/2006	75.05		23.48		51.57
GMW-39	05/01/2006	75.05		23.60		51.45
GMW-39	09/18/2006	75.05		24.37		50.68
GMW-39	12/04/2006	75.05		24.64		50.41
GMW-39	03/12/2007	75.05		25.12		49.93
GMW-39	04/30/2007	75.05		25.12		49.93
GMW-39	08/28/2007	75.05		25.12		49.90
GMW-39	11/12/2007	75.05 75.05		25.62		49.43
GMW-39	02/19/2008	75.05		25.91		49.43
				+		
GMW-39	04/14/2008	75.05		25.44		49.61
GMW-39	08/11/2008	75.05		26.21		48.84
GMW-39	10/13/2008	75.05		26.51		48.54
GMW-39	04/20/2009	75.05		26.43		48.62

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				T 1		
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01444	07/00/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-39	07/20/2009	75.05		26.85		48.20
GMW-39	10/19/2009	75.05		27.58		47.47
GMW-39	03/15/2010	75.05		27.41		47.64
GMW-39	05/24/2010	75.05		27.12		47.93
GMW-39	05/28/2010	75.05		27.09		47.96
GMW-39	10/04/2010	75.05		27.38		47.67
GMW-39	01/10/2011	75.05		27.63		47.42
GMW-39	04/11/2011	75.05		25.92		49.13
GMW-39	07/11/2011	75.05		26.55		48.50
GMW-39	10/10/2011	75.05		26.85		48.20
GMW-39	01/09/2012	75.05		28.44		46.61
GMW-39	04/16/2012	75.05		28.04		47.01
GMW-39	07/09/2012	75.05		28.62		46.43
GMW-39	10/15/2012	75.05		29.58		45.47
GMW-39	01/14/2013	75.05		29.72		45.33
GMW-39	04/08/2013	75.05		29.71		45.34
GMW-39	10/07/2013	75.05		29.92		45.13
GMW-39	04/14/2014	75.05		30.25		44.80
GMW-39	04/20/2015	75.05		31.04		44.01
GMW-39	10/19/2015	75.05		31.87		43.18
GMW-39	04/11/2016	75.05		32.80		42.25
GMW-39	10/3/2016	75.05		33.20		41.85
GMW-40	05/28/1996	73.13		26.00		47.13
GMW-40	11/20/1996	73.13		26.74		46.39
GMW-40	07/01/1997	73.13		27.43		45.70
GMW-40	12/31/1997	73.13		26.66		46.47
GMW-40	05/01/1998	73.13		24.03		49.10
GMW-40	05/25/1999	73.13		24.84		48.29
GMW-40	05/15/2000	73.13		25.65		47.48
GMW-40	11/13/2000	73.13		26.21		46.92
GMW-40	05/07/2001	73.13		24.26		48.87
GMW-40	04/08/2002	73.13		25.14		47.99
GMW-40	10/21/2002	73.13		25.49		47.64
GMW-40	04/07/2003	73.13		24.60		48.53
GMW-40	10/06/2003	73.13		25.02		48.11
GMW-40	04/19/2004	73.13		26.59		46.54
GMW-40	11/05/2004	73.13		24.10		49.03
GMW-40	05/02/2005	73.13		21.17		51.96
GMW-40	05/01/2006	73.13		22.54		50.59
GMW-40	12/01/2006	73.13		23.51		49.62
GMW-40	04/30/2007	73.13		23.74		49.62

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-40	11/12/2007	73.13		24.60		48.53
GMW-40	04/11/2008	73.13		24.09		49.04
GMW-40	10/14/2008	73.13		25.01		48.12
GMW-40	02/10/2009	73.13		25.05		48.08
GMW-40	04/20/2009	73.13		27.40		45.73
GMW-40	10/19/2009	73.13		26.00		47.13
GMW-40	04/08/2010	73.13		25.31		47.82
GMW-40	04/12/2010	73.13		25.20		47.93
GMW-40	10/01/2010	73.13		25.83		47.30
GMW-40	10/04/2010	73.13		25.70		47.43
GMW-40	10/10/2011	73.13		25.13		48.00
GMW-40	04/12/2012	73.13		26.48		46.65
GMW-40	10/02/2013	73.13		28.57		44.56
GMW-40	04/07/2014	73.13		30.24		42.89
GMW-40	04/14/2014	73.13		29.92		43.21
GMW-40	10/27/2014	73.13		30.03		43.10
GMW-40	04/20/2015	73.13		30.46		42.67
GMW-40	10/3/2016	73.13		34.98		38.15
GMW-41	05/28/1996	74.46		27.01		47.45
GMW-41	11/20/1996	74.46		27.92		46.54
GMW-41	07/01/1997	74.46		28.31		46.15
GMW-41	12/31/1997	74.46		27.81		46.65
GMW-41	05/01/1998	74.46		25.10		49.36
GMW-41	05/25/1999	74.46		26.02		48.44
GMW-41	05/15/2000	74.46		26.69		47.77
GMW-41	11/13/2000	74.46		27.32		47.14
GMW-41	05/07/2001	74.46		25.45		49.01
GMW-41	04/08/2002	74.46		26.36		48.10
GMW-41	10/21/2002	74.46		26.85		47.61
GMW-41	04/07/2003	74.46		26.15		48.31
GMW-41	10/06/2003	74.46		26.22		48.24
GMW-41	04/19/2004	74.46		27.64		46.82
GMW-41	11/01/2004	74.46		27.54		46.92
GMW-41	05/02/2005	74.46		22.28		52.18
GMW-41	05/01/2006	74.46		23.87		50.59
GMW-41	12/01/2006	74.46		24.71		49.75
GMW-41	04/30/2007	74.46		25.06		49.40
GMW-41	11/12/2007	74.46		25.87		48.59
GMW-41	04/11/2008	74.46		25.44		49.02
GMW-41	07/24/2008	74.46		25.80		48.66
GMW-41	10/14/2008	74.46		26.35		48.11

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-41	02/10/2009	74.46		26.58		47.88
GMW-41	04/20/2009	74.46		26.61		47.85
GMW-41	10/19/2009	74.46		27.34		47.12
GMW-41	04/08/2010	74.46		26.64		47.82
GMW-41	04/12/2010	74.46		26.44		48.02
GMW-41	10/04/2010	74.46		26.91		47.55
GMW-41	01/07/2011	74.46		27.58		46.88
GMW-41	04/08/2011	74.46		26.01		48.45
GMW-41	07/08/2011	74.46		26.01		48.45
GMW-41	10/06/2011	74.46		26.61		47.85
GMW-41	10/10/2011	74.46		26.53		47.93
GMW-41	04/12/2012	74.46		27.77		46.69
GMW-41	04/16/2012	74.46		27.54		46.92
GMW-41	01/11/2013	74.46		29.47		44.99
GMW-41	04/03/2013	74.46		29.29		45.17
GMW-41	04/08/2013	74.46		29.16		45.30
GMW-41	10/02/2013	74.46		29.89		44.57
GMW-41	04/07/2014	74.46	31.05	31.07	0.02	NC
GMW-41	04/15/2014	74.46	31.05	31.14	0.09	NC
GMW-41	10/27/2014	74.46		30.78		43.68
GMW-41	04/20/2015	74.46		31.22		43.24
GMW-41	10/3/2016	74.46		35.97		38.49
GMW-42	05/28/1996	75.50	27.89	29.36	1.47	NC
GMW-42	11/20/1996	75.50	28.87	29.55	0.68	NC
GMW-42	07/01/1997	75.50	29.06	29.52	0.46	NC
GMW-42	12/31/1997	75.50		28.87		46.63
GMW-42	05/01/1998	75.50		26.18		49.32
GMW-42	05/25/1999	75.50		26.99		48.51
GMW-42	05/15/2000	75.50		27.54		47.96
GMW-42	11/13/2000	75.50		28.32		47.18
GMW-42	05/07/2001	75.50		26.25		49.25
GMW-42	04/08/2002	75.50		27.57		47.93
GMW-42	10/21/2002	75.50		27.96		47.54
GMW-42	04/07/2003	75.50		27.25		48.25
GMW-42	10/06/2003	75.50		27.30		48.20
GMW-42	04/19/2004	75.50		28.78		46.72
GMW-42	11/01/2004	75.50		28.40		47.10
GMW-42	05/03/2005	75.50		22.32		53.18
GMW-42	05/01/2006	75.50		24.46		51.04
GMW-42	12/01/2006	75.50		23.51		51.99
GMW-42	04/30/2007	75.50		26.07		49.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				 		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 404 40	44/40/0007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-42	11/12/2007	75.50		26.38		49.12
GMW-42	04/11/2008	75.50		25.95		49.55
GMW-42	10/16/2008	75.50		26.92		48.58
GMW-42	04/07/2010	75.50		27.60		47.90
GMW-42	10/01/2010	75.50		28.13		47.37
GMW-42	01/08/2011	75.50		28.03		47.47
GMW-42	04/12/2012	75.50		28.88		46.62
GMW-42	10/02/2013	75.50		30.99		44.51
GMW-42	04/07/2014	75.50		31.98		43.52
GMW-42	04/14/2014	75.50		31.42		44.08
GMW-42	10/27/2014	75.50		31.93		43.57
GMW-42	04/20/2015	75.50		32.21		43.29
GMW-43	05/28/1996	74.44		27.03		47.41
GMW-43	11/20/1996	74.44		28.03		46.41
GMW-43	07/01/1997	74.44		27.66		46.78
GMW-43	12/31/1997	74.44		27.70		46.74
GMW-43	05/01/1998	74.44		24.93		49.51
GMW-43	05/25/1999	74.44		25.72		48.72
GMW-43	05/15/2000	74.44		26.41		48.03
GMW-43	11/13/2000	74.44		26.97		47.47
GMW-43	05/07/2001	74.44		25.11		49.33
GMW-43	04/08/2002	74.44		26.70		47.74
GMW-43	10/21/2002	74.44		26.66		47.78
GMW-43	04/07/2003	74.44		26.00		48.44
GMW-43	10/06/2003	74.44		26.12		48.32
GMW-43	04/19/2004	74.44		27.40		47.04
GMW-43	11/03/2004	74.44		26.63		47.81
GMW-43	05/02/2005	74.44		21.03		53.41
GMW-43	05/01/2006	74.44		23.36		51.08
GMW-43	12/01/2006	74.44		24.59		49.85
GMW-43	04/30/2007	74.44		25.00		49.44
GMW-43	11/12/2007	74.44		25.60		48.84
GMW-43	04/14/2008	74.44		25.17		49.27
GMW-43	07/24/2008	74.44		25.77		48.67
GMW-43		+		26.34		
	10/14/2008	74.44				48.10
GMW-43	02/10/2009	74.44		26.79		47.65
GMW-43	04/20/2009	74.44		27.11		47.33
GMW-43	10/19/2009	74.44		27.31		47.13
GMW-43	04/08/2010	74.44		26.52		47.92
GMW-43	04/12/2010	74.44		26.24		48.20
GMW-43	01/08/2011	74.44		26.95		47.49

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwate Elevation
O N N N / 4 O	0.4/0.7/0.044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-43	04/07/2011	74.44		25.76		48.68
GMW-43	07/08/2011	74.44		26.10		48.34
GMW-43	10/06/2011	74.44		26.65		47.79
GMW-43	04/12/2012	74.44		27.86		46.58
GMW-43	04/16/2012	74.44		27.74		46.70
GMW-43	01/10/2013	74.44		29.27		45.17
GMW-43	04/03/2013	74.44		29.24		45.20
GMW-43	04/08/2013	74.44		29.11		45.33
GMW-43	10/02/2013	74.44		30.00		44.44
GMW-43	04/07/2014	74.44		30.81		43.63
GMW-43	04/14/2014	74.44		30.42		44.02
GMW-43	10/27/2014	74.44		30.87		43.57
GMW-43	04/20/2015	74.44		31.24		43.20
GMW-44	05/28/1996	74.45		27.19		47.26
GMW-44	11/20/1996	74.45		28.29		46.16
GMW-44	07/01/1997	74.45		27.75		46.70
GMW-44	12/31/1997	74.45		27.90		46.55
GMW-44	05/01/1998	74.45		25.13		49.32
GMW-44	05/25/1999	74.45		25.88		48.57
GMW-44	05/15/2000	74.45		26.63		47.82
GMW-44	11/13/2000	74.45		27.16		47.29
GMW-44	05/07/2001	74.45		25.38		49.07
GMW-44	04/08/2002	74.45		26.70		47.75
GMW-44	10/21/2002	74.45		26.88		47.57
GMW-44	04/07/2003	74.45		26.30		48.15
GMW-44	10/06/2003	74.45		26.29		48.16
GMW-44	04/19/2004	74.45		28.45		46.00
GMW-44	05/02/2005	74.45		22.00		52.45
GMW-44	11/03/2005	74.45		27.21		47.24
GMW-44	05/01/2006	74.45		23.98		50.47
GMW-44	12/01/2006	74.45		24.81		49.64
GMW-44	04/30/2007	74.45		25.32		49.13
GMW-44	11/12/2007	74.45		25.82		48.63
GMW-44	04/14/2008	74.45		25.45		49.00
GMW-44						49.00
	07/24/2008	74.45		25.95		
GMW-44	10/14/2008	74.45		26.60		47.85
GMW-44	02/10/2009	74.45		26.87		47.58
GMW-44	04/20/2009	74.45		26.51		47.94
GMW-44	10/19/2009	74.45		27.43		47.02
GMW-44	04/08/2010 04/12/2010	74.45 74.45		26.77 26.51		47.68 47.94

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-44	01/07/2011	74.45		27.47		46.98
GMW-44	04/08/2011	74.45		26.05		48.40
GMW-44	10/06/2011	74.45		26.91		47.54
GMW-44	04/12/2012	74.45		28.13		46.32
GMW-44	04/16/2012	74.45		27.92		46.53
GMW-44	01/10/2013	74.45		29.54		44.91
GMW-44	04/03/2013	74.45		29.51		44.94
GMW-44	04/08/2013	74.45		29.42		45.03
GMW-44	10/02/2013	74.45		30.25		44.20
GMW-44	04/07/2014	74.45		31.06		43.39
GMW-44	04/14/2014	74.45		30.72		43.73
GMW-44	10/27/2014	74.45		31.10		43.35
GMW-44	04/20/2015	74.45		31.46		42.99
GMW-44	10/3/2016	74.45		33.62		40.83
GMW-45	05/28/1996	75.67		28.30		47.37
GMW-45	11/20/1996	75.67		29.21		46.46
GMW-45	07/01/1997	75.67		28.32		47.35
GMW-45	12/31/1997	75.67		28.81		46.86
GMW-45	05/01/1998	75.67		25.75		49.92
GMW-45	05/25/1999	75.67		26.74		48.93
GMW-45	05/15/2000	75.67		27.68		47.99
GMW-45	11/13/2000	75.67		28.02		47.65
GMW-45	05/07/2001	75.67		28.65		47.02
GMW-45	04/08/2002	75.67		27.92		47.75
GMW-45	10/21/2002	75.67		28.33		47.34
GMW-45	04/07/2003	75.67		27.50		48.17
GMW-45	10/06/2003	75.67		27.26		48.41
GMW-45	04/19/2004	75.67		28.17		47.50
GMW-45	11/01/2004	75.67		28.35		47.32
GMW-45	05/02/2005	75.67		23.15		52.52
				+		
GMW-45	03/06/2006	75.67		25.21		50.46
GMW-45	05/01/2006	75.67		25.15		50.52
GMW-45	08/26/2006	75.67		25.53		50.14
GMW-45	12/01/2006	75.67		25.96		49.71
GMW-45	03/21/2007	75.67		26.09		49.58
GMW-45	04/27/2007	75.67		26.48		49.19
GMW-45	08/28/2007	75.67		26.42		49.25
GMW-45	11/12/2007	75.67		26.94		48.73
GMW-45	02/05/2008	74.45		27.52		46.93
GMW-45	04/11/2008	75.67		26.76		48.91
GMW-45	07/24/2008	75.67		27.27		48.40

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

					Measured	
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Product Thickness	Groundwater Elevation
	24.0	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-45	10/13/2008	75.67		27.95		47.72
GMW-45	02/09/2009	74.45		27.68		46.77
GMW-45	04/20/2009	75.67		27.58		48.09
GMW-45	07/16/2009	75.67		27.91		47.76
GMW-45	10/19/2009	75.67		28.54		47.13
GMW-45	04/07/2010	75.67		28.22		47.45
GMW-45	04/12/2010	75.67		27.85		47.82
GMW-45	01/06/2011	75.67		28.75		46.92
GMW-45	04/07/2011	75.67		27.38		48.29
GMW-45	07/07/2011	75.67		27.63		48.29
GMW-45	10/07/2011	75.67		28.22		47.45
GMW-45	04/12/2012	75.67		29.30		46.37
GMW-45	04/12/2012	 		29.02		
GMW-45		75.67				46.65
	01/10/2013	75.67		30.35		45.32
GMW-45	04/02/2013	75.67		30.34		45.33
GMW-45	04/08/2013	75.67		30.29		45.38
GMW-45	10/01/2013	75.67	31.07	31.09	0.02	NC
GMW-45	04/09/2014	75.67	31.67	31.69	0.02	NC
GMW-45	04/15/2014	75.67	31.68	31.95	0.27	NC
GMW-45	10/27/2014	75.67		32.01		43.66
GMW-45	04/20/2015	75.67	32.31	32.33	0.02	NC
GMW-45	10/3/2016	ns		34.60		
GMW-46	08/26/2006	76.10		24.72		51.38
GMW-46	08/28/2007	75.31		25.89		49.42
GMW-47	05/28/1996	75.98		28.45		47.53
GMW-47	11/20/1996	75.98		29.43		46.55
GMW-47	07/01/1997	75.98		28.34		47.64
GMW-47	12/31/1997	75.98		28.90		47.08
GMW-47	05/01/1998	75.98		25.79		50.19
GMW-47	05/25/1999	75.98		26.91		49.07
GMW-47	05/15/2000	75.98		27.61		48.37
GMW-47	11/13/2000	75.98		28.13		47.85
GMW-47	02/05/2001	75.98		27.17		48.81
GMW-47	05/07/2001	75.98		26.71		49.27
GMW-47	04/08/2002	75.98		27.21		48.77
GMW-47	09/19/2002	75.98		28.50		47.48
GMW-47	10/21/2002	75.98		29.04		46.94
GMW-47	04/07/2003	75.98		27.82		48.16
GMW-47	10/06/2003	75.98		27.44		48.54
GMW-47	04/19/2004	75.98		28.27		47.71
GMW-47	11/01/2004	75.98		28.60		47.38

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		 				
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-47	02/28/2005	75.98		24.87		51.11
GMW-47	05/02/2005	75.98		23.17		52.81
GMW-47	03/06/2006	75.98		24.67		51.31
GMW-47	05/01/2006	75.98		25.16		50.82
GMW-47	08/26/2006	75.98		25.62		50.36
GMW-47	12/01/2006	75.98		26.15		49.83
GMW-47	03/21/2007	75.98		26.30		49.68
GMW-47	04/27/2007	75.98		26.71		49.27
GMW-47	08/28/2007	75.98		26.74		49.24
GMW-47	11/12/2007	75.98		27.12		48.86
GMW-47	02/05/2008	75.98		27.75		48.23
GMW-47	04/11/2008	75.98		26.93		49.05
GMW-47	07/24/2008	75.98		27.49		48.49
GMW-47	10/13/2008	75.98		28.19		47.79
GMW-47	02/09/2009	75.98		28.07		47.91
GMW-47	04/20/2009	75.98		27.66		48.32
GMW-47	07/16/2009	75.98		28.22		47.76
GMW-47	07/20/2009	75.98		28.10		47.88
GMW-47	10/19/2009	75.98		28.48		47.50
GMW-47	01/11/2010	75.98		29.10		46.88
GMW-47	04/12/2010	75.98		28.52		47.46
GMW-47	01/06/2011	75.98		29.05		46.93
GMW-47	04/07/2011	75.98		27.50		48.48
GMW-47	07/07/2011	75.98		27.83		48.15
GMW-47	10/06/2011	75.98		28.41		47.57
GMW-47	01/10/2012	75.98		28.71		47.27
GMW-47	04/12/2012	75.98		29.55		46.43
GMW-47	04/20/2012	75.98		29.26		46.72
GMW-47	01/10/2013	75.98		30.57		45.41
GMW-47	04/02/2013	75.98		30.55		45.43
GMW-47	04/08/2013	75.98		30.55		45.43
GMW-47	10/01/2013	75.98		31.28		44.70
GMW-47	04/09/2014	75.98		31.79		44.19
GMW-47 GMW-47		75.98		31.62		44.19
GMW-47 GMW-47	04/15/2014	†		32.11		
	10/27/2014	75.98				43.87
GMW-47	04/20/2015	75.98		32.45		43.53
GMW-47	10/19/2015	75.98		33.26		42.72
GMW-47	04/11/2016	75.98		33.79		42.19
GMW-47	10/3/2016	75.98		34.25		41.73
GMW-48	05/28/1996	75.03		27.40		47.63
GMW-48	11/20/1996	75.03		28.40		46.63

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-48	07/01/1997	75.03	27.11	27.58	0.47	NC
GMW-48	12/31/1997	75.03	27.37	29.58	2.21	NC
GMW-48	05/01/1998	75.03	23.63	24.46	0.83	NC
GMW-48	05/26/1999	75.03	25.72	27.01	1.29	NC
GMW-48	05/15/2000	75.03	26.31	26.49	0.18	NC
GMW-48	11/13/2000	75.03		27.21		47.82
GMW-48	05/07/2001	75.03	25.65	26.10	0.45	NC
GMW-48	09/19/2002	75.03		26.50		48.53
GMW-48	10/21/2002	75.03		27.10		47.93
GMW-48	04/07/2003	75.03	25.89	25.90	0.01	NC
GMW-48	10/06/2003	75.03		25.59		49.44
GMW-48	04/19/2004	75.03		26.41		48.62
GMW-48	11/01/2004	75.03		26.90		48.13
GMW-48	02/28/2005	75.03		23.00		52.03
GMW-48	05/02/2005	75.03		20.80		54.23
GMW-48	03/06/2006	75.03		23.61		51.42
GMW-48	05/01/2006	75.03		23.07		51.96
GMW-48	08/26/2006	75.03		23.50		51.53
GMW-48	12/01/2006	75.03		24.54		50.49
GMW-48	03/21/2007	75.03		24.57		50.46
GMW-48	04/27/2007	75.03		24.85		50.18
GMW-48	08/28/2007	75.03		24.92		50.11
GMW-48	11/12/2007	75.03		25.37		49.66
GMW-48	04/11/2008	75.03		25.07		49.96
GMW-48	10/13/2008	75.03		26.39		48.64
GMW-48	04/07/2010	75.03		26.40		48.63
GMW-48	10/01/2010	75.03		26.89		48.14
GMW-48	01/06/2011	75.03		27.29		47.74
GMW-48	04/07/2011	75.03		25.53		49.50
GMW-48	07/07/2011	75.03		25.89		49.14
GMW-48	10/06/2011	75.03		26.55		48.48
GMW-48	04/13/2012	75.03		27.48		47.55
GMW-48	01/10/2013	75.03		28.77		46.26
GMW-48	04/03/2013	75.03		28.77		46.26
GMW-48	10/02/2013	75.03		29.45		45.58
GMW-48	04/09/2014	75.03		29.90		45.13
GMW-48	04/17/2014	75.03		29.82		45.21
GMW-48	10/27/2014	75.03		30.17		44.86
GMW-48	04/20/2015	75.03		30.50		44.53
GMW-48	10/19/2015	75.03		31.31		43.72
GMW-48	10/3/2016	ns		37.03		

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-50	05/25/1999	75.51		26.36		49.15
GMW-50	05/15/2000	75.51		27.34		48.17
GMW-50	05/07/2001	75.51	25.95	26.26	0.31	NC
GMW-50	09/19/2002	75.51		27.82		47.69
GMW-50	10/21/2002	75.51		28.70		46.81
GMW-50	04/07/2003	75.51		27.00		48.51
GMW-50	10/06/2003	75.51		26.83		48.68
GMW-50	04/19/2004	75.51		27.66		47.85
GMW-50		75.51		28.11		47.40
	11/01/2004 02/28/2005					
GMW-50		75.51		23.80		51.71
GMW-50	05/02/2005	75.51		22.42		53.09
GMW-50	03/06/2006	75.51		24.53		50.98
GMW-50	05/01/2006	75.51		24.63		50.88
GMW-50	08/26/2006	75.51		25.10		50.41
GMW-50	12/01/2006	75.51		25.61		49.90
GMW-50	03/21/2007	75.51		25.75		49.76
GMW-50	04/27/2007	75.51		26.17		49.34
GMW-50	08/28/2007	75.51		26.15		49.36
GMW-50	11/12/2007	75.51		26.58		48.93
GMW-50	02/05/2008	75.51		27.24		48.27
GMW-50	04/11/2008	75.51		26.32		49.19
GMW-50	07/24/2008	75.51		26.97		48.54
GMW-50	10/13/2008	75.51		27.67		47.84
GMW-50	02/09/2009	75.51		27.40		48.11
GMW-50	07/16/2009	75.51		27.87		47.64
GMW-50	04/07/2010	75.51		27.68		47.83
GMW-50	10/01/2010	75.51		28.16		47.35
GMW-50	01/06/2011	75.51		28.58		46.93
GMW-50	04/12/2012	75.51		29.00		46.51
GMW-50	04/14/2016	75.51		33.36		42.15
GMW-51	05/25/1999	75.93		26.71		49.22
GMW-51	05/15/2000	75.93		27.70		48.23
GMW-51	11/13/2000	75.93		27.94		47.99
GMW-51	05/07/2001	75.93	26.43	28.44	2.01	NC
GMW-51	09/19/2002	75.93		28.22		47.71
GMW-51	10/21/2002	75.93		29.13		46.80
GMW-51	04/07/2003	75.93		27.55		48.38
GMW-51	10/06/2003	75.93		27.15		48.78
GMW-51	04/19/2004	75.93		27.99		47.94
GMW-51	11/01/2004	75.93		28.47		47.46
GMW-51	02/28/2005	75.93		24.24		51.69

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

l	T			1 1		
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 10 14 5 4	05/00/0005	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-51	05/02/2005	75.93		22.61		53.32
GMW-51	03/06/2006	75.93		25.02		50.91
GMW-51	05/01/2006	75.93		25.04		50.89
GMW-51	08/26/2006	75.93		25.51		50.42
GMW-51	12/01/2006	75.93		25.98		49.95
GMW-51	03/21/2007	75.93		26.12		49.81
GMW-51	04/27/2007	75.93		26.54		49.39
GMW-51	08/28/2007	75.93		26.50		49.43
GMW-51	11/12/2007	75.93		26.95		48.98
GMW-51	02/05/2008	75.93		27.59		48.34
GMW-51	04/11/2008	75.93		26.69		49.24
GMW-51	07/24/2008	75.93		27.15		48.78
GMW-51	10/13/2008	75.93		28.05		47.88
GMW-51	02/09/2009	75.93		27.49		48.44
GMW-51	07/16/2009	75.93		28.15		47.78
GMW-51	04/07/2010	75.93		28.08		47.85
GMW-51	10/01/2010	75.93		28.49		47.44
GMW-51	01/06/2011	75.93		28.96		46.97
GMW-51	04/12/2012	75.93		29.41		46.52
GMW-52	05/25/1999	75.03		25.73		49.30
GMW-52	05/15/2000	75.03		26.33		48.70
GMW-52	11/13/2000	75.03		26.99		48.04
GMW-52	05/07/2001	75.03		25.15		49.88
GMW-52	04/08/2002	75.03		26.61		48.42
GMW-52	10/21/2002	75.03		27.15		47.88
GMW-52	04/07/2003	75.03		26.34		48.69
GMW-52	10/06/2003	75.03		26.21		48.82
GMW-52	04/19/2004	75.03		26.97		48.06
GMW-52	11/01/2004	75.03		27.62		47.41
GMW-52	05/02/2005	75.03		21.16		53.87
GMW-52	03/06/2006	75.03		23.95		51.08
GMW-52	05/01/2006	75.03		23.95		51.08
GMW-52	08/26/2006	75.03		24.40		50.63
GMW-52	12/01/2006	75.03		24.92		50.03
GMW-52	03/21/2007	75.03		25.17		49.86
GMW-52	04/30/2007	75.03		25.38		49.65
GMW-52	08/28/2007	75.03		25.80		49.23
GMW-52	11/12/2007	75.03		25.93		49.10
GMW-52	02/05/2008	75.03		26.71		48.32
GMW-52	04/14/2008	75.03		25.46		49.57
GMW-52	07/24/2008	75.03		25.89		49.14

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwate Elevation
ONAW 50	40/44/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-52	10/14/2008	75.03		26.69		48.34
GMW-52	02/10/2009	75.03		26.95		48.08
GMW-52	07/16/2009	75.03		27.25		47.78
GMW-52	04/08/2010	75.03		26.71		48.32
GMW-52	10/01/2010	75.03		27.42		47.61
GMW-52	01/08/2011	75.03		27.77		47.26
GMW-52	04/12/2012	75.03		28.96		46.07
GMW-53	05/25/1999	74.90		25.60		49.30
GMW-53	05/15/2000	74.90		26.20		48.70
GMW-53	05/07/2001	74.90		25.00		49.90
GMW-53	04/08/2002	74.90		26.47		48.43
GMW-53	10/21/2002	74.90		27.04		47.86
GMW-53	04/07/2003	74.90		26.24		48.66
GMW-53	10/06/2003	74.90		26.08		48.82
GMW-53	04/19/2004	74.90		26.83		48.07
GMW-53	11/01/2004	74.90		27.54		47.36
GMW-53	05/02/2005	74.90		21.34		53.56
GMW-53	03/06/2006	74.90		23.87		51.03
GMW-53	05/01/2006	74.90		23.85		51.05
GMW-53	08/26/2006	74.90		24.34		50.56
GMW-53	12/01/2006	74.90		24.85		50.05
GMW-53	03/21/2007	74.90		24.92		49.98
GMW-53	04/30/2007	74.90		25.26		49.64
GMW-53	08/28/2007	74.90		25.11		49.79
GMW-53	11/12/2007	74.90		25.83		49.07
GMW-53	02/05/2008	74.90		26.25		48.65
GMW-53	04/14/2008	74.90		25.38		49.52
GMW-53	10/14/2008	74.90		26.58		48.32
GMW-53	02/10/2009	74.90		26.78		48.12
GMW-53	07/16/2009	74.90		27.04		47.86
GMW-53	04/08/2010	74.90	26.83	26.84	0.01	NC
GMW-53	10/01/2010	74.90		27.29		47.61
GMW-53	01/08/2011	74.90		27.67		47.23
GMW-53	04/12/2012	74.90		28.15		46.75
GMW-54	05/25/1999	75.16		26.68		48.48
GMW-54		75.16		27.40		47.76
	05/15/2000	1 1				
GMW-54	11/13/2000	75.16		26.93		48.23
GMW-54	05/07/2001	75.16		25.63		49.53
GMW-54	04/08/2002	75.16		27.06		48.10
GMW-54 GMW-54	10/21/2002 04/07/2003	75.16 75.16		27.43 26.78		47.73 48.38

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-54	10/06/2003	75.16		26.95		48.21
GMW-54	04/19/2004	75.16		28.33		46.83
GMW-54	11/01/2004	75.16		28.11		47.05
GMW-54	05/02/2005	75.16		22.06		53.10
GMW-54	05/01/2006	75.16		24.45		50.71
GMW-54	12/01/2006	75.16		25.36		49.80
GMW-54	04/30/2007	75.16		25.74		49.42
GMW-54	11/12/2007	75.16		26.35		48.81
GMW-54	04/11/2008	75.16		25.91		49.25
GMW-54	07/24/2008	75.16		26.05		49.11
GMW-54	10/14/2008	75.16		26.94		48.22
GMW-54	02/10/2009	75.16		26.78		48.38
GMW-54	04/08/2010	75.16		27.25		47.91
GMW-54	10/01/2010	75.16		27.68		47.48
GMW-54	01/07/2011	75.16		28.14		47.02
GMW-54	04/12/2012	75.16		28.36		46.80
GMW-54	10/02/2013	75.16		30.50		44.66
GMW-54	04/07/2014	75.16		31.62		43.54
GMW-54	10/27/2014	75.16		31.43		43.73
GMW-54	04/20/2015	75.16		31.84		43.32
GMW-55	05/25/1999	74.60		26.11		48.49
GMW-55	05/15/2000	74.60		26.83		47.77
GMW-55	11/13/2000	74.60		26.36		48.24
GMW-55	05/07/2001	74.60		24.91		49.69
GMW-55	04/08/2002	74.60		26.43		48.17
GMW-55	10/21/2002	74.60		26.85		47.75
GMW-55	04/07/2003	74.60		26.22		48.38
GMW-55	10/06/2003	74.60		26.35		48.25
GMW-55	04/19/2004	74.60		27.77		46.83
GMW-55	11/01/2004	74.60		27.59		47.01
GMW-55	05/02/2005	74.60		22.33		52.27
GMW-55	05/01/2006	74.60		23.94		50.66
GMW-55	12/01/2006	74.60		24.78		49.82
GMW-55	04/30/2007	74.60		25.11		49.49
GMW-55	11/12/2007	74.60		25.89		48.71
GMW-55	04/11/2008	74.60		25.46		49.14
GMW-55	10/14/2008	74.60		26.38		48.22
GMW-55	04/20/2009	74.60		28.31		46.29
GMW-55	04/08/2010	74.60		26.66		47.94
GMW-55	10/01/2010	74.60		27.15		47.45
GMW-55	01/07/2011	74.60		27.61		46.99

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				Ī
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
CMANA/ FC	07/07/0044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-56	07/07/2011	76.52		28.45		48.07
GMW-56	10/07/2011	76.52		28.98		47.54
GMW-56	04/12/2012	76.52		30.04		46.48
GMW-56	01/10/2013	76.52		31.05		45.47
GMW-56	04/02/2013	76.52		31.04		45.48
GMW-56	10/01/2013	76.52		31.78		44.74
GMW-56	04/09/2014	76.52		32.40		44.12
GMW-56	04/14/2014	76.52		32.28		44.24
GMW-56	10/27/2014	76.52		32.77		43.75
GMW-56	04/20/2015	76.52		33.10		43.42
GMW-56	04/11/2016	76.52		34.33		42.19
GMW-56	10/3/2016	76.52		34.73		41.79
GMW-57	07/07/2011	76.66		28.53		48.13
GMW-57	10/06/2011	76.66		29.12		47.54
GMW-57	01/09/2012	76.66		29.48		47.18
GMW-57	04/12/2012	76.66		30.15		46.51
GMW-57	04/17/2012	76.66		29.85		46.81
GMW-57	01/10/2013	76.66		31.18		45.48
GMW-57	04/02/2013	76.66		31.18		45.48
GMW-57	04/08/2013	76.66		31.04		45.62
GMW-57	10/01/2013	76.66		31.88		44.78
GMW-57	04/09/2014	76.66		32.34		44.32
GMW-57	04/15/2014	76.66		32.02		44.64
GMW-57	10/27/2014	76.66		32.69		43.97
GMW-57	04/20/2015	76.66		33.02		43.64
GMW-57	10/19/2015	76.66		33.84		42.82
GMW-57	04/13/2016	76.66		34.43		42.23
GMW-57	10/3/2016	76.66		34.86		41.80
GMW-58	07/08/2011	75.48		26.46		49.02
GMW-58	10/06/2011	75.48		27.11		48.37
GMW-58	01/10/2012	75.48		27.42		48.06
GMW-58	04/12/2012	75.48		28.20		47.28
GMW-58	04/18/2012	75.48		27.86		47.62
GMW-58	04/16/2012	75.48		29.26		46.22
GMW-58	04/03/2013	75.48		29.23		46.25
GMW-58	04/03/2013	75.48		29.23		46.25
		75.48				
GMW-58	10/02/2013	+		29.90		45.58
GMW-58	04/09/2014	75.48		30.37		45.11
GMW-58	04/16/2014	75.48		30.20		45.28
GMW-58	10/27/2014	75.48		30.69		44.79
GMW-58	04/20/2015	75.48		31.01		44.47

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>				1 -		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-58	11/05/2015	75.48	32.18	32.25	0.07	NC
		+				
GMW-58	04/13/2016	75.48		32.42		43.06
GMW-59	07/07/2011	75.28		25.69		49.59
GMW-59	10/06/2011	75.28		26.35		48.93
GMW-59	01/10/2012	75.28		26.80		48.48
GMW-59	04/12/2012	75.28	27.55	27.56	0.01	NC
GMW-59	04/20/2012	75.28		27.28		48.00
GMW-59	01/10/2013	75.28		28.60		46.68
GMW-59	04/03/2013	75.28		28.62		46.66
GMW-59	04/08/2013	75.28		29.02		46.26
GMW-59	10/01/2013	75.28		29.35		45.93
GMW-59	04/09/2014	75.28		29.65		45.63
GMW-59	04/17/2014	75.28		29.65		45.63
GMW-59	10/27/2014	75.28		29.92		45.36
GMW-59	04/20/2015	75.28		30.26		45.02
GMW-59	10/19/2015	75.28		31.31	sheen	43.97
GMW-59	04/13/2016	75.28		31.77		43.51
GMW-59	10/3/2016	75.28		32.24		43.04
GMW-60	11/01/2004	76.24		28.70		47.54
GMW-60	02/28/2005	76.24		24.90		51.34
GMW-60	05/02/2005	76.24		23.04		53.20
GMW-60	03/06/2006	76.24		25.30		50.94
GMW-60	05/01/2006	76.24		25.54		50.70
GMW-60	08/26/2006	76.24		25.87		50.37
GMW-60	12/01/2006	76.24		26.34		49.90
GMW-60	03/21/2007	76.24		26.75		49.49
GMW-60	04/27/2007	76.24		26.94		49.30
GMW-60	08/28/2007	76.24		27.03		49.21
GMW-60	11/12/2007	76.24		27.41		48.83
GMW-60	02/05/2008	76.24		27.92		48.32
GMW-60	04/11/2008	76.24		27.05		49.19
GMW-60	07/24/2008	76.24		27.64		48.60
GMW-60	10/13/2008	76.24		28.46		47.78
GMW-60	02/09/2009	76.24		28.27		47.97
GMW-60	04/20/2009	76.24		28.21		48.03
GMW-60	07/16/2009	76.24		28.37		47.87
GMW-60	07/10/2009	76.24		28.61		47.63
GMW-60	10/19/2009	76.24		28.81		47.43
		+				
GMW-60	01/11/2010	76.24		29.53		46.71
GMW-60	04/07/2010	76.24		28.54		47.70
GMW-60	04/12/2010	76.24		28.04		48.20

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 414 / CO	04/00/0044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-60	01/08/2011	76.24		29.09		47.15
GMW-60	04/08/2011	76.24		27.53		48.71
GMW-60	07/07/2011	76.24		28.02		48.22
GMW-60	10/06/2011	76.24		28.65		47.59
GMW-60	01/10/2012	76.24		28.46		47.78
GMW-60	04/12/2012	76.24		29.65		46.59
GMW-60	04/20/2012	76.24		29.47		46.77
GMW-60	01/11/2013	76.24		30.65		45.59
GMW-60	04/03/2013	76.24		30.62		45.62
GMW-60	04/08/2013	76.24		31.28		44.96
GMW-60	10/01/2013	76.24		31.35		44.89
GMW-60	04/09/2014	76.24		31.78		44.46
GMW-60	04/17/2014	76.24		31.42		44.82
GMW-60	10/27/2014	76.24		32.15		44.09
GMW-60	04/20/2015	76.24		32.42		43.82
GMW-60	10/20/2015	76.24		33.34		42.90
GMW-60	04/13/2016	76.24		33.91		42.33
GMW-60	10/3/2016	76.24		34.37		41.87
GMW-61	11/01/2004	75.60		28.02		47.58
GMW-61	02/28/2005	75.60		23.81		51.79
GMW-61	05/02/2005	75.60		22.18		53.42
GMW-61	03/06/2006	75.60		24.53		51.07
GMW-61	05/01/2006	75.60		24.64		50.96
GMW-61	08/26/2006	75.60		25.13		50.47
GMW-61	12/01/2006	75.60		25.60		50.00
GMW-61	03/21/2007	75.60		26.01		49.59
GMW-61	04/27/2007	75.60		26.25		49.35
GMW-61	08/28/2007	75.60		26.21		49.39
GMW-61	11/12/2007	75.60		26.67		48.93
GMW-61	02/05/2008	75.60		27.17		48.43
GMW-61	04/11/2008	75.60		26.29		49.31
GMW-61	07/24/2008	75.60		27.01		48.59
GMW-61	10/13/2008	75.60		27.73		47.87
GMW-61	02/09/2009	75.60		27.56		48.04
GMW-61	04/20/2009	75.60		27.14		48.46
GMW-61	07/16/2009	75.60		27.69		47.91
GMW-61	07/10/2009	75.60		27.84		47.76
				+		
GMW-61	10/19/2009	75.60		28.22		47.38
GMW-61	01/11/2010	75.60		28.81		46.79
GMW-61	04/07/2010	75.60		27.67		47.93
GMW-61	04/12/2010	75.60		27.22		48.38

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

I	1	1		 		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 1114 O.4	04/00/0044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-61	01/08/2011	75.60		28.37		47.23
GMW-61	04/08/2011	75.60		26.68		48.92
GMW-61	07/07/2011	75.60		27.23		48.37
GMW-61	10/06/2011	75.60		27.92		47.68
GMW-61	01/10/2012	75.60		28.41		47.19
GMW-61	04/12/2012	75.60		29.06		46.54
GMW-61	04/19/2012	75.60		28.71		46.89
GMW-61	01/11/2013	75.60		30.05		45.55
GMW-61	04/03/2013	75.60		30.11		45.49
GMW-61	04/08/2013	75.60		30.01		45.59
GMW-61	10/02/2013	75.60		30.70		44.90
GMW-61	04/09/2014	75.60		31.11		44.49
GMW-61	04/17/2014	75.60		30.78		44.82
GMW-61	10/27/2014	75.60		31.39		44.21
GMW-61	04/20/2015	75.60		31.72		43.88
GMW-61	10/20/2015	75.60	32.65	32.67	0.02	NC
GMW-61	04/13/2016	75.60		33.20		42.40
GMW-61	10/3/2016	76.24		33.72		42.52
GMW-62	07/02/2007	76.34		27.03		49.31
GMW-62	02/05/2008	76.34		27.79		48.55
GMW-62	04/14/2008	76.34		26.87		49.47
GMW-62	07/24/2008	76.34		27.98		48.36
GMW-62	10/14/2008	76.34		28.24		48.10
GMW-62	02/10/2009	76.34		28.31		48.03
GMW-62	04/20/2009	76.34		27.94		48.40
GMW-62	07/17/2009	76.34		28.15		48.19
GMW-62	07/21/2009	76.34		28.30		48.04
GMW-62	10/19/2009	76.34		29.00		47.34
GMW-62	01/11/2010	76.34		29.51		46.83
GMW-62	04/12/2010	76.34		28.24		48.10
GMW-62	01/10/2011	76.34	28.78	29.08	0.30	NC
GMW-62	04/07/2011	76.34	26.89	28.57	1.68	NC
GMW-62	07/07/2011	76.34	28.03	28.14	0.11	NC
GMW-62	10/06/2011	76.34	28.45	29.39	0.94	NC
GMW-62	01/09/2012	76.34	28.97	29.02	0.05	NC
GMW-62	04/12/2012	76.34	29.58	29.68	0.10	NC
GMW-62	04/18/2012	76.34	29.40	29.46	0.06	NC
GMW-62	01/11/2013	76.34		30.62		45.72
GMW-62	04/03/2013	76.34	30.42	31.36	0.94	NC
GMW-62	04/08/2013	76.34	30.35	32.13	1.78	NC
GMW-62	10/02/2013	76.34	31.00	32.33	1.33	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-62	04/09/2014	76.34	31.02	33.50	2.48	NC
GMW-62	04/15/2014	76.34	31.02	33.71	2.69	NC
GMW-62	10/27/2014	76.34	32.14	37.77	5.63	NC
GMW-62	04/20/2015	76.34	32.97	32.98	0.01	NC
GMW-62	10/20/2015	76.34	33.29	33.30	0.01	NC
GMW-62	04/11/2016	76.34	34.39	34.40	0.01	NC
GMW-62	10/3/2016	76.34	34.72	34.73	0.01	NC
GMW-63	10/14/2008	77.32		29.17		48.15
GMW-63	02/10/2009	77.32		29.08		48.24
GMW-63	04/20/2009	77.32		28.71		48.61
GMW-63	07/17/2009	77.32		29.11		48.21
GMW-63	07/21/2009	77.32		29.15		48.17
GMW-63	10/19/2009	77.32		29.84		47.48
GMW-63	01/11/2010	77.32		30.12		47.20
GMW-63	04/12/2010	77.32		29.22		48.10
GMW-63	01/08/2011	77.32		29.35		47.97
GMW-63	04/07/2011	77.32		28.63		48.69
GMW-63	07/07/2011	77.32		29.13		48.19
GMW-63	10/06/2011	77.32		29.63		47.69
GMW-63	01/09/2012	77.32		29.83		47.49
GMW-63	04/12/2012	77.32		30.51		46.81
GMW-63	04/17/2012	77.32		30.25		47.07
GMW-63	01/11/2013	77.32		31.23		46.09
GMW-63	04/03/2013	77.32		31.28		46.04
GMW-63	04/08/2013	77.32		31.14		46.18
GMW-63	10/02/2013	77.32		31.92		45.40
GMW-63	04/09/2014	77.32		32.08		45.24
GMW-63	10/27/2014	77.32		32.51		44.81
GMW-63	04/14/2014	77.32		32.02		45.30
GMW-63	04/20/2015	77.32		32.86		44.46
GMW-63	10/20/2015	77.32		33.73		43.59
GMW-63	04/11/2016	77.32		34.33		42.99
GMW-63	10/3/2016	77.32		34.89		42.43
GMW-64	10/14/2008	75.84		27.60		48.24
GMW-64	02/10/2009	75.84		27.47		48.37
GMW-64	04/20/2009	75.84		27.00		48.84
GMW-64	07/17/2009	75.84		27.37		48.47
GMW-64	07/21/2009	75.84		27.52		48.32
GMW-64	10/19/2009	75.84		28.11		47.73
GMW-64	01/11/2010	75.84		28.53		47.31
GMW-64	04/12/2010	75.84		27.10		48.74

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-64	01/08/2011	75.84		27.81		48.03
GMW-64	04/07/2011	75.84		26.45		49.39
GMW-64	07/07/2011	75.84		27.21		48.63
GMW-64	10/06/2011	75.84		27.86		47.98
GMW-64	01/09/2012	75.84		28.21		47.63
GMW-64	04/12/2012	75.84		28.96		46.88
GMW-64	04/17/2012	75.84		28.65		47.19
GMW-64	01/11/2013	75.84		29.69		46.15
GMW-64	04/03/2013	75.84		29.72		46.12
GMW-64	04/08/2013	75.84		29.53		46.31
GMW-64	10/02/2013	75.84		30.49		45.35
GMW-64	04/09/2014	75.84		30.33		45.51
GMW-64	04/14/2014	75.84		30.22		45.62
GMW-64	10/27/2014	75.84		30.81		45.03
GMW-64	04/20/2015	75.84		31.24		44.60
GMW-64	10/20/2015	75.84		32.33		43.51
GMW-64	04/11/2016	75.84		32.89		42.95
GMW-64	10/3/2016	75.84		33.45		42.39
GMW-65	07/17/2009	76.78		28.65		48.13
GMW-65	07/21/2009	76.78		28.83		47.95
GMW-65	10/19/2009	76.78		29.60		47.18
GMW-65	01/11/2010	76.78		29.80		46.98
GMW-65	04/12/2010	76.78		28.68		48.10
GMW-65	01/08/2011	76.78		29.39		47.39
GMW-65	04/07/2011	76.78		27.98		48.80
GMW-65	07/07/2011	76.78		28.63		48.15
GMW-65	10/06/2011	76.78		29.18		47.60
GMW-65	01/09/2012	76.78		29.43		47.35
GMW-65	04/12/2012	76.78		30.15		46.63
GMW-65	04/18/2012	76.78		29.85		46.93
GMW-65	01/11/2013	76.78		31.08		45.70
GMW-65	04/03/2013	76.78		31.07		45.71
GMW-65	04/08/2013	76.78		30.92		45.86
GMW-65	10/02/2013	76.78		31.75		45.03
GMW-65	04/09/2014	76.78		31.87		44.91
GMW-65	04/14/2014	76.78		31.68		45.10
GMW-65	10/27/2014	76.78		32.35		44.43
GMW-65	04/20/2015	76.78		32.68		44.10
GMW-65	10/20/2015	76.78		33.54		43.24
GMW-65	04/11/2016	76.78		34.19		42.59
GMW-65	10/3/2016	76.78		34.75		42.03

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						-
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-66	10/19/2009	77.00		29.73		47.27
GMW-66	04/12/2010	77.00		29.64		47.36
GMW-66	04/07/2011	77.00		28.63		48.37
GMW-66	07/07/2011	77.00		28.96		48.04
GMW-66	10/06/2011	77.00		29.48		47.52
GMW-66	04/12/2012	77.00		30.46		46.54
GMW-66	04/17/2012	77.00		30.11		46.89
GMW-66	01/10/2013	77.00		31.36		45.64
GMW-66	04/02/2013	77.00		31.34		45.66
GMW-66	04/08/2013	77.00		31.25		45.75
GMW-66	10/01/2013	77.00		32.06		44.94
GMW-66	04/09/2014	77.00		32.53		44.47
GMW-66	04/15/2014	77.00		32.48		44.52
GMW-66	10/27/2014	77.00		32.93		44.07
GMW-66	W	ell decommission	ed in Decembe	r 2014 prior to re	medial excavati	on
GMW-66R	10/3/2016	79.23		37.35		41.88
GMW-67	10/20/2015	76.00		32.90		43.10
GMW-67	04/11/2016	76.00		33.53		42.47
GMW-67	10/3/2016	76.00		34.05		41.95
GMW-68	10/20/2015	75.52		32.44		43.08
GMW-68	04/11/2016	75.52		33.06		42.46
GMW-68	10/3/2016	75.52	32.80	35.80	3.00	NC
GMW-69	10/20/2015	75.31		32.21		43.10
GMW-69	04/11/2016	75.31		32.83		42.48
GMW-69	10/3/2016	75.31		33.33		41.98
GMW-O-1	05/28/1996	71.45		24.16		47.29
GMW-O-1	11/20/1996	71.45		24.51		46.94
GMW-O-1	07/01/1997	71.45		24.93		46.52
GMW-O-1	12/31/1997	71.45		24.57		46.88
GMW-0-1	05/01/1998	71.45		22.51		48.94
GMW-O-1	02/02/1999	71.45		21.57		49.88
GMW-0-1	05/05/1999	71.45		22.20		49.25
GMW-0-1	08/09/1999	71.45		22.52		48.93
GMW-0-1	11/15/1999	71.45		22.68		48.77
	02/29/2000			22.78		
GMW-O-1 GMW-O-1		71.45 71.45				48.67
	05/15/2000	+		22.75		48.70
GMW-O-1	08/28/2000	71.45		23.02		48.43
GMW-O-1	11/13/2000	71.45		23.26		48.19
GMW-O-1	02/05/2001	71.45		23.01		48.44
GMW-O-1	05/07/2001	71.45		22.39		49.06
GMW-O-1	09/18/2001	71.45		21.96		49.49

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						<u> </u>
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-1	11/05/2001	71.45		22.18		49.27
GMW-O-1	01/29/2002	71.45		22.18		49.27
GMW-O-1	04/08/2002	71.45		22.51		48.94
GMW-O-1	07/29/2002	71.45		22.97		48.48
GMW-O-1	10/21/2002	71.45		23.14		48.31
GMW-O-1	01/27/2003	71.45		23.03		48.42
GMW-O-1	04/07/2003	71.45		23.11		48.34
GMW-O-1	07/30/2003	71.45		22.84		48.61
GMW-O-1	10/06/2003	71.45		22.76		48.69
GMW-O-1	01/11/2004	71.45		23.77		47.68
GMW-O-1	01/27/2004	71.45		23.06		48.39
GMW-O-1	04/19/2004	71.45		23.45		48.00
GMW-O-1	07/19/2004	71.45		23.45		48.00
GMW-O-1	02/01/2005	71.45		23.34		48.11
GMW-O-1	05/02/2005	71.45		21.02		50.43
GMW-O-1	08/01/2005	71.45		20.26		51.19
GMW-O-1	10/31/2005	71.45		20.21		51.24
GMW-O-1	02/27/2006	71.45		20.52		50.93
GMW-O-1	05/01/2006	71.45		20.59		50.86
GMW-O-1	09/18/2006	71.45		20.93		50.52
GMW-O-1	12/04/2006	71.45		27.16		44.29
GMW-O-1	03/12/2007	71.45		21.32		50.13
GMW-O-1	04/30/2007	71.45		21.40		50.05
GMW-O-1	08/28/2007	71.45		22.50		48.95
GMW-O-1	11/12/2007	71.45		21.79		49.66
GMW-O-1	02/19/2008	71.45		27.25		44.20
GMW-O-1	04/14/2008	71.45		22.15		49.30
GMW-O-1	08/11/2008	71.45		22.41		49.04
GMW-O-1	10/13/2008	71.45		22.45		49.00
GMW-O-1	04/20/2009	71.45		22.41		49.04
GMW-O-1	07/20/2009	71.45		23.15		48.30
GMW-O-1	10/19/2009	71.45		23.39		48.06
GMW-O-1	03/15/2010	71.45		23.90		47.55
GMW-O-1	05/24/2010	71.45		23.48		47.97
GMW-O-1	05/28/2010	71.45		23.47		47.98
GMW-0-1	10/04/2010	71.45		23.71		47.74
GMW-O-1	01/10/2011	71.45		24.14		47.31
GMW-O-1	04/11/2011	71.45		23.17		48.28
GMW-O-1	07/11/2011	71.45		22.88		48.57
GMW-0-1	10/10/2011	71.45		22.89		48.56
GMW-O-1	01/09/2012	71.45		23.35		48.10

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ONA)A/ O 4	04/40/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-1	04/16/2012	71.45		23.86		47.59
GMW-O-1	07/09/2012	71.45		24.19		47.26
GMW-O-1	10/15/2012	71.45		24.33		47.12
GMW-O-1	01/14/2013	71.45		24.88		46.57
GMW-O-1	04/08/2013	71.45		25.04		46.41
GMW-O-1	10/07/2013	71.45		25.72		45.73
GMW-O-1	04/14/2014	71.45		26.72		44.73
GMW-O-1	10/27/2014	71.45		27.28		44.17
GMW-O-1	04/20/2015	71.45		28.02		43.43
GMW-O-1	10/19/2015	71.45		28.98		42.47
GMW-O-1	04/11/2016	71.45		29.71		41.74
GMW-O-1	10/3/2016	71.45		31.20		40.25
GMW-O-2	11/20/1996	72.54		25.33		47.21
GMW-O-2	07/01/1997	72.54		25.29		47.25
GMW-O-2	12/31/1997	72.54		25.32		47.22
GMW-O-2	05/01/1998	72.54		23.10		49.44
GMW-O-2	05/05/1999	72.54		23.15		49.39
GMW-O-2	08/09/1999	72.54		23.39		49.15
GMW-O-2	11/15/1999	72.54		23.62		48.92
GMW-O-2	05/15/2000	72.54		23.59		48.95
GMW-O-2	11/13/2000	72.54		24.11		48.43
GMW-O-2	05/07/2001	72.54		23.26		49.28
GMW-O-2	11/05/2001	72.54		23.25		49.29
GMW-O-2	04/08/2002	72.54		23.52		49.02
GMW-O-2	07/29/2002	72.54		24.13		48.41
GMW-O-2	10/21/2002	72.54		24.28		48.26
GMW-O-2	01/14/2003	72.54		24.23		48.31
GMW-O-2	01/27/2003	72.54		24.10		48.44
GMW-O-2	04/07/2003	72.54		24.05		48.49
GMW-O-2	07/30/2003	72.54		23.75		48.79
GMW-O-2	10/06/2003	72.54		23.75		48.79
GMW-O-2	01/11/2004	72.54		24.78		47.76
GMW-0-2	01/27/2004	72.54		24.09		48.45
GMW-0-2	04/19/2004	72.54		24.39		48.15
GMW-0-2	07/19/2004	72.54		24.39		48.15
GMW-0-2	02/01/2005	72.54		24.06		48.48
GMW-0-2	05/02/2005	72.54		21.40		51.14
GMW-0-2	08/01/2005	72.54		20.97		51.14
GMW-O-2	10/31/2005	72.54		21.22		51.32
GMW-O-2	02/27/2006	72.54		23.10		49.44
GMW-O-2	05/01/2006	72.54		21.59		50.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-2	09/18/2006	72.54		22.08		50.46
GMW-O-2	12/04/2006	72.54		22.21		50.33
GMW-O-2	03/12/2007	72.54		22.50		50.04
GMW-O-2	04/30/2007	72.54		22.53		50.01
GMW-O-2	08/28/2007	72.54		22.54		50.00
GMW-O-2	11/12/2007	72.54		22.96		49.58
GMW-O-2	02/19/2008	72.54		23.39		49.15
GMW-O-2	04/14/2008	72.54		23.24		49.30
GMW-O-2	08/11/2008	72.54		23.57		48.97
GMW-O-2	10/13/2008	72.54		23.64		48.90
GMW-O-2	04/20/2009	72.54		23.70		48.84
GMW-O-2	07/20/2009	72.54		24.40		48.14
GMW-O-2	10/19/2009	72.54		24.81		47.73
GMW-O-2	03/15/2010	72.54		25.10		47.44
GMW-O-2	05/24/2010	72.54		24.48		48.06
GMW-O-2	05/28/2010	72.54		24.43		48.11
GMW-O-2	10/04/2010	72.54		24.25		48.29
GMW-O-2	01/10/2011	72.54		25.13		47.41
GMW-O-2	04/11/2011	72.54		24.14		48.40
GMW-O-2	07/11/2011	72.54		23.80		48.74
GMW-O-2	10/10/2011	72.54		23.98		48.56
GMW-O-2	01/09/2012	72.54		24.50		48.04
GMW-O-2	04/16/2012	72.54		24.82		47.72
GMW-O-2	07/09/2012	72.54		25.21		47.33
GMW-O-2	10/15/2012	72.54		25.50		47.04
GMW-O-2	01/14/2013	72.54		26.02		46.52
GMW-O-2	04/08/2013	72.54		26.12		46.42
GMW-O-2	10/07/2013	72.54		26.80		45.74
GMW-O-2	04/14/2014	72.54		27.39		45.15
GMW-O-2	10/27/2014	72.54		27.90		44.64
GMW-O-2	04/20/2015	72.54		28.34		44.20
GMW-O-2	10/19/2015	72.54		29.07		43.47
GMW-0-2	04/11/2016	72.54		30.20		42.34
GMW-0-2	10/3/2016	72.54		31.30		41.24
GMW-O-3	05/28/1996	72.19		24.19		48.00
GMW-O-3	11/20/1996	72.19		24.87		47.32
GMW-O-3	07/01/1997	72.19		24.77		47.42
GMW-O-3	12/31/1997	72.19		24.80		47.39
GMW-O-3	05/01/1998	72.19		22.06		50.13
GMW-O-3	02/03/1999	72.19		22.07		50.12
GMW-O-3	05/07/1999	72.19		23.11		49.08

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1 1		<u> </u>		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
ON 41A / O O	00/00/4000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-3	08/09/1999	72.19		23.20		48.99
GMW-O-3	11/15/1999	72.19		23.40		48.79
GMW-O-3	02/29/2000	72.19		23.45		48.74
GMW-O-3	05/15/2000	72.19		23.36		48.83
GMW-O-3	08/28/2000	72.19		23.95		48.24
GMW-O-3	11/13/2000	72.19		23.90		48.29
GMW-O-3	02/05/2001	72.19		23.61		48.58
GMW-O-3	05/07/2001	72.19		22.81		49.38
GMW-O-3	09/18/2001	72.19		22.55		49.64
GMW-O-3	11/05/2001	72.19		22.90		49.29
GMW-O-3	01/29/2002	72.19		23.18		49.01
GMW-O-3	04/08/2002	72.19		23.18		49.01
GMW-O-3	07/29/2002	72.39		24.05		48.34
GMW-O-3	10/21/2002	72.19		24.07		48.12
GMW-O-3	01/14/2003	72.19		23.90		48.29
GMW-O-3	01/27/2003	72.19		23.75		48.44
GMW-O-3	04/07/2003	72.19		23.53		48.66
GMW-O-3	07/30/2003	72.19		23.35		48.84
GMW-O-3	10/06/2003	72.19		23.52		48.67
GMW-O-3	01/11/2004	72.19		24.67		47.52
GMW-O-3	01/27/2004	72.19		23.79		48.40
GMW-O-3	04/19/2004	72.19		24.08		48.11
GMW-O-3	07/19/2004	72.19		24.13		48.06
GMW-O-3	02/01/2005	72.19		23.52		48.67
GMW-O-3	05/02/2005	72.19		20.03		52.16
GMW-O-3	08/01/2005	72.19		20.18		52.01
GMW-O-3	10/31/2005	72.19		20.56		51.63
GMW-O-3	02/27/2006	72.19		21.04		51.15
GMW-O-3	05/01/2006	72.19		21.09		51.10
GMW-O-3	09/18/2006	72.19		21.84		50.35
GMW-O-3	12/04/2006	72.19		22.87		49.32
GMW-0-3	03/12/2007	72.19		22.22		49.97
GMW-0-3	04/30/2007	72.19		22.16		50.03
GMW-0-3	08/28/2007	72.19		21.87		50.32
GMW-O-3	11/12/2007	72.19		22.52		49.67
GMW-O-3	02/19/2008	72.19		23.10		49.09
GMW-O-3	04/14/2008	72.19		22.83		49.36
GMW-O-3	08/11/2008	72.19		23.26		48.93
GMW-O-3	10/13/2008	74.93		23.42		51.51
GMW-O-3	04/20/2009	72.19		23.18		49.01
GMW-O-3	07/20/2009	72.19		24.21		47.98

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1 1		<u> </u>		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	40/40/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-3	10/19/2009	72.19		24.49		47.70
GMW-O-3	03/15/2010	72.19		24.77		47.42
GMW-O-3	05/24/2010	72.19		24.00		48.19
GMW-O-3	05/28/2010	72.19		23.97		48.22
GMW-O-3	10/04/2010	72.19		24.43		47.76
GMW-O-3	01/10/2011	72.19		25.17		47.02
GMW-O-3	04/11/2011	72.19		23.49		48.70
GMW-O-3	07/11/2011	72.19		23.36		48.83
GMW-O-3	10/10/2011	72.19		23.70		48.49
GMW-O-3	01/09/2012	72.19		24.29		47.90
GMW-O-3	04/16/2012	72.19		24.72		47.47
GMW-O-3	07/09/2012	72.19		25.29		46.90
GMW-O-3	10/15/2012	72.19		25.33		46.86
GMW-O-3	01/14/2013	72.19		26.32		45.87
GMW-O-3	04/08/2013	72.19		26.19		46.00
GMW-O-3	10/07/2013	72.19		26.93		45.26
GMW-O-3	04/14/2014	72.19		27.40		44.79
GMW-O-3	10/27/2014	72.19		27.79		44.40
GMW-O-3	04/20/2015	72.19		28.21		43.98
GMW-O-3	10/19/2015	72.19		28.94		43.25
GMW-O-3	04/11/2016	72.19		30.51		41.68
GMW-O-3	10/3/2016	72.19		31.45		40.74
GMW-O-4	05/28/1996	71.95		23.69		48.26
GMW-O-4	11/20/1996	71.95		24.37		47.58
GMW-O-4	07/01/1997	71.95		23.69		48.26
GMW-O-4	12/31/1997	71.95		24.25		47.70
GMW-O-4	05/01/1998	71.95		20.89		51.06
GMW-O-4	05/06/1999	71.95		22.33		49.62
GMW-O-4	08/09/1999	71.95		22.55		49.40
GMW-O-4	11/15/1999	71.95		22.91		49.04
GMW-O-4	05/15/2000	71.95		27.74		44.21
GMW-0-4	11/13/2000	71.95		23.38		48.57
GMW-0-4	05/07/2001	71.95		21.86		50.09
GMW-0-4	11/05/2001	71.95		22.29		49.66
GMW-0-4	04/08/2002	71.95		22.71		49.00
GMW-O-4	10/21/2002	71.95		23.56		48.39
GMW-O-4	04/07/2003	71.95		29.99		41.96
GMW-O-4	10/06/2003	71.95		22.75		49.20
GMW-O-4	01/11/2004	71.95		24.02		47.93
GMW-O-4	04/19/2004	71.95		24.44		47.51
GMW-O-4	05/02/2005	71.95		18.86		53.09

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-4	10/31/2005	71.95		19.91		52.04
GMW-O-4	05/01/2006	71.95		20.52		51.43
GMW-O-4	12/04/2006	71.95		21.17		50.78
GMW-O-4	04/30/2007	71.95		21.74		50.21
GMW-O-4	11/12/2007	71.95		22.10		49.85
GMW-O-4	04/14/2008	71.95		22.28		49.67
GMW-O-4	10/13/2008	71.95		22.93		49.02
GMW-O-4	04/20/2009	71.95		25.29		46.66
GMW-O-4	10/19/2009	71.95		24.14		47.81
GMW-O-4	05/24/2010	71.95		23.50		48.45
GMW-O-4	05/28/2010	71.95		23.47		48.48
GMW-O-4	10/04/2010	71.95		23.97		47.98
GMW-O-4	04/11/2011	71.95		23.00		48.95
GMW-O-4	10/10/2011	71.95		23.31		48.64
GMW-O-4	04/16/2012	71.95		24.45		47.50
GMW-O-4	10/15/2012	71.95		25.14		46.81
GMW-O-4	04/08/2013	71.95		25.88		46.07
GMW-O-4	10/07/2013	71.95		26.51		45.44
GMW-O-4	04/14/2014	71.95		26.98		44.97
GMW-O-4	10/27/2014	71.95		27.42		44.53
GMW-O-4	04/20/2015	71.95		27.79		44.16
GMW-O-4	10/19/2015	71.95		28.57		43.38
GMW-O-4	04/11/2016	71.95		29.80		42.15
GMW-O-4	10/3/2016	71.95		30.90		41.05
GMW-O-4 (MID)	05/28/1996	72.24		31.73		40.51
GMW-O-4 (MID)	11/20/1996	72.24		31.86		40.38
GMW-O-4 (MID)	07/01/1997	72.24		29.66		42.58
GMW-O-4 (MID)	12/31/1997	72.24		29.41		42.83
GMW-O-4 (MID)	05/01/1998	72.24		26.77		45.47
GMW-O-4 (MID)	05/06/1999	72.24		27.34		44.90
GMW-O-4 (MID)	08/09/1999	72.24		28.59		43.65
GMW-O-4 (MID)	11/15/1999	72.24		28.91		43.33
GMW-O-4 (MID)	05/15/2000	72.24		28.49		43.75
GMW-O-4 (MID)	11/13/2000	72.24		29.82		42.42
GMW-O-4 (MID)	05/07/2001	72.24		29.02		43.22
GMW-O-4 (MID)	11/05/2001	72.24		30.00		42.24
GMW-O-4 (MID)	04/08/2002	72.24		29.80		42.44
GMW-O-4 (MID)	10/21/2002	72.24		31.10		41.14
GMW-O-4 (MID)	04/07/2003	72.24		30.26		41.98
GMW-O-4 (MID)	10/06/2003	72.24		31.12		41.12
GMW-O-4 (MID)	01/11/2004	72.24		32.81		39.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		<u> </u>		 		•
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-4 (MID)	04/19/2004	72.24	(ICCL DIC)	37.77		34.47
GMW-O-4 (MID)	05/02/2005	72.24		29.73		42.51
GMW-O-4 (MID)	10/31/2005	72.24		30.04		42.20
GMW-O-4 (MID)	05/01/2006	72.24		28.81		43.43
` '						
GMW-O-4 (MID)	12/04/2006	72.24		29.09		43.15
GMW-O-4 (MID)	04/30/2007	72.24		28.95		43.29
GMW-O-4 (MID)	11/12/2007	72.24		29.34		42.90
GMW-O-4 (MID)	04/14/2008	72.24		30.10		42.14
GMW-O-4 (MID)	10/13/2008	72.24		31.40		40.84
GMW-O-4 (MID)	04/20/2009	72.24		31.15		41.09
GMW-O-4 (MID)	10/19/2009	72.24		32.71		39.53
GMW-O-4 (MID)	05/24/2010	72.24		31.92		40.32
GMW-O-4 (MID)	05/28/2010	72.24		31.95		40.29
GMW-O-4 (MID)	04/11/2011	72.24		31.03		41.21
GMW-O-4 (MID)	10/10/2011	72.24		31.36		40.88
GMW-O-4 (MID)	04/16/2012	72.24		31.35		40.89
GMW-O-4 (MID)	10/15/2012	72.24		32.25		39.99
GMW-O-4 (MID)	04/08/2013	72.24		32.81		39.43
GMW-O-5	05/28/1996	72.36		24.10		48.26
GMW-O-5	11/20/1996	72.36		24.88		47.48
GMW-O-5	07/01/1997	72.36		24.13		48.23
GMW-O-5	12/31/1997	72.36		24.72		47.64
GMW-O-5	05/01/1998	72.36		21.22		51.14
GMW-O-5	02/03/1999	72.36		22.11		50.25
GMW-O-5	05/03/1999	72.36		22.90		49.46
GMW-O-5	08/09/1999	72.36		23.14		49.22
GMW-O-5	11/15/1999	72.36		23.50		48.86
GMW-O-5	02/29/2000	72.36		23.55		48.81
GMW-O-5	05/15/2000	72.36		23.33		49.03
GMW-O-5	08/28/2000	72.36		23.95		48.41
GMW-O-5	11/13/2000	72.36		23.98		48.38
GMW-O-5	02/05/2001	72.36		23.66		48.70
GMW-O-5	05/07/2001	72.36		22.32		50.04
GMW-O-5	09/18/2001	72.36		22.47		49.89
GMW-O-5	11/05/2001	72.36		22.79		49.57
GMW-O-5	01/29/2002	72.36		22.83		49.53
GMW-O-5	04/08/2002	72.36		23.25		49.11
GMW-O-5	10/21/2002	72.36		24.10		48.26
GMW-0-5	01/14/2003	72.36		23.98		48.38
-		+		+		
GMW-O-5	04/07/2003	72.36		23.45		48.91
GMW-O-5	10/06/2003	72.36		23.28		49.08

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-5	01/11/2004	72.36		24.57		47.79
GMW-O-5	04/19/2004	72.36		23.94		48.42
GMW-O-5	05/02/2005	72.36		19.09		53.27
GMW-O-5	10/31/2005	72.36		20.41		51.95
GMW-O-5	05/01/2006	72.36		20.96		51.40
GMW-O-5	12/04/2006	72.36		21.86		50.50
GMW-O-5	04/30/2007	72.36		22.18		50.18
GMW-O-5	08/29/2007	72.36		28.19		44.17
GMW-O-5	11/12/2007	72.36		22.61		49.75
GMW-O-5	04/14/2008	72.36		22.72		49.64
GMW-O-5	10/13/2008	72.36		23.42		48.94
GMW-O-5	04/20/2009	72.36		23.34		49.02
GMW-O-5	10/19/2009	72.36		25.21		47.15
GMW-O-5	05/24/2010	72.36		24.02		48.34
GMW-O-5	05/28/2010	72.36		23.90		48.46
GMW-O-5	10/04/2010	72.36		24.52		47.84
GMW-O-5	04/11/2011	72.36		23.46		48.90
GMW-O-5	10/10/2011	72.36		23.93		48.43
GMW-O-5	04/16/2012	72.36		29.00		43.36
GMW-O-5	10/15/2012	72.36		25.68		46.68
GMW-O-5	04/08/2013	72.36		26.50		45.86
GMW-O-5	10/07/2013	72.36		27.00		45.36
GMW-O-5	04/14/2014	72.36		27.53		44.83
GMW-O-5	10/27/2014	72.36		27.95		44.63
GMW-O-5	04/20/2015	72.36		28.31		44.41
GMW-O-5	10/19/2015	72.36		29.09		43.27
		+		+		43.27
GMW-O-5	04/11/2016	72.36		30.30		
GMW-O-5	10/3/2016	72.36		31.43		40.93
GMW-O-6	05/28/1996	71.41		23.19		48.22
GMW-O-6	11/20/1996	71.41		23.59		47.82
GMW-O-6	07/01/1997	71.41		23.28		48.13
GMW-O-6	12/31/1997	71.41		23.78		47.63
GMW-O-6	05/01/1998	71.41		20.81		50.60
GMW-O-6	05/05/1999	71.41		21.24		50.17
GMW-O-6	08/09/1999	71.41		21.58		49.83
GMW-O-6	11/15/1999	71.41		21.98		49.43
GMW-O-6	05/15/2000	71.41		21.86		49.55
GMW-O-6	11/13/2000	71.41		27.25		44.16
GMW-O-6	05/07/2001	71.41		21.23		50.18
GMW-O-6	11/05/2001	71.41		21.55		49.86
GMW-O-6	04/08/2002	71.41		21.95		49.46

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		 				1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-6	10/21/2002	71.41		22.67		48.74
GMW-O-6	01/14/2003	71.41		22.82		48.59
GMW-O-6	04/07/2003	71.41		22.49		48.92
GMW-O-6	10/06/2003	71.41		22.02		49.39
GMW-O-6	01/11/2004	71.41		23.01		48.40
GMW-O-6	04/19/2004	71.41		22.69		48.72
GMW-O-6	05/02/2005	71.41		19.45		51.96
GMW-O-6	10/31/2005	71.41		19.74		51.67
GMW-O-6	05/01/2006	71.41		20.33		51.08
GMW-O-6	12/04/2006	71.41		20.89		50.52
GMW-O-6	04/30/2007	71.41		21.23		50.18
GMW-O-6	11/12/2007	71.41		21.55		49.86
GMW-O-6	04/14/2008	71.41		21.63		49.78
GMW-O-6	10/13/2008	71.41		22.20		49.21
GMW-O-6	04/20/2009	71.41		22.18		49.23
GMW-O-6	10/19/2009	71.41		22.98		48.43
GMW-O-6	05/24/2010	71.41		22.77		48.64
GMW-O-6	05/28/2010	71.41		22.94		48.47
GMW-O-6	10/04/2010	71.41		23.15		48.26
GMW-O-6	04/11/2011	71.41		22.48		48.93
GMW-O-6	10/10/2011	71.41		22.45		48.96
GMW-O-6	04/16/2012	71.41		23.18		48.23
GMW-O-6	10/15/2012	71.41		23.41		48.00
GMW-O-6	04/08/2013	71.41		24.36		47.05
GMW-O-6	10/07/2013	71.41		25.31		46.10
GMW-O-6	04/28/2014	71.41		25.98		45.43
GMW-O-6	10/27/2014	71.41		26.27		45.14
GMW-O-6	04/20/2015	71.41		26.10		45.31
GMW-O-6	10/19/2015	71.41		27.50		43.91
GMW-O-6	04/11/2016	71.41		28.41		43.00
GMW-O-6	10/3/2016	71.41		29.00		42.41
GMW-0-7	05/07/1999	70.98		29.00		50.81
GMW-0-7	08/09/1999	70.98		20.17		50.62
GMW-0-7	11/15/1999	70.98		20.36		50.62
				23.52		47.46
GMW-O-7	05/15/2000	70.98				
GMW-O-7	11/13/2000	70.98		21.18		49.80
GMW-O-7	05/07/2001	70.98		20.21		50.77
GMW-O-7	11/05/2001	70.98		20.51		50.47
GMW-O-7	04/08/2002	70.98		21.38		49.60
GMW-O-7	10/21/2002	70.98		21.59		49.39
GMW-O-7	04/07/2003	70.98		21.55		49.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	<u> </u>			<u> </u>		
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-7	10/06/2003	70.98		21.20		49.78
GMW-O-7	01/11/2004	70.98		22.16		48.82
GMW-O-7	04/19/2004	70.98		21.75		49.23
GMW-O-7	05/02/2005	70.98		18.83		52.15
GMW-O-7	10/31/2005	70.98		19.16		51.82
GMW-O-7	05/01/2006	70.98		19.42		51.56
GMW-O-7	12/04/2006	70.98		19.92		51.06
GMW-O-7	04/30/2007	70.98		20.32		50.66
GMW-O-7	11/12/2007	70.98		20.93		50.05
GMW-O-7	10/13/2008	70.98		21.43		49.55
GMW-O-7	04/20/2009	70.98		21.49		49.49
GMW-O-7	10/19/2009	70.98		21.91		49.07
GMW-O-7	05/24/2010	70.98		21.90		49.08
GMW-O-7	05/28/2010	70.98		21.95		49.03
GMW-O-7	10/04/2010	70.98		22.25		48.73
GMW-O-7	04/11/2011	70.98		21.59		49.39
GMW-O-7	10/10/2011	70.98		21.70		49.28
GMW-O-7	04/16/2012	70.98		22.40		48.58
GMW-O-7	10/15/2012	70.98		22.83		48.15
GMW-O-7	04/08/2013	70.98		23.90		47.08
GMW-O-7	10/07/2013	70.98		24.12		46.86
GMW-O-7	04/14/2014	70.98		24.90		46.08
GMW-O-7	10/27/2014	70.98		25.59		45.39
GMW-O-7	04/20/2015	70.98		26.09		44.89
GMW-O-7	10/19/2015	70.98		26.63		44.35
GMW-O-7	04/11/2016	70.98		27.40		43.58
GMW-O-7	10/3/2016	70.98		28.10		42.88
GMW-O-8	05/28/1996	70.91		23.35		47.56
GMW-O-8	11/20/1996	70.91		23.49		47.42
GMW-O-8	07/01/1997	70.91		23.25		47.66
GMW-O-8	12/31/1997	70.91		23.89		47.02
GMW-O-8	05/01/1998	70.91		21.52		49.39
GMW-O-8	05/03/1999	70.91		21.00		49.91
GMW-O-8	08/09/1999	70.91		21.20		49.71
GMW-O-8	11/15/1999	70.91		21.48		49.43
GMW-O-8	05/15/2000	70.91		21.60		49.31
GMW-O-8	11/13/2000	70.91		29.81		41.10
GMW-O-8	05/07/2001	70.91		21.30		49.61
GMW-O-8	11/05/2001	70.91		21.13		49.78
GMW-O-8	04/08/2002	70.91		21.36		49.55
GMW-O-8	10/21/2002	70.91		22.00		48.91

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		, , , , , , , , , , , , , , , , , , , 				1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-8	01/14/2003	70.91		22.25		48.66
GMW-O-8	04/07/2003	70.91		22.19		48.72
GMW-O-8	10/06/2003	70.91		21.76		49.15
GMW-O-8	01/11/2004	70.91		22.58		48.33
GMW-O-8	04/19/2004	70.91		22.33		48.58
GMW-O-8	05/02/2005	70.91		20.09		50.82
GMW-O-8	10/31/2005	70.91		19.38		51.53
GMW-O-8	05/01/2006	70.91		19.77		51.14
GMW-O-8	12/04/2006	70.91		20.17		50.74
GMW-O-8	04/30/2007	70.91		20.54		50.37
GMW-O-8	11/12/2007	70.91		20.91		50.00
GMW-O-8	04/14/2008	70.91		21.27		49.64
GMW-O-8	10/13/2008	70.91		21.57		49.34
GMW-O-8	04/20/2009	70.91		21.80		49.11
GMW-O-8	10/19/2009	70.91		22.41		48.50
GMW-O-8	05/24/2010	70.91		22.50		48.41
GMW-O-8	05/28/2010	70.91		22.41		48.50
GMW-O-8	10/04/2010	70.91		22.60		48.31
GMW-O-8	04/11/2011	70.91		22.24		48.67
GMW-O-8	10/10/2011	70.91		21.71		49.20
GMW-O-8	04/16/2012	70.91		22.54		48.37
GMW-O-8	10/15/2012	70.91		22.87		48.04
GMW-O-8	04/08/2013	70.91		23.64		47.27
GMW-O-8	10/07/2013	70.91		24.53		46.38
GMW-O-8	04/14/2014	70.91		25.21		45.70
GMW-O-8	10/27/2014	70.91		25.74		45.17
GMW-O-8	04/20/2015	70.91		26.39		44.52
GMW-O-8	10/19/2015	70.91		27.53		43.38
GMW-O-8	04/11/2016	70.91		28.47		42.44
GMW-O-8	10/3/2016	70.91		29.51		41.40
GMW-O-9	05/28/1996	73.50		25.93		47.57
GMW-O-9	11/20/1996	73.50		26.53		46.97
GMW-O-9	07/01/1997	73.50		26.90		46.60
GMW-O-9	12/31/1997	73.50		26.30		47.20
GMW-O-9	05/01/1998	73.50		24.05		49.45
GMW-O-9	05/04/1999	73.50		24.39		49.11
GMW-O-9	08/09/1999	73.50		24.96		48.54
GMW-O-9	11/15/1999	73.50		24.91		48.59
GMW-O-9	05/15/2000	73.50		24.93		48.57
GMW-O-9	11/13/2000	73.50		25.61		47.89
GMW-O-9	05/07/2001	73.50		24.54		48.96

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01414 0 0	44/05/0004	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-9	11/05/2001	73.50		24.55		48.95
GMW-O-9	04/08/2002	73.50		30.07		43.43
GMW-O-9	10/21/2002	73.50		25.62		47.88
GMW-O-9	04/07/2003	73.50		25.13		48.37
GMW-O-9	10/06/2003	73.50		24.92		48.58
GMW-O-9	01/11/2004	73.50		26.12		47.38
GMW-O-9	04/19/2004	73.50		25.74		47.76
GMW-O-9	05/02/2005	73.50		22.61		50.89
GMW-O-9	10/31/2005	73.50		22.14		51.36
GMW-O-9	05/05/2006	73.50		23.61		49.89
GMW-O-9	12/04/2006	73.50		23.84		49.66
GMW-O-9	04/30/2007	73.50		23.52		49.98
GMW-O-9	11/12/2007	73.50		23.94		49.56
GMW-O-9	04/14/2008	73.50		24.31		49.19
GMW-O-9	10/13/2008	73.50		24.71		48.79
GMW-O-9	04/20/2009	73.50		24.86		48.64
GMW-O-9	10/19/2009	73.50		25.86		47.64
GMW-O-9	05/24/2010	73.50		25.57		47.93
GMW-O-9	05/28/2010	73.50		25.50		48.00
GMW-O-9	10/04/2010	73.50		25.89		47.61
GMW-O-9	01/10/2011	73.50		26.69		46.81
GMW-O-9	04/11/2011	73.50		25.17		48.33
GMW-O-9	10/10/2011	73.50		25.16		48.34
GMW-O-9	01/09/2012	73.50		26.02		47.48
GMW-O-9	04/16/2012	73.50		26.13		47.37
GMW-O-9	07/09/2012	73.50		26.91		46.59
GMW-O-9	10/15/2012	73.50		26.74		46.76
GMW-O-9	01/14/2013	73.50		26.82		46.68
GMW-O-9	04/08/2013	73.50		27.63		45.87
GMW-O-9	10/07/2013	73.50		28.31		45.19
GMW-O-9	04/14/2014	73.50		28.81		44.69
GMW-O-9	10/27/2014	73.50		29.24		44.09
GMW-O-9		73.50				
	04/20/2015	+		29.75		43.75
GMW-O-9	10/19/2015	73.50		30.33		43.17
GMW-O-9	04/11/2016	73.50		31.62		41.88
GMW-O-9	10/3/2016	73.50		33.03		40.47
GMW-O-10	05/28/1996	73.98		26.49		47.49
GMW-O-10	11/20/1996	73.98		27.10		46.88
GMW-O-10	07/01/1997	73.98		28.23		45.75
GMW-O-10	12/31/1997	73.98		27.94		46.04
GMW-O-10	05/01/1998	73.98		24.56		49.42

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		, , , , , , , , , , , , , , , , , , , 				1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-10	05/07/1999	73.98		25.10		48.88
GMW-O-10	08/09/1999	73.98		26.10		47.88
GMW-O-10	11/15/1999	73.98		25.67		48.31
GMW-O-10	11/13/2000	73.98		26.54		47.44
GMW-O-10	05/07/2001	73.98		25.23		48.75
GMW-O-10	11/05/2001	73.98		25.22		48.76
GMW-O-10	04/08/2002	73.98		25.35		48.63
GMW-O-10	10/21/2002	73.98		26.39		47.59
GMW-O-10	04/07/2003	73.98		25.64		48.34
GMW-O-10	07/30/2003	73.98		25.60		48.38
GMW-O-10	10/06/2003	73.98		25.67		48.31
GMW-O-10	01/11/2004	73.98		26.96		47.02
GMW-O-10	04/19/2004	73.98		26.60		47.38
GMW-O-10	05/02/2005	73.98		23.71		50.27
GMW-O-10	10/31/2005	73.98		22.65		51.33
GMW-O-10	05/05/2006	73.98		22.33		51.65
GMW-O-10	12/04/2006	73.98		23.24		50.74
GMW-O-10	04/30/2007	73.98		24.07		49.91
GMW-O-10	11/12/2007	73.98		24.45		49.53
GMW-O-10	04/14/2008	73.98		24.83		49.15
GMW-O-10	08/11/2008	73.98		25.22		48.76
GMW-O-10	10/13/2008	73.98		25.25		48.73
GMW-O-10	04/20/2009	73.98		25.58		48.40
GMW-O-10	10/19/2009	73.98		26.72		47.26
GMW-O-10	05/24/2010	73.98		26.92		47.06
GMW-O-10	05/28/2010	73.98		29.10		44.88
GMW-O-10	10/04/2010	73.98		26.48		47.50
GMW-O-10	01/10/2011	73.98		27.30		46.68
GMW-O-10	04/11/2011	73.98		25.72		48.26
GMW-O-10	10/10/2011	73.98		26.29		47.69
GMW-O-10	01/09/2012	73.98		26.82		47.16
GMW-O-10	04/16/2012	73.98		26.90		47.08
GMW-O-10	07/09/2012	73.98		27.81		46.17
GMW-O-10	10/15/2012	73.98		28.40		45.58
GMW-O-10	01/14/2013	73.98		28.57		45.41
GMW-O-10	04/08/2013	73.98		26.31		47.67
GMW-O-10	10/07/2013	73.98		29.17		44.81
GMW-O-10	04/14/2014	73.98		29.17		44.50
GMW-O-10	10/27/2014	73.98		29.46		44.05
GMW-O-10	04/20/2015	73.98		30.52		43.46
GMW-O-10	10/19/2015	73.98		31.17		42.81

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-10	04/11/2016	73.98		32.23		41.75
GMW-O-10	10/3/2016	73.98		33.13		40.85
GMW-O-11	04/08/2002	74.17		23.96		50.21
GMW-O-11	04/19/2004	74.17		27.40		46.77
GMW-O-11	05/02/2005	74.17	22.46	22.48	0.02	NC
GMW-O-11	10/31/2005	74.17	21.73	21.92	0.19	NC
GMW-O-11	05/01/2006	74.17		21.51		52.66
GMW-O-11	12/04/2006	74.17		22.38		51.79
GMW-O-11	04/30/2007	74.17	23.90	23.91	0.01	NC
GMW-O-11	11/12/2007	74.17		24.40		49.77
GMW-O-11	08/15/2008	74.17		29.30		44.87
GMW-O-11	10/17/2008	74.17		24.45		49.72
GMW-O-11	04/21/2009	74.17	25.34	25.36	0.02	NC
GMW-O-11	10/04/2010	74.17		30.00		44.17
GMW-O-11	04/13/2011	74.17		24.19		49.98
GMW-O-11	10/10/2011	74.17		24.38		49.79
GMW-O-11	10/15/2012	74.17		28.12		46.05
GMW-O-11	10/07/2013	74.17	27.69	31.19	3.50	NC
GMW-O-11	04/25/2014	74.17	28.62	28.96	0.34	NC
GMW-O-11	10/27/2014	74.17	28.89	31.28	2.39	NC
GMW-O-11	11/03/2014	74.17	27.83	32.34	4.51	NC
GMW-O-11	04/22/2015	74.17	28.10	31.54	3.44	NC
GMW-O-11	10/22/2015	74.17	29.23	33.08	3.85	NC
GMW-O-11	04/12/2016	74.17	33.12	33.33	0.21	NC
GMW-O-11	10/6/2016	74.17	32.71	32.72	0.01	NC
GMW-O-12	12/31/1997	73.49	25.45	31.02	5.57	NC
GMW-O-12	05/01/1998	73.49	19.94	22.69	2.75	NC
GMW-O-12	05/04/1999	73.49	22.99	24.63	1.64	NC
GMW-O-12	11/13/2000	73.49		0.70		72.79
GMW-0-12	05/07/2001	73.49		22.28		51.21
GMW-0-12	05/10/2001	73.49		24.25		49.24
GMW-0-12	11/05/2001	73.49		22.63		50.86
GMW-0-12	04/08/2002	73.49		23.81		49.68
GMW-O-12	10/06/2003	73.49		24.82		49.66
GMW-0-12 GMW-0-12						
GMW-O-12	04/19/2004	73.49		26.91 21.79		46.58 51.70
	05/02/2005	73.49				
GMW-O-12	10/31/2005	73.49		26.67		46.82
GMW-O-12	05/01/2006	73.49		21.80		51.69
GMW-O-12	12/04/2006	73.49		22.58		50.91
GMW-O-12	04/30/2007	73.49		22.81		50.68
GMW-O-12	11/12/2007	73.49		23.13		50.36

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				,		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-12	04/14/2008	73.49	(leet bic)	23.36		50.13
		+				
GMW-O-12	10/13/2008	73.49		24.20		49.29
GMW-O-12	04/20/2009	73.49		24.21		49.28
GMW-O-12	10/19/2009	73.49		25.08		48.41
GMW-O-12	05/24/2010	73.49		24.80		48.69
GMW-O-12	05/28/2010	73.49		24.74		48.75
GMW-O-12	10/04/2010	73.49	25.20	25.31	0.11	NC
GMW-O-12	04/11/2011	73.49		24.04		49.45
GMW-O-12	10/10/2011	73.49		24.68		48.81
GMW-O-12	01/09/2012	73.49		25.12		48.37
GMW-O-12	04/16/2012	73.49		25.40		48.09
GMW-O-12	07/09/2012	73.49		26.96		46.53
GMW-O-12	10/15/2012	73.49	25.44	25.48	0.04	NC
GMW-O-12	01/14/2013	73.49	25.58	25.62	0.04	NC
GMW-O-12	04/08/2013	73.49	26.51	26.60	0.09	NC
GMW-O-12	10/07/2013	73.49	27.28	27.34	0.06	NC
GMW-O-12	04/14/2014	73.49	26.80	30.34	3.54	NC
GMW-O-12	10/27/2014	73.49	26.90	31.28	4.38	NC
GMW-O-12	04/20/2015	73.49	26.91	33.35	6.44	NC
GMW-O-12	10/19/2015	73.49	27.82	34.65	6.83	NC
GMW-O-12	10/30/2015	73.49	28.11	39.38	11.27	NC
GMW-O-12	04/11/2016	73.49	26.86	33.35	6.49	NC
GMW-O-12	10/3/2016	73.49	31.90	34.20	2.30	NC
GMW-O-13	05/28/1996	74.19	25.84	27.69	1.85	NC
GMW-O-13	11/20/1996	74.19	26.48	28.92	2.44	NC
GMW-O-13	07/01/1997	74.19	26.55	28.87	2.32	NC
GMW-O-13	12/31/1997	74.19	26.83	28.91	2.08	NC
GMW-O-13	05/01/1998	74.19	22.55	23.06	0.51	NC
GMW-O-13	05/04/1999	74.19	24.46	25.78	1.32	NC
GMW-O-13	08/09/1999	74.19		25.20		48.99
GMW-O-13	04/08/2002	74.19		25.47		48.72
GMW-O-14	05/28/1996	74.08		26.03		48.05
GMW-O-14	11/20/1996	74.08		25.52		48.56
GMW-O-14	07/01/1997	74.08		26.39		47.69
GMW-O-14	12/31/1997	74.08	25.03	25.06	0.03	NC
GMW-O-14	05/01/1998	74.08	25.05	23.72		50.36
GMW-0-14	08/09/1999	74.08		25.04		49.04
GMW-0-14	05/15/2000	74.08		26.67		47.41
GMW-O-14	11/13/2000	74.08		25.85		48.23
		+				
GMW-O-14 GMW-O-14	05/07/2001 11/05/2001	74.08 74.08		24.34 24.65		49.74 49.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-14	04/08/2002	74.08		25.19		48.89
GMW-O-14	07/29/2002	74.08		25.65		48.43
GMW-O-14	10/21/2002	74.08		26.00		48.08
GMW-O-14	01/27/2003	74.08		25.64		48.44
GMW-O-14	04/07/2003	74.08		25.36		48.72
GMW-O-14	07/30/2003	74.08		25.14		48.94
GMW-O-14	10/06/2003	74.08		25.12		48.96
GMW-O-14	01/11/2004	74.08		26.31		47.77
GMW-O-14	01/27/2004	74.08		25.58		48.50
GMW-O-14	04/19/2004	74.08		26.02		48.06
GMW-O-14	07/19/2004	74.08		26.01		48.07
GMW-O-14	02/01/2005	74.08		25.08		49.00
GMW-O-14	05/02/2005	74.08		21.41		52.67
GMW-O-14	08/01/2005	74.08		21.39		52.69
GMW-O-14	10/31/2005	74.08		21.90		52.18
GMW-O-14	02/27/2006	74.08		22.64		51.44
GMW-O-14	05/01/2006	74.08		22.58		51.50
GMW-O-14	09/18/2006	74.08		23.18		50.90
GMW-O-14	12/04/2006	74.08		23.36		50.72
GMW-O-14	03/12/2007	74.08		23.81		50.27
GMW-O-14	04/30/2007	74.08		23.57		50.51
GMW-O-14	08/28/2007	74.08		22.45		51.63
GMW-O-14	11/12/2007	74.08		23.97		50.11
GMW-O-14	02/19/2008	74.08		24.84		49.24
GMW-O-14	04/14/2008	74.08		24.53		49.55
GMW-O-14	08/11/2008	74.08		25.07		49.01
GMW-O-14	10/13/2008	74.08		25.20		48.88
GMW-0-14	04/20/2009	74.08		25.33		48.75
GMW-O-14	07/20/2009	74.08		26.31		47.77
GMW-O-14	10/19/2009	74.08		26.24		47.84
GMW-O-14	03/15/2010	74.08		26.71		47.37
GMW-O-14	05/24/2010	74.08		26.11		47.97
GMW-O-14	05/24/2010	74.08		26.11		47.97
GMW-O-14	10/04/2010	74.08		26.04		48.04
GMW-O-14	01/10/2011	74.08		27.12		46.96
GMW-O-14	04/11/2011	74.08		25.25		48.83
	04/11/2011			25.25		
GMW-O-14		74.08		1		49.31
GMW-O-14 GMW-O-14	10/10/2011	74.08 74.08		25.16		48.92 47.94
	01/09/2012	1		26.14		
GMW-O-14 GMW-O-14	04/16/2012 07/09/2012	74.08 74.08		26.94 27.51		47.14 46.57

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						_
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation (feet MSL)
GMW-O-14	10/15/2012		(leet bic)		(feet)	46.12
		74.08		27.96		
GMW-O-14	01/14/2013	74.08		28.32		45.76
GMW-O-14	04/08/2013	74.08		28.83		45.25
GMW-O-14	10/07/2013	74.08		28.84		45.24
GMW-O-14	04/14/2014	74.08		29.36		44.72
GMW-O-14	10/27/2014	74.08		29.84		44.24
GMW-O-14	04/20/2015	74.08		30.32		43.76
GMW-O-14	10/19/2015	74.08		30.98		43.10
GMW-O-14	04/11/2016	74.08		32.34		41.74
GMW-O-14	10/3/2016	74.08		34.08		40.00
GMW-O-15	05/28/1996	74.23	24.19	30.19	6.00	NC
GMW-O-15	11/20/1996	74.23	25.30	30.52	5.22	NC
GMW-O-15	05/15/2000	74.23		27.10		47.13
GMW-O-15	05/07/2001	74.23	22.62	24.58	1.96	NC
GMW-O-15	04/08/2002	74.23	23.02	27.51	4.49	NC
GMW-O-15	10/21/2002	74.23	24.52	24.71	0.19	NC
GMW-O-15	05/02/2005	74.23	21.01	21.15	0.14	NC
GMW-O-15	10/31/2005	74.23	22.10	22.25	0.15	NC
GMW-O-15	05/22/2006	74.23	21.89	22.31	0.42	NC
GMW-O-15	12/04/2006	74.23	22.86	22.91	0.05	NC
GMW-O-15	04/30/2007	74.23	23.30	23.41	0.11	NC
GMW-O-15	11/12/2007	74.23	23.85	23.95	0.10	NC
GMW-O-15	04/14/2008	74.23		23.64		50.59
GMW-O-15	08/08/2008	74.23		24.60		49.63
GMW-O-15	08/11/2008	74.23	24.34	24.40	0.06	NC
GMW-O-15	10/16/2008	74.23		24.53		49.70
GMW-O-15	04/20/2009	74.23	24.61	24.66	0.05	NC
GMW-O-15	07/20/2009	74.23	24.94	24.99	0.05	NC
GMW-O-15	10/19/2009	74.23	25.43	25.55	0.12	NC
GMW-O-15	04/16/2010	74.23		23.10		51.13
GMW-O-15	05/24/2010	74.23		25.67		48.56
GMW-O-15	05/28/2010	74.23		25.35		48.88
GMW-O-15	06/22/2010	74.23		25.81		48.42
GMW-O-15	10/04/2010	74.23	25.80	25.85	0.05	NC
GMW-O-15	12/22/2010	74.23		26.31		47.92
GMW-O-15	01/10/2011	74.23		25.97		48.26
GMW-O-15	04/12/2011	74.23	22.53	22.55	0.02	NC
GMW-O-15	10/10/2011	74.23	23.22	23.79	0.57	NC
GMW-O-15	12/21/2011	74.23		31.13		43.10
GMW-O-15	01/09/2012	74.23		27.67		46.56
GMW-O-15	02/23/2012	74.23		31.82		42.41

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-15	03/28/2012	74.23		30.30		43.93
GMW-O-15	04/16/2012	74.23	26.51	26.56	0.05	NC
GMW-O-15	05/25/2012	74.23		26.64		47.59
GMW-O-15	06/15/2012	74.23		26.93		47.30
GMW-O-15	07/09/2012	74.23		25.47		48.76
GMW-O-15	09/26/2012	74.23		30.64		43.59
GMW-O-15	10/15/2012	74.23		31.82		42.41
GMW-O-15	12/26/2012	74.23		27.41		46.82
GMW-O-15	01/14/2013	74.23		27.62		46.61
GMW-O-15	04/26/2013	74.23		27.90		46.33
GMW-O-15	10/07/2013	74.23	28.26	29.03	0.77	NC
GMW-O-15	04/18/2014	74.23	28.08	28.40	0.32	NC
GMW-O-15	10/27/2014	74.23	28.30	31.89	3.59	NC
GMW-O-15	04/20/2015	74.23	28.82	31.93	3.11	NC
GMW-O-15	10/19/2015	74.23	28.89	31.91	3.02	NC
GMW-O-15	04/12/2016	74.23		29.78		44.45
GMW-O-15	10/3/2016	74.23	30.92	31.00	0.08	NC
GMW-O-16	05/28/1996	74.10		24.92		49.18
GMW-O-16	11/20/1996	74.10		25.89		48.21
GMW-O-16	07/01/1997	74.10		24.16		49.94
GMW-O-16	05/04/1999	74.10		23.19		50.91
GMW-O-16	08/09/1999	74.10		24.27		49.83
GMW-O-16	11/15/1999	74.10		25.02		49.08
GMW-O-16	05/15/2000	74.10		24.44		49.66
GMW-O-16	11/13/2000	74.10		25.71		48.39
GMW-O-16	05/07/2001	74.10		23.15		50.95
GMW-O-16	11/05/2001	74.10		23.16		50.94
GMW-O-16	04/08/2002	74.10		24.25		49.85
GMW-O-16	10/21/2002	74.10		25.72		48.38
GMW-O-16	04/07/2003	74.10		24.59		49.51
GMW-O-16	10/06/2003	74.10		24.55		49.55
GMW-O-16	01/11/2004	74.10		28.00		46.10
GMW-O-16	04/19/2004	74.10		24.98		49.12
GMW-O-16	07/20/2004	74.10		25.37		48.73
GMW-O-16	05/02/2005	74.10		19.48		54.62
GMW-O-16	08/01/2005	74.10		20.45		53.65
GMW-O-16	10/31/2005	74.10		21.04		53.06
GMW-O-16	02/27/2006	74.10		22.31		51.79
GMW-O-16	05/01/2006	74.10		22.36		51.74
GMW-O-16	09/18/2006	74.10		23.19		50.91
GMW-O-16	12/04/2006	74.10		23.33		50.77

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1		T		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation
CMW 0.16	04/20/2007		(feet btc)	`	(feet)	(feet MSL)
GMW-O-16	04/30/2007	74.10		23.82		50.28
GMW-O-16	11/12/2007	74.10		24.35		49.75
GMW-O-16	02/19/2008	74.10		24.69		49.41
GMW-O-16	04/14/2008	74.10		24.08		50.02
GMW-O-16	10/13/2008	74.10		25.12		48.98
GMW-O-16	04/20/2009	74.10		25.20		48.90
GMW-O-16	10/19/2009	74.10		25.81		48.29
GMW-O-16	03/15/2010	74.10		26.30		47.80
GMW-O-16	04/16/2010	74.10		25.20		48.90
GMW-O-16	05/24/2010	74.10		25.14		48.96
GMW-O-16	05/28/2010	74.10		25.13		48.97
GMW-O-16	06/22/2010	74.10		25.55		48.55
GMW-O-16	07/12/2010	74.10		26.28		47.82
GMW-O-16	08/12/2010	74.10		26.43		47.67
GMW-O-16	09/20/2010	74.10		26.95		47.15
GMW-O-16	10/04/2010	74.10		26.10		48.00
GMW-O-16	11/16/2010	74.10		26.58		47.52
GMW-O-16	12/22/2010	74.10		27.00		47.10
GMW-O-16	01/10/2011	74.10		26.42		47.68
GMW-O-16	02/24/2011	74.10		26.02		48.08
GMW-O-16	03/23/2011	74.10		25.99		48.11
GMW-O-16	04/11/2011	74.10		24.66		49.44
GMW-O-16	05/13/2011	74.10		25.76		48.34
GMW-O-16	06/22/2011	74.10		25.89		48.21
GMW-O-16	07/11/2011	74.10		26.00		48.10
GMW-O-16	08/19/2011	74.10		25.63		48.47
GMW-O-16	09/22/2011	74.10		26.32		47.78
GMW-O-16	10/10/2011	74.10		25.53		48.57
GMW-O-16	11/28/2011	74.10		26.42		47.68
GMW-O-16	12/21/2011	74.10		27.05		47.05
GMW-O-16	01/09/2012	74.10		26.98		47.12
GMW-O-16	02/23/2012	74.10		27.56		46.54
GMW-O-16	03/28/2012	74.10		27.50		46.60
GMW-O-16	04/16/2012	74.10		26.62		47.48
GMW-O-16	05/25/2012	74.10		26.81		47.29
GMW-O-16	06/15/2012	74.10		27.27		46.83
GMW-O-16	07/09/2012	74.10		27.12		46.98
GMW-O-16	08/29/2012	74.10		28.10		46.00
GMW-O-16	09/26/2012	74.10		28.46		45.64
GMW-O-16	10/15/2012	74.10		27.38		46.72
GMW-O-16	11/29/2012	74.10		28.61		45.49

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		, 				
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-16	12/26/2012	74.10		28.52		45.58
GMW-O-16	01/14/2013	74.10		28.72		45.38
GMW-O-16	02/20/2013	74.10		28.56		45.54
GMW-O-16	04/08/2013	74.10		28.61		45.49
GMW-O-16	10/07/2013	74.10		28.48		45.62
GMW-O-16	04/14/2014	74.10		28.85		45.25
GMW-O-16	10/27/2014	74.10		29.30		44.80
GMW-O-16	04/20/2015	74.10		29.69		44.41
GMW-O-16	10/19/2015	74.10		30.41		43.69
GMW-O-16	04/11/2016	74.10		31.30		42.80
GMW-O-16	10/3/2016	74.10		32.00		42.10
GMW-O-17	05/28/1996	73.78		24.72		49.06
GMW-O-17	11/20/1996	73.78		25.55		48.23
GMW-O-17	07/01/1997	73.78		23.84		49.94
GMW-O-17	12/31/1997	73.78		25.31		48.47
GMW-O-17	05/01/1998	73.78		20.49		53.29
GMW-O-17	05/03/1999	73.78		23.12		50.66
GMW-O-17	08/09/1999	73.78		23.50		50.28
GMW-O-17	11/15/1999	73.78		24.11		49.67
GMW-O-17	05/15/2000	73.78		23.70		50.08
GMW-O-17	11/13/2000	73.78		24.62		49.16
GMW-O-17	05/07/2001	73.78		22.39		51.39
GMW-O-17	11/05/2001	73.78		23.13		50.65
GMW-O-17	04/08/2002	73.78		23.69		50.09
GMW-O-17	10/21/2002	73.78		24.90		48.88
GMW-0-17	04/07/2003	73.78		24.05		49.73
GMW-O-17	10/06/2003	73.78		23.19		50.59
GMW-O-17	01/11/2004	73.78		25.39		48.39
GMW-O-17	04/19/2004	73.78		24.46		49.32
GMW-O-17	05/02/2005	73.78		19.51		54.27
GMW-O-17	10/31/2005	73.78		20.03		53.75
GMW-O-17	05/01/2006	73.78		20.75		53.03
GMW-O-17		73.78		20.75		51.10
	12/04/2006 04/30/2007					51.10
GMW-O-17		73.78		23.19		
GMW-O-17	11/12/2007	73.78		23.90		49.88
GMW-O-17	04/14/2008	73.78		23.55		50.23
GMW-O-17	08/11/2008	73.78		24.14		49.64
GMW-O-17	10/13/2008	73.78		24.60		49.18
GMW-O-17	04/20/2009	73.78		24.48		49.30
GMW-O-17	05/24/2010	73.78		24.78		49.00
GMW-O-17	05/28/2010	73.78		28.75		45.03

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						•
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01414 0 47	40/04/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-17	10/04/2010	73.78		25.60		48.18
GMW-O-17	01/10/2011	73.78		25.64		48.14
GMW-O-17	04/11/2011	73.78		24.11		49.67
GMW-O-17	10/10/2011	73.78		24.71		49.07
GMW-O-17	01/09/2012	73.78		25.32		48.46
GMW-O-17	04/16/2012	73.78		26.10		47.68
GMW-O-17	07/09/2012	73.78		26.42		47.36
GMW-O-17	10/15/2012	73.78		26.62		47.16
GMW-O-17	01/14/2013	73.78		27.48		46.30
GMW-O-17	04/08/2013	73.78		27.48		46.30
GMW-O-17	10/07/2013	73.78		28.21		45.57
GMW-O-17	04/14/2014	73.78		28.25		45.53
GMW-O-17	10/27/2014	73.78		28.84		44.94
GMW-O-17	04/20/2015	73.78		28.96		44.82
GMW-O-17	10/19/2015	73.78		29.95		43.83
GMW-O-17	04/11/2016	73.78		30.55		43.23
GMW-O-17	10/3/2016	73.78		31.10		42.68
GMW-O-18	05/28/1996	74.36		25.67		48.69
GMW-O-18	11/20/1996	74.36		26.70		47.66
GMW-O-18	12/31/1997	74.36		26.48		47.88
GMW-O-18	05/01/1998	74.36		29.04		45.32
GMW-O-18	05/04/1999	74.36		24.02		50.34
GMW-O-18	08/09/1999	74.36		24.91		49.45
GMW-O-18	11/15/1999	74.36		25.56		48.80
GMW-O-18	05/15/2000	74.36		29.17		45.19
GMW-O-18	05/07/2001	74.36		24.10		50.26
GMW-O-18	04/08/2002	74.36	24.81	24.81	sheen	49.55
GMW-O-18	05/02/2005	74.36		20.13		54.23
GMW-O-18	10/31/2005	74.36		21.79		52.57
GMW-O-18	05/01/2006	74.36		22.60		51.76
GMW-O-18	12/04/2006	74.36		23.61		50.75
GMW-O-18	04/30/2007	74.36		24.21		50.15
GMW-O-18	11/12/2007	74.36		22.46		51.90
GMW-O-18	04/14/2008	74.36		24.50		49.86
GMW-O-18	10/13/2008	74.36		25.46		48.90
GMW-O-18	04/20/2009	74.36		25.59		48.77
GMW-O-18	10/19/2009	74.36		26.31		48.05
				+		
GMW-O-18	03/15/2010	74.36		26.54		47.82
GMW-O-18	04/16/2010	74.36		24.25		50.11
GMW-O-18	05/24/2010	74.36		26.26		48.10
GMW-O-18	05/28/2010	74.36		26.03		48.33

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-O-18	06/22/2010	74.36		26.41		47.95
GMW-O-18	10/04/2010	74.36		29.95		44.41
GMW-O-18	10/10/2011	74.36		23.68		50.68
GMW-O-18	12/21/2011	74.46		27.14		47.32
GMW-O-18	02/23/2012	74.36		31.18		43.18
GMW-O-18	04/16/2012	74.36		27.10		47.26
GMW-O-18	05/25/2012	74.36		27.31		47.05
GMW-O-18	06/15/2012	74.36		35.13		39.23
GMW-O-18	07/09/2012	74.36		29.51		44.85
GMW-O-18	09/26/2012	74.36		30.83		43.53
GMW-O-18	10/15/2012	74.36		29.73		44.63
GMW-O-18	12/26/2012	74.36		28.87		45.49
GMW-O-18	01/14/2013	74.36		28.92		45.44
GMW-O-18	04/10/2013	74.36		28.10		46.26
GMW-O-18	10/07/2013	74.36		26.67		47.69
GMW-O-18	04/18/2014	74.36	29.37	29.43	0.06	NC
GMW-O-18	10/27/2014	74.36	29.52	29.95	0.43	NC
GMW-O-18	04/20/2015	74.36		28.53		45.83
GMW-O-18	10/19/2015	74.36		30.90		43.46
GMW-O-18	04/12/2016	74.36		31.63		42.73
GMW-O-18	12/13/2016	74.36	31.01	35.95	4.94	NC
GMW-O-19	05/28/1996	74.46		25.29		49.17
GMW-O-19	11/20/1996	74.46		26.28		48.18
GMW-O-19	07/01/1997	74.46		24.70		49.76
GMW-O-19	12/31/1997	74.46		25.92		48.54
GMW-O-19	08/09/1999	74.46		24.09		50.37
GMW-O-19	11/15/1999	74.46		24.82		49.64
GMW-O-19	05/15/2000	74.46		24.43		50.03
GMW-O-19	09/18/2001	74.46		23.07		51.39
GMW-O-19	11/05/2001	74.46		23.15		51.31
GMW-O-19	01/29/2002	74.46		23.25		51.21
GMW-O-19	04/08/2002	74.46		23.16		51.30
GMW-O-19	10/21/2002	74.46		23.34		51.12
GMW-O-19	04/07/2003	74.46		23.50		50.96
GMW-O-19	07/30/2003	74.46		24.29		50.17
GMW-O-19	10/06/2003	74.46		24.54		49.92
GMW-O-19	01/11/2004	74.46		26.02		48.44
GMW-O-19	04/19/2004	74.46		25.04		49.42
				1		
GMW-O-19	07/20/2004	74.46		25.35		49.11
GMW-O-19 GMW-O-19	05/02/2005 08/01/2005	74.46 74.46		20.05 20.82		54.41 53.64

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				T		•
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation (feet MSL)
GMW-O-19	10/21/2005	 	(leet bic)	21.36	(feet)	
-	10/31/2005	74.46				53.10
GMW-O-19	02/27/2006	74.46		22.06		52.40
GMW-O-19	05/01/2006	74.46		22.35		52.11
GMW-O-19	12/04/2006	74.46		23.32		51.14
GMW-O-19	04/30/2007	74.46		23.98		50.48
GMW-O-19	11/12/2007	74.46		24.57		49.89
GMW-O-19	04/14/2008	74.46		24.24		50.22
GMW-O-19	10/13/2008	74.46		25.36		49.10
GMW-O-19	04/20/2009	74.46		25.22		49.24
GMW-O-19	10/19/2009	74.46		26.26		48.20
GMW-O-19	03/15/2010	74.46		26.16		48.30
GMW-O-19	04/16/2010	74.46		25.30		49.16
GMW-O-19	05/24/2010	74.46		25.53		48.93
GMW-O-19	05/28/2010	74.46		25.47		48.99
GMW-O-19	06/22/2010	74.46		25.64		48.82
GMW-O-19	07/12/2010	74.46		26.04		48.42
GMW-O-19	08/12/2010	74.46		26.23		48.23
GMW-O-19	09/20/2010	74.46		26.52		47.94
GMW-O-19	10/04/2010	74.46		26.31		48.15
GMW-O-19	11/16/2010	74.46		26.67		47.79
GMW-O-19	12/22/2010	74.46		26.70		47.76
GMW-O-19	01/10/2011	74.46		26.37		48.09
GMW-O-19	02/24/2011	74.46		25.55		48.91
GMW-O-19	03/23/2011	74.46		25.29		49.17
GMW-O-19	04/11/2011	74.46		24.75		49.71
GMW-O-19	05/13/2011	74.46		25.11		49.35
GMW-O-19	06/22/2011	74.46		25.27		49.19
GMW-O-19	07/11/2011	74.46		25.42		49.04
GMW-O-19	08/19/2011	74.46		25.32		49.14
GMW-O-19	09/22/2011	74.46		25.82		48.64
GMW-O-19	10/10/2011	74.46		25.40		49.06
GMW-O-19	11/28/2011	74.46		25.96		48.50
GMW-O-19	12/21/2011	74.46		26.43		48.03
GMW-O-19	01/09/2012	74.46		26.56		47.90
GMW-O-19	02/23/2012	74.46		27.08		47.38
GMW-O-19	03/28/2012	74.46		27.14		47.32
GMW-O-19	04/16/2012	74.46		26.88		47.58
GMW-O-19	05/25/2012	74.46		27.01		47.45
GMW-O-19	06/15/2012	74.46		27.23		47.43
GMW-O-19	07/09/2012	74.46		27.27		47.19
GMW-O-19	08/29/2012	74.46		27.58		46.88

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 				1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
01414 0 40	00/00/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-19	09/26/2012	74.46		27.90		46.56
GMW-O-19	10/15/2012	74.46		27.46		47.00
GMW-O-19	11/29/2012	74.46		28.16		46.30
GMW-O-19	12/26/2012	74.46		28.03		46.43
GMW-O-19	01/14/2013	74.46		28.02		46.44
GMW-O-19	02/20/2013	74.46		28.28		46.18
GMW-O-19	04/08/2013	74.46		28.36		46.10
GMW-O-19	10/07/2013	74.46		28.68		45.78
GMW-O-19	04/14/2014	74.46		28.82		45.64
GMW-O-19	10/27/2014	74.46		29.34		45.12
GMW-O-19	04/20/2015	74.46		28.41		46.05
GMW-O-19	10/19/2015	74.46		30.63		43.83
GMW-O-19	04/11/2016	74.46		31.70		42.76
GMW-O-19	10/3/2016	74.46		32.20		42.26
GMW-O-20	05/07/2001	73.34		22.15		51.19
GMW-O-20	08/15/2008	73.34		25.90		47.44
GMW-O-20	10/17/2008	73.34		25.82		47.52
GMW-O-20	04/21/2009	73.32		28.70		44.62
GMW-O-20	10/04/2010	73.32	31.10	31.20	0.10	NC
GMW-O-20	04/11/2011	73.32		23.82		49.50
GMW-O-20	10/10/2011	73.32		24.05		49.27
GMW-O-20	01/09/2012	73.32		24.68		48.64
GMW-O-20	04/16/2012	73.32		26.18		47.14
GMW-O-20	07/09/2012	73.32		32.92		40.40
GMW-O-20	10/15/2012	73.32	32.95	32.97	0.02	NC
GMW-O-20	01/14/2013	73.32	32.93	32.98	0.05	NC
GMW-O-20	04/08/2013	73.32	26.46	29.63	3.17	NC
GMW-O-20	10/07/2013	73.32	27.06	32.09	5.03	NC
GMW-O-20	04/25/2014	73.32	28.40	28.48	0.08	NC
GMW-O-20	10/27/2014	73.32	27.76	30.70	2.94	NC
GMW-O-20	04/22/2015	73.32	27.98	32.25	4.27	NC
GMW-O-20	10/22/2015	73.32	29.38	31.36	1.98	NC
GMW-O-20	04/12/2016	73.32		32.48		40.84
GMW-O-20	10/3/2016	73.32		33.12		40.20
GMW-O-21	10/06/2003	73.49		22.60		50.89
GMW-0-21	10/00/2003	73.49		26.00		47.94
GMW-0-21						
	10/04/2010	71.43		25.40		46.03
GMW-O-21	04/13/2011	71.43		23.72		47.71
GMW-O-21	10/10/2011	71.43		24.65		46.78
GMW-O-21	10/15/2012	71.43		32.50		38.93
GMW-O-21	04/14/2014	71.43	28.61	28.65	0.04	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		T (0 :	D 41.4	5 11 4	Measured	
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Product Thickness	Groundwater Elevation
VVCII	Date	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GMW-O-21	10/27/2014	71.43	28.93	29.75	0.82	NC
GMW-O-21	04/20/2015	71.43	28.99	30.15	1.16	NC
GMW-O-21	07/02/2015	71.43	29.88	32.30	2.42	NC
GMW-O-21	10/19/2015	71.43	31.20	31.43	0.23	NC
GMW-O-21	04/11/2016	71.43	31.84	32.17	0.33	NC
GMW-O-21	10/3/2016	71.43		33.45		37.98
GMW-O-23	08/28/2007	73.63		23.00		50.63
GMW-O-23	11/13/2007	73.63		23.90		49.73
GMW-O-23	08/15/2008	73.63		26.28		47.35
GMW-O-23	10/17/2008	73.63		27.16		46.47
GMW-0-23	04/21/2009	73.63		27.30		46.33
GMW-0-23				25.92		
	10/04/2010	73.63		-		47.71
GMW-O-23	01/10/2011	73.63		27.45		46.18
GMW-O-23	04/11/2011	73.63		25.03		48.60
GMW-O-23	10/10/2011	73.63		25.25		48.38
GMW-O-23	01/09/2012	73.63		25.91		47.72
GMW-O-23	04/16/2012	73.63		27.38		46.25
GMW-O-23	07/09/2012	73.63		27.41		46.22
GMW-O-23	10/15/2012	73.63		26.48		47.15
GMW-O-23	01/14/2013	73.63		29.35		44.28
GMW-O-23	04/08/2013	73.63	27.74	29.81	2.07	NC
GMW-O-23	10/07/2013	73.63	28.30	32.86	4.56	NC
GMW-O-23	04/25/2014	73.63	29.66	29.81	0.15	NC
GMW-O-23	10/27/2014	73.63	28.80	32.51	3.71	NC
GMW-O-23	04/22/2015	73.63	30.36	33.08	2.72	NC
GMW-O-23	10/22/2015	73.63	30.46	32.82	2.36	NC
GMW-O-23	04/12/2016	73.63		32.59		41.04
GMW-O-23	10/3/2016	73.63		34.90		38.73
GMW-O-24	10/15/2012	74.39		27.90		46.49
GMW-O-24	04/08/2013	74.39		28.53		45.86
GMW-O-24	10/23/2013	74.39		29.40		44.99
GMW-O-24	04/14/2014	74.39		29.33		45.06
GMW-O-24	10/27/2014	74.39		29.82		44.57
GMW-O-24	04/20/2015	74.39		30.23		44.16
GMW-O-24	06/30/2015	74.39		31.06		43.33
GMW-O-24	10/19/2015	74.39		30.95		43.44
GMW-O-24	04/11/2016	74.39		31.84		42.55
GMW-O-24	10/3/2016	74.39		32.39		42.00
GMW-SF-7	05/28/1996	75.26		26.65		48.61
GMW-SF-7	11/20/1996	75.26		27.71		47.55
GMW-SF-7	12/31/1997	75.26		27.11		48.15

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well Date Elevation (feet MSL) Product (feet btc) Groundwater (feet) Thickness (feet) Elevat (feet) GMW-SF-7 05/03/1999 75.26 ————————————————————————————————————			, , , , , , , , , , , , , , , , , , , 		 		•
GMW-SF-7 05/03/1999 75.26 — 25.30 — 49.9 GMW-SF-7 08/09/1999 75.26 — 25.79 — 49.4 GMW-SF-7 11/15/1999 75.26 — 26.38 — 48.8 GMW-SF-7 10/15/2000 75.26 — 26.82 — 48.4 GMW-SF-7 05/07/2001 75.26 — 26.82 — 48.4 GMW-SF-7 05/07/2001 75.26 — 26.82 — 48.4 GMW-SF-7 11/05/2001 75.26 — 25.33 — 49.9 GMW-SF-7 10/20/2001 75.26 — 25.52 — 49.9 GMW-SF-7 04/08/2002 75.26 — 25.52 — 49.9 GMW-SF-7 01/21/2002 75.26 — 26.60 — 48.6 GMW-SF-7 01/21/2003 75.26 — 26.64 — 48.6 GMW-SF-7 01/06/2003	Well	Date	Elevation	Product	Groundwater	Product Thickness	Groundwater Elevation
GMW-SF-7 08/09/1999 75.26 — 25.79 — 49.4 GMW-SF-7 11/15/1999 75.26 — 26.38 — 48.8 GMW-SF-7 05/15/2000 75.26 — 25.88 — 49.3 GMW-SF-7 11/13/2000 75.26 — 26.82 — 48.4 GMW-SF-7 11/05/2001 75.26 — 26.82 — 48.9 GMW-SF-7 11/05/2001 75.26 — 25.53 — 49.9 GMW-SF-7 04/08/2002 75.26 — 25.52 — 49.7 GMW-SF-7 04/08/2002 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 25.70 — 48.6 GMW-SF-7 01/06/2003 75.26 — 25.70 — 49.5 GMW-SF-7 01/06/2003				(feet btc)	i i	(feet)	(feet MSL)
GMW-SF-7 11/15/1999 75.26 — 26.38 — 48.8 GMW-SF-7 05/15/2000 75.26 — 25.88 — 49.3 GMW-SF-7 11/13/2000 75.26 — 26.82 — 48.4 GMW-SF-7 05/07/2001 75.26 — 24.35 — 50.9 GMW-SF-7 11/05/2001 75.26 — 25.33 — 49.9 GMW-SF-7 02/01/2002 75.26 — 25.52 — 49.7 GMW-SF-7 04/08/2002 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.64 — 48.6 GMW-SF-7 01/31/2003 75.26 — 25.72 — 49.5 GMW-SF-7 01/31/2003 75.26 — 25.72 — 49.5 GMW-SF-7 01/27/2004					+		49.96
GMW-SF-7 05/15/2000 75.26 — 25.88 — 49.3 GMW-SF-7 11/13/2000 75.26 — 26.82 — 48.4 GMW-SF-7 05/07/2001 75.26 — 24.35 — 50.9 GMW-SF-7 11/05/2001 75.26 — 25.33 — 49.9 GMW-SF-7 02/01/2002 75.26 — 25.52 — 49.7 GMW-SF-7 04/08/2002 75.26 — 26.60 — 48.6 GMW-SF-7 10/21/2002 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.64 — 48.6 GMW-SF-7 01/27/2003 75.26 — 25.70 — 49.5 GMW-SF-7 07/31/2003 75.26 — 26.57 — 49.5 GMW-SF-7 01/27/2003 75.26 — 25.72 — 49.5 GMW-SF-7 01/12/2003							49.47
GMW-SF-7 11/13/2000 75.26 — 26.82 — 48.4 GMW-SF-7 05/07/2001 75.26 — 24.35 — 50.9 GMW-SF-7 11/05/2001 75.26 — 25.33 — 49.9 GMW-SF-7 02/01/2002 75.26 — 25.52 — 49.9 GMW-SF-7 04/08/2002 75.26 — 26.60 — 48.6 GMW-SF-7 10/21/2002 75.26 — 26.60 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.64 — 48.6 GMW-SF-7 01/27/2003 75.26 — 26.64 — 48.6 GMW-SF-7 07/31/2003 75.26 — 25.70 — 49.5 GMW-SF-7 07/31/2003 75.26 — 25.72 — 48.6 GMW-SF-7 01/11/2004 75.26 — 26.57 — 48.6 GMW-SF-7 01/27/2004							48.88
GMW-SF-7 05/07/2001 75.26 — 24.35 — 50.9 GMW-SF-7 11/05/2001 75.26 — 25.33 — 49.9 GMW-SF-7 02/01/2002 75.26 — 25.52 — 49.7 GMW-SF-7 04/08/2002 75.26 — 26.60 — 48.6 GMW-SF-7 04/07/2003 75.26 — 26.64 — 48.6 GMW-SF-7 04/07/2003 75.26 — 25.70 — 49.5 GMW-SF-7 04/07/2003 75.26 — 25.70 — 49.5 GMW-SF-7 07/31/2003 75.26 — 25.72 — 49.5 GMW-SF-7 07/31/2003 75.26 — 25.72 — 49.5 GMW-SF-7 01/06/2003 75.26 — 25.72 — 49.5 GMW-SF-7 01/17/2004 75.26 — 27.54 — 47.7 GMW-SF-7 01/19/2004							49.38
GMW-SF-7 11/05/2001 75.26							48.44
GMW-SF-7 02/01/2002 75.26							50.91
GMW-SF-7 04/08/2002 75.26	GMW-SF-7	11/05/2001					49.93
GMW-SF-7 10/21/2002 75.26	GMW-SF-7	02/01/2002	75.26		25.52		49.74
GMW-SF-7 01/27/2003 75.26	GMW-SF-7	04/08/2002	75.26		26.60		48.66
GMW-SF-7 04/07/2003 75.26 25.70 49.5 GMW-SF-7 07/31/2003 75.26 25.72 49.5 GMW-SF-7 10/06/2003 75.26 26.57 48.6 GMW-SF-7 01/11/2004 75.26 27.54 47.7 GMW-SF-7 01/27/2004 75.26 26.65 48.6 GMW-SF-7 04/19/2004 75.26 26.64 48.6 GMW-SF-7 07/19/2004 75.26 26.89 48.6 GMW-SF-7 07/19/2004 75.26 26.89 48.6 GMW-SF-7 05/02/2005 75.26 25.15 50.1 GMW-SF-7 05/02/2005 75.26 22.03 53.2 GMW-SF-7 08/01/2005 75.26 22.03 53.2	GMW-SF-7	10/21/2002	75.26		27.02		48.24
GMW-SF-7 07/31/2003 75.26	GMW-SF-7	01/27/2003	75.26		26.64		48.62
GMW-SF-7 10/06/2003 75.26	GMW-SF-7	04/07/2003	75.26		25.70		49.56
GMW-SF-7 01/11/2004 75.26 27.54 47.7 GMW-SF-7 01/27/2004 75.26 26.65 48.6 GMW-SF-7 04/19/2004 75.26 26.64 48.6 GMW-SF-7 07/19/2004 75.26 26.89 48.3 GMW-SF-7 02/01/2005 75.26 25.15 50.1 GMW-SF-7 05/02/2005 75.26 20.52 54.7 GMW-SF-7 08/01/2005 75.26 22.03 53.2 GMW-SF-7 10/31/2005 75.26 22.99 53.2 GMW-SF-7 02/27/2006 75.26 23.65 51.5 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8	GMW-SF-7	07/31/2003	75.26		25.72		49.54
GMW-SF-7 01/27/2004 75.26	GMW-SF-7	10/06/2003	75.26		26.57		48.69
GMW-SF-7 04/19/2004 75.26 26.64 48.6 GMW-SF-7 07/19/2004 75.26 26.89 48.3 GMW-SF-7 02/01/2005 75.26 25.15 50.1 GMW-SF-7 05/02/2005 75.26 20.52 54.7 GMW-SF-7 08/01/2005 75.26	GMW-SF-7	01/11/2004	75.26		27.54		47.72
GMW-SF-7 07/19/2004 75.26 26.89 48.3 GMW-SF-7 02/01/2005 75.26 25.15 50.1 GMW-SF-7 05/02/2005 75.26 20.52 54.7 GMW-SF-7 08/01/2005 75.26 22.03 53.2 GMW-SF-7 10/31/2005 75.26 22.99 52.2 GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26	GMW-SF-7	01/27/2004	75.26		26.65		48.61
GMW-SF-7 02/01/2005 75.26 25.15 50.1 GMW-SF-7 05/02/2005 75.26 20.52 54.7 GMW-SF-7 08/01/2005 75.26 22.03 53.2 GMW-SF-7 10/31/2005 75.26 22.99 52.2 GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.2 GMW-SF-7 08/28/2007 75.26 25.57 49.6	GMW-SF-7	04/19/2004	75.26		26.64		48.62
GMW-SF-7 05/02/2005 75.26 20.52 54.7 GMW-SF-7 08/01/2005 75.26 22.03 53.2 GMW-SF-7 10/31/2005 75.26 22.99 52.2 GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6	GMW-SF-7	07/19/2004	75.26		26.89		48.37
GMW-SF-7 08/01/2005 75.26 22.03 53.2 GMW-SF-7 10/31/2005 75.26 22.99 52.2 GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 04/14/2008 75.26	GMW-SF-7	02/01/2005	75.26		25.15		50.11
GMW-SF-7 10/31/2005 75.26 22.99 52.2 GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 04/20/2009 75.26 26.29 48.9	GMW-SF-7	05/02/2005	75.26		20.52		54.74
GMW-SF-7 02/27/2006 75.26 23.65 51.6 GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0 <	GMW-SF-7	08/01/2005	75.26		22.03		53.23
GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7	10/31/2005	75.26		22.99		52.27
GMW-SF-7 05/01/2006 75.26 23.68 51.5 GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7	02/27/2006	75.26		23.65		51.61
GMW-SF-7 09/18/2006 75.26 24.41 50.8 GMW-SF-7 12/04/2006 75.26 24.72 50.5 GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7		75.26		23.68		51.58
GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7	09/18/2006	75.26				50.85
GMW-SF-7 03/12/2007 75.26 25.18 50.0 GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7	12/04/2006	75.26		24.72		50.54
GMW-SF-7 04/30/2007 75.26 25.17 50.0 GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7	03/12/2007	75.26		25.18		50.08
GMW-SF-7 08/28/2007 75.26 25.02 50.2 GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7						50.09
GMW-SF-7 11/12/2007 75.26 25.57 49.6 GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0							50.24
GMW-SF-7 04/14/2008 75.26 25.40 49.8 GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0							49.69
GMW-SF-7 10/13/2008 75.26 26.29 48.9 GMW-SF-7 04/20/2009 75.26 26.26 49.0							49.86
GMW-SF-7 04/20/2009 75.26 26.26 49.0	GMW-SF-7						48.97
							49.00
\daggreengty	GMW-SF-7	10/19/2009	75.26		27.51		47.75
							48.19
					1		48.20
							47.79
							49.13
							48.33
							47.14
							46.33

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GMW-SF-7	04/08/2013	75.26	(leet bic)	29.91	(leet)	45.35
		75.26		+		45.35
GMW-SF-7 GMW-SF-7	10/07/2013			30.08		
	04/14/2014	75.26		30.51		44.75
GMW-SF-7	10/27/2014	75.26		30.92		44.34
GMW-SF-7	04/20/2015	75.26		31.30		43.96
GMW-SF-7	10/19/2015	75.26		32.03		43.23
GMW-SF-7	04/11/2016	75.26		33.12		42.14
GMW-SF-7	10/3/2016	75.26		33.72		41.54
GMW-SF-8	05/28/1996	76.75		27.82		48.93
GMW-SF-8	11/20/1996	76.75		28.77		47.98
GMW-SF-8	07/01/1997	76.75		27.35		49.40
GMW-SF-8	12/31/1997	76.75		28.42		48.33
GMW-SF-8	05/03/1999	76.75		26.61		50.14
GMW-SF-8	08/09/1999	76.75		26.99		49.76
GMW-SF-8	11/15/1999	76.75		27.55		49.20
GMW-SF-8	05/15/2000	76.45		27.17		49.28
GMW-SF-8	11/13/2000	76.45		27.97		48.48
GMW-SF-8	05/07/2001	76.45		25.54		50.91
GMW-SF-8	11/05/2001	76.75		26.55		50.20
GMW-SF-8	04/08/2002	76.75		27.73		49.02
GMW-SF-8	10/21/2002	76.75		28.07		48.68
GMW-SF-8	01/27/2003	76.75		27.98		48.77
GMW-SF-8	04/07/2003	76.75		27.63		49.12
GMW-SF-8	07/31/2003	76.75		26.99		49.76
GMW-SF-8	10/06/2003	76.75		27.30		49.45
GMW-SF-8	01/11/2004	76.75		28.54		48.21
GMW-SF-8	01/27/2004	76.75		27.87		48.88
GMW-SF-8	04/19/2004	76.75		27.88		48.87
GMW-SF-8	07/19/2004	76.75		28.05		48.70
GMW-SF-8	02/01/2005	76.75		26.52		50.23
GMW-SF-8	05/02/2005	76.75		21.91		54.84
GMW-SF-8	08/01/2005	76.75		23.33		53.42
GMW-SF-8	10/31/2005	76.75		24.41		52.34
GMW-SF-8	02/27/2006	76.75		24.41		52.34
GMW-SF-8		76.75		24.98		51.77
	05/01/2006	+				
GMW-SF-8	09/18/2006	76.75		25.69		51.06
GMW-SF-8	12/04/2006	76.75		26.03		50.72
GMW-SF-8	04/30/2007	76.75		26.45		50.30
GMW-SF-8	11/12/2007	76.75		26.87		49.88
GMW-SF-8	04/14/2008	76.75		26.66		50.09
GMW-SF-8	10/13/2008	76.75		27.75		49.00

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GMW-SF-8 04/20/2009 76.75 27.68 49.1 GMW-SF-8 10/19/2009 76.75 29.01 47.7 GMW-SF-8 05/24/2010 76.75 28.34 48.4 GMW-SF-8 05/28/2010 76.75 28.30 48.4 GMW-SF-8 10/04/2010 76.75 28.70 48.4 GMW-SF-8 01/10/2011 76.75 28.85	
GMW-SF-8 10/19/2009 76.75 29.01 47. GMW-SF-8 05/24/2010 76.75 28.34 48. GMW-SF-8 05/28/2010 76.75 28.30 48. GMW-SF-8 10/04/2010 76.75 28.70 48. GMW-SF-8 01/10/2011 76.75 28.85 47. GMW-SF-8 04/11/2011 76.75 27.44 49. GMW-SF-8 10/10/2011 76.75 28.18	
GMW-SF-8 05/24/2010 76.75 28.34 48.4 GMW-SF-8 05/28/2010 76.75 28.30 48.4 GMW-SF-8 10/04/2010 76.75 28.70 48.4 GMW-SF-8 01/10/2011 76.75 28.85 47.4 GMW-SF-8 04/11/2011 76.75 27.44 49.3 GMW-SF-8 10/10/2011 76.75 28.18 48.4 GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34	
GMW-SF-8 05/28/2010 76.75 28.30 48.4 GMW-SF-8 10/04/2010 76.75 28.70 48.4 GMW-SF-8 01/10/2011 76.75 28.85 47.4 GMW-SF-8 04/11/2011 76.75 27.44 49.3 GMW-SF-8 10/10/2011 76.75 28.18 48.4 GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34	
GMW-SF-8 10/04/2010 76.75 28.70 48.6 GMW-SF-8 01/10/2011 76.75 28.85 47.9 GMW-SF-8 04/11/2011 76.75 27.44 49.3 GMW-SF-8 10/10/2011 76.75 28.18 48.9 GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34 47.4 GMW-SF-8 07/09/2012 76.75 30.09 47.4 GMW-SF-8 10/15/2012 76.75 30.09 46.9 GMW-SF-8 01/14/2013 76.75 30.92 45.9 GMW-SF-8 04/08/2013 76.75 30.98 45.9 GMW-SF-8 04/14/2014 76.75 31.63 44.9 <	
GMW-SF-8 01/10/2011 76.75 28.85 47.9 GMW-SF-8 04/11/2011 76.75 27.44 49.3 GMW-SF-8 10/10/2011 76.75 28.18 48.3 GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34 47.4 GMW-SF-8 07/09/2012 76.75 30.09 46.9 GMW-SF-8 10/15/2012 76.75 30.21 46.9 GMW-SF-8 01/14/2013 76.75 30.92 45.3 GMW-SF-8 04/08/2013 76.75 30.98 45.3 GMW-SF-8 10/07/2013 76.75 32.16 44.9 GMW-SF-8 10/27/2014 76.75 31.63 45.0	
GMW-SF-8 04/11/2011 76.75 27.44 49.3 GMW-SF-8 10/10/2011 76.75 28.18 48.5 GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34 47.4 GMW-SF-8 07/09/2012 76.75 30.09 46.6 GMW-SF-8 10/15/2012 76.75 30.21 46.6 GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.6 GMW-SF-8 10/07/2013 76.75 32.16 44.6 GMW-SF-8 04/14/2014 76.75 31.63	
GMW-SF-8 10/10/2011 76.75 28.18 48.5 GMW-SF-8 01/09/2012 76.75 28.92 47.6 GMW-SF-8 04/16/2012 76.75 29.34 47.6 GMW-SF-8 07/09/2012 76.75 30.09 46.6 GMW-SF-8 10/15/2012 76.75 30.21 46.6 GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.6 GMW-SF-8 10/07/2013 76.75 32.16 44.6 GMW-SF-8 04/14/2014 76.75 31.63 45.6 GMW-SF-8 10/27/2014 76.75 32.08 44.6	
GMW-SF-8 01/09/2012 76.75 28.92 47.4 GMW-SF-8 04/16/2012 76.75 29.34 47.4 GMW-SF-8 07/09/2012 76.75 30.09 46.4 GMW-SF-8 10/15/2012 76.75 30.21 46.9 GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.7 GMW-SF-8 10/07/2013 76.75 32.16 44.9 GMW-SF-8 04/14/2014 76.75 31.63 45.6 GMW-SF-8 10/27/2014 76.75 32.08 44.9	
GMW-SF-8 04/16/2012 76.75 29.34 47.4 GMW-SF-8 07/09/2012 76.75 30.09 46.6 GMW-SF-8 10/15/2012 76.75 30.21 46.6 GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.7 GMW-SF-8 10/07/2013 76.75 32.16 44.8 GMW-SF-8 04/14/2014 76.75 31.63 45.6 GMW-SF-8 10/27/2014 76.75 32.08	
GMW-SF-8 07/09/2012 76.75 30.09 46.0 GMW-SF-8 10/15/2012 76.75 30.21 46.0 GMW-SF-8 01/14/2013 76.75 30.92 45.0 GMW-SF-8 04/08/2013 76.75 30.98 45.0 GMW-SF-8 10/07/2013 76.75 32.16 44.0 GMW-SF-8 04/14/2014 76.75 31.63 45.0 GMW-SF-8 10/27/2014 76.75 32.08 44.0	
GMW-SF-8 10/15/2012 76.75 30.21 46.4 GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.6 GMW-SF-8 10/07/2013 76.75 32.16 44.8 GMW-SF-8 04/14/2014 76.75 31.63 45.6 GMW-SF-8 10/27/2014 76.75 32.08 44.8	
GMW-SF-8 01/14/2013 76.75 30.92 45.6 GMW-SF-8 04/08/2013 76.75 30.98 45.7 GMW-SF-8 10/07/2013 76.75 32.16 44.8 GMW-SF-8 04/14/2014 76.75 31.63 45.7 GMW-SF-8 10/27/2014 76.75 32.08 44.0	
GMW-SF-8 04/08/2013 76.75 30.98 45. GMW-SF-8 10/07/2013 76.75 32.16 44. GMW-SF-8 04/14/2014 76.75 31.63 45. GMW-SF-8 10/27/2014 76.75 32.08 44.6	
GMW-SF-8 10/07/2013 76.75 32.16 44.8 GMW-SF-8 04/14/2014 76.75 31.63 45. GMW-SF-8 10/27/2014 76.75 32.08 44.8	
GMW-SF-8 04/14/2014 76.75 31.63 45. GMW-SF-8 10/27/2014 76.75 32.08 44.0	77
GMW-SF-8 10/27/2014 76.75 32.08 44.0	59
	12
GMW-SF-8 04/20/2015 76.75 32.59 44.	3 7
	16
GMW-SF-8 10/19/2015 76.75 33.28 43.4	47
GMW-SF-8 04/11/2016 76.75 34.50 42.	25
GMW-SF-8 10/3/2016 76.75 35.01 41.	74
GMW-SF-9 04/21/2009 73.00 24.19 48.	81
GMW-SF-9 05/24/2010 73.00 28.31 44.0	69
GMW-SF-9 05/28/2010 73.00 28.37 44.0	63
GMW-SF-9 10/04/2010 73.00 25.28 47.	
GMW-SF-9 04/11/2011 73.00 23.90 49.	10
GMW-SF-9 10/10/2011 73.00 24.70 48.3	30
GMW-SF-9 04/16/2012 73.00 26.99 46.0	
GMW-SF-9 10/15/2012 73.05 34.21 38.	
GMW-SF-9 01/14/2013 73.05 34.32 38.	
GMW-SF-9 04/10/2013 73.05 27.37 45.0	
GMW-SF-9 09/05/2014 73.05 28.29 29.33 1.04 NO	
GMW-SF-9 04/20/2015 73.05 29.01 44.0	
GMW-SF-9 10/21/2015 73.05 29.69 43.3	
GMW-SF-10 04/21/2009 75.77 27.10 48.0	
GMW-SF-10 10/04/2010 75.77 28.03 47.	
ONIN 05 40 04/4/0044 75 77 00 00 404	
0.11.4.05 40 40.40.0044 75.77	
ONIV. 05.40 04/40/0040 75.77 00.04	
	JK:
GMW-SF-10 10/15/2012 75.77 29.88 45.8 GW-1 05/01/1998 75.00 27.17 47.8	

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GW-1	05/25/1999	75.46		27.73		47.73
GW-1	05/15/2000	75.46		28.10		47.36
GW-1	05/07/2001	75.46		27.43		48.03
GW-1	04/08/2002	75.46		28.16		47.30
GW-1	10/21/2002	75.46		27.95		47.51
GW-1	04/07/2003	75.46		27.70		47.76
GW-1	10/06/2003	75.46		27.70		47.49
GW-1						
	04/19/2004	75.97		29.00		46.97
GW-1	11/01/2004	75.97		28.98		46.99
GW-1	05/02/2005	75.46		25.78		49.68
GW-1	05/01/2006	75.97		26.20		49.77
GW-1	12/01/2006	75.97		26.62		49.35
GW-1	04/30/2007	75.97		26.78		49.19
GW-1	11/12/2007	75.97		27.28		48.69
GW-1	04/11/2008	75.97		26.60		49.37
GW-1	07/24/2008	75.97		26.99		48.98
GW-1	10/13/2008	75.97		27.56		48.41
GW-1	02/09/2009	75.46		27.06		48.40
GW-1	04/07/2010	75.46		29.76		45.70
GW-1	10/01/2010	75.97		29.11		46.86
GW-1	01/06/2011	75.97		29.99		45.98
GW-1	04/12/2011	75.97		28.46		47.51
GW-1	07/07/2011	75.97		28.45		47.52
GW-1	10/07/2011	75.97		28.71		47.26
GW-1	04/12/2012	75.97		29.46		46.51
GW-1	01/10/2013	75.97		30.61		45.36
GW-1	04/02/2013	75.97		30.70		45.27
GW-1	10/01/2013	75.97		31.30		44.67
GW-1	04/07/2014	75.97		32.39		43.58
GW-1	10/27/2014	75.97		32.47		43.50
GW-1	04/20/2015	75.97		32.81		43.16
GW-1	10/19/2015	75.97		33.54		42.43
GW-1	10/3/2016	75.97		34.47		41.50
GW-2	05/01/1998	75.00		27.65		47.35
GW-2	05/25/1999	76.39		28.47		47.92
GW-2	05/15/2000	76.39		28.88		47.51
GW-2	05/07/2001	76.39		28.22		48.17
GW-2	04/08/2002	76.39		28.85		47.54
GW-2	10/21/2002	76.39		28.75		47.64
GW-2	04/07/2003	76.39		28.58		47.81
GW-2	10/06/2003	76.39		28.67		47.72

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
0144.0	0.4/4.0/0.00.4	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-2	04/19/2004	75.78		28.75		47.03
GW-2	11/01/2004	75.78		28.72		47.06
GW-2	05/02/2005	76.39		26.05		50.34
GW-2	05/01/2006	75.78		25.84		49.94
GW-2	12/01/2006	75.78		26.23		49.55
GW-2	04/30/2007	75.78		26.52		49.26
GW-2	04/11/2008	76.39		27.39		49.00
GW-2	07/24/2008	76.39		27.88		48.51
GW-2	10/13/2008	76.39		28.31		48.08
GW-2	02/09/2009	76.39		27.61		48.78
GW-2	01/11/2010	76.39		29.26		47.13
GW-2	04/07/2010	76.39		29.45		46.94
GW-2	01/06/2011	75.78		32.45		43.33
GW-2	04/06/2011	75.78		28.31		47.47
GW-2	07/07/2011	75.78		28.25		47.53
GW-2	10/06/2011	75.78		28.47		47.31
GW-2	04/12/2012	75.78		29.34		46.44
GW-2	04/19/2012	75.78		28.99		46.79
GW-2	01/10/2013	75.78		30.42		45.36
GW-2	04/02/2013	75.78		30.25		45.53
GW-2	04/08/2013	75.78		30.11		45.67
GW-2	10/01/2013	75.78		30.95		44.83
GW-2	04/07/2014	75.78		32.10		43.68
GW-2	04/15/2014	75.78		31.82		43.96
GW-2	10/27/2014	75.78		32.16		43.62
GW-2	04/20/2015	75.78		32.53		43.25
GW-2	10/19/2015	75.78		33.21		42.57
GW-2	04/11/2016	75.78		33.61		42.17
GW-2	10/3/2016	75.78		34.08		41.70
GW-3	05/01/1998	75.00		28.26		46.74
GW-3	05/25/1999	76.56		28.90		47.66
GW-3	05/15/2000	76.56		29.29		47.27
GW-3	05/07/2001	76.56		28.63		47.93
GW-3	04/08/2002	76.56		29.23		47.33
GW-3				29.23		47.30
	10/21/2002	76.56				
GW-3	04/07/2003	76.56		28.25		48.31
GW-3	10/06/2003	76.56		29.06		47.50
GW-3	04/19/2004	76.56		30.24		46.32
GW-3	11/01/2004	75.79		28.84		46.95
GW-3	05/02/2005	76.56		25.65		50.91
GW-3	05/01/2006	75.79		25.90		49.89

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GW-3	12/01/2006	75.79		26.31		49.48
GW-3	04/30/2007	73.86		26.65		47.21
GW-3	11/12/2007	75.79		27.11		48.68
GW-3	04/11/2008	76.56		27.92		48.64
GW-3	07/24/2008	75.79		27.79		48.00
GW-3	10/13/2008	75.79		28.39		47.40
GW-3	02/09/2009	75.79		27.12		48.67
GW-3	04/20/2009	75.79		26.30		49.49
GW-3	10/19/2009	75.79		29.24		46.55
GW-3	04/07/2010	76.56		55.57		20.99
GW-3	04/12/2010	75.79		28.84		46.95
GW-3	10/01/2010	75.79		29.10		46.69
GW-3	04/06/2011	75.79		28.50		47.29
GW-3	07/08/2011	75.79		28.36		47.43
GW-3	10/06/2011	75.79		28.65		47.14
GW-3	04/12/2012	75.79		29.35		46.44
GW-3	01/10/2013	75.79		30.49		45.30
GW-3	04/02/2013	75.79		30.38		45.41
GW-3	04/08/2013	75.79		30.26		45.53
GW-3	10/01/2013	75.79		31.14		44.65
GW-3	04/09/2014	75.79		31.99		43.80
GW-3	04/15/2014	75.79		31.92		43.87
GW-3	10/27/2014	75.79		32.34		43.45
GW-3	04/20/2015	75.79		32.72		43.07
GW-3	10/19/2015	75.79		33.39		42.40
GW-3	04/11/2016	75.79		33.76		42.03
GW-3	10/3/2016	75.79		34.29		41.50
GW-4	05/01/1998	78.51		30.45		48.06
GW-4	05/25/1999	74.77		26.97		47.80
GW-4	05/15/2000	74.77		27.80		46.97
GW-4	05/07/2001	74.77		26.87		47.90
GW-4	04/08/2002	74.77		27.60		47.17
GW-4	10/21/2002	74.77		27.60		47.17
GW-4	04/07/2003	74.77		27.25		47.52
GW-4	10/06/2003	74.77		27.40		47.37
GW-4	04/19/2004	74.77		28.07		46.70
GW-4	11/01/2004	74.77		28.09		46.68
GW-4	05/01/2006	73.86		28.52		45.34
GW-4	11/12/2007	74.77		26.40		48.37
GW-4	04/11/2008	74.77		26.32		48.45
GW-4	07/24/2008	74.77		26.71		48.06

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-4	10/13/2008	74.77		27.31		47.46
GW-4	02/09/2009	74.77		26.05		48.72
GW-4	04/07/2010	74.77		28.12		46.65
GW-4	10/19/2015	73.86		31.79		42.07
GW-4	04/11/2016	73.86		32.19		41.67
GW-4	10/3/2016	73.86		32.82		41.04
GW-5	05/01/1998	75.00		26.42		48.58
GW-5	05/25/1999	77.09		29.01		48.08
GW-5	05/15/2000	77.09		36.26		40.83
GW-5	05/07/2001	77.09		30.32		46.77
GW-5	04/08/2002	77.09		29.75		47.34
GW-5	10/21/2002	77.09		30.27		46.82
GW-5	04/07/2003	77.09		29.30		47.79
GW-5	10/06/2003	77.09		29.34		47.75
GW-5	04/19/2004	77.09		30.24		46.85
GW-5	11/01/2004	77.09		30.02		47.07
GW-5	05/02/2005	77.09		25.81		51.28
GW-5	05/01/2006	77.09		26.87		50.22
GW-5	12/01/2006	77.09		27.45		49.64
GW-5	04/27/2007	77.09		27.75		49.34
GW-5	11/12/2007	77.09		28.36		48.73
GW-5	04/11/2008	77.09		28.17		48.92
GW-5	07/24/2008	77.09		28.62		48.47
GW-5	10/13/2008	77.09		29.21		47.88
GW-5	02/09/2009	76.99		27.68		49.31
GW-5	04/07/2010	76.99		29.88		47.11
GW-5	10/01/2010	76.99		30.03		46.96
GW-5	01/06/2011	76.99		30.18		46.81
GW-5	04/06/2011	76.99		29.11		47.88
GW-5	07/08/2011	76.99		29.24		47.75
GW-5	10/06/2011	76.99		29.58		47.41
GW-5	04/12/2012	76.99		30.48		46.51
GW-5	01/10/2013	76.99		31.68		45.31
GW-5	04/02/2013	76.99		31.59		45.40
GW-5	10/01/2013	76.99		32.33		44.66
GW-5	04/07/2014	76.99		33.22		43.77
GW-5	10/27/2014	76.99		33.45		43.77
GW-5		ell decommission	ed in Decembe		medial excavati	
GW-6		75.00	ca in Decembe	26.27	mediai excavali	48.73
	05/01/1998	 				
GW-6	05/25/1999	77.41		29.61		47.80
GW-6	05/15/2000	77.41		30.25		47.16

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	 				1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-6	05/07/2001	77.41		30.31		47.10
GW-6	04/08/2002	77.41		30.01		47.40
GW-6	10/21/2002	77.41		27.32		50.09
GW-6	04/07/2003	77.41		28.45		48.96
GW-6	10/06/2003	77.41		28.65		48.76
GW-6	04/19/2004	76.38		29.64		46.74
GW-6	11/01/2004	77.41		30.32		47.09
GW-6	05/02/2005	77.41		26.27		51.14
GW-6	05/01/2006	76.38		26.20		50.18
GW-6	12/01/2006	76.38		26.86		49.52
GW-6	04/27/2007	76.38		27.14		49.24
GW-6	11/12/2007	77.41		27.75		49.66
GW-6	04/11/2008	76.38		27.52		48.86
GW-6	07/24/2008	76.38		27.75		48.63
GW-6	10/13/2008	76.38		28.54		47.84
GW-6	02/09/2009	76.38		27.38		49.00
GW-6	04/20/2009	76.38		28.41		47.97
GW-6	10/19/2009	76.38		29.32		47.06
GW-6	04/07/2010	76.38		30.21		46.17
GW-6	04/12/2010	76.38		29.61		46.77
GW-6	01/06/2011	76.38		29.45		46.93
GW-6	04/06/2011	76.38		28.35		48.03
GW-6	07/07/2011	76.38	28.51	28.52	0.01	NC
GW-6	10/06/2011	76.38		28.88		47.50
GW-6	04/12/2012	76.38		29.88		46.50
GW-6	04/18/2012	76.38		29.65		46.73
GW-6	01/10/2013	76.38		31.13		45.25
GW-6	04/02/2013	76.38		31.03		45.35
GW-6	04/08/2013	76.38		31.00		45.38
GW-6	10/01/2013	76.38		31.78		44.60
GW-6	04/09/2014	76.38		32.55		43.83
GW-6	04/15/2014	76.38		32.43		43.95
GW-6	10/27/2014	76.38		32.87		43.51
GW-6	04/20/2015	76.38		33.23		43.15
GW-6	10/3/2016	76.38		34.88		41.50
GW-7	05/01/1998	75.00		26.14		48.86
GW-7	05/25/1999	76.46		28.29		48.17
GW-7	05/25/1999	76.46		28.45		48.01
GW-7	04/08/2002	76.46		27.66		48.80
		+		1		
GW-7	10/21/2002	76.76		27.20		49.56
GW-7	04/07/2003	76.76		28.40		48.36

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	10/00/000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-7	10/06/2003	76.76		28.83		47.93
GW-7	04/19/2004	75.02		28.65		46.37
GW-7	11/01/2004	76.76		28.91		47.85
GW-7	05/02/2005	76.76		25.45		51.31
GW-7	05/01/2006	75.02		24.78		50.24
GW-7	12/01/2006	75.02		25.41		49.61
GW-7	04/30/2007	75.02		25.84		49.18
GW-7	04/11/2008	76.76		27.50		49.26
GW-7	07/24/2008	76.46		27.62		48.84
GW-7	10/14/2008	76.46		28.55		47.91
GW-7	02/10/2009	75.02		27.75		47.27
GW-7	04/08/2010	76.76		29.04		47.72
GW-7	10/01/2010	75.02		27.91		47.11
GW-7	01/07/2011	75.02		28.12		46.90
GW-7	04/06/2011	75.02		26.94		48.08
GW-7	07/08/2011	75.02		27.00		48.02
GW-7	10/06/2011	75.02		27.50		47.52
GW-7	01/11/2013	75.02		30.25		44.77
GW-7	04/03/2013	75.02		30.03		44.99
GW-7	10/02/2013	75.02		30.44		44.58
GW-7	04/09/2014	75.02		31.22		43.80
GW-7	10/27/2014	75.02		31.64		43.38
GW-7	04/20/2015	75.02		31.95		43.07
GW-7	10/19/2015	75.02	33.29	33.52	0.23	NC
GW-7	10/3/2016	75.02		33.69		41.33
GW-8	05/01/1998	75.00		26.17		48.83
GW-8	05/25/1999	76.88		28.59		48.29
GW-8	05/15/2000	76.88		36.92		39.96
GW-8	05/07/2001	76.88		34.15		42.73
GW-8	04/08/2002	76.88		33.15		43.73
GW-8	10/21/2002	76.88		28.24		48.64
GW-8	04/07/2003	76.88		29.04		47.84
GW-8	10/06/2003	76.88		29.10		47.78
GW-8	04/19/2004	76.88		30.00		46.88
GW-8	11/01/2004	76.88		29.85		47.03
GW-8	05/02/2005	76.88		25.45		51.43
GW-8	03/06/2006	76.15		26.38		49.77
GW-8	05/01/2006	76.88		26.66		50.22
GW-8	08/26/2006	76.88		26.91		49.97
GW-8	12/01/2006	76.15		26.53		49.62
GW-8	03/21/2007	76.15		27.52		49.62

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1		1 1		ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-8	04/27/2007	76.88		26.91		49.97
GW-8	08/28/2007	76.88		26.91		49.97
GW-8	11/12/2007	76.88		27.52		49.36
GW-8	02/05/2008	76.15		28.62		47.53
GW-8	04/11/2008	76.15		27.35		48.80
GW-8	07/24/2008	76.15		27.81		48.34
GW-8	10/13/2008	76.15		28.40		47.75
GW-8	02/09/2009	76.15		28.59		47.56
GW-8	07/16/2009	76.15		28.48		47.67
GW-8	04/07/2010	76.15		29.04		47.11
GW-8	10/01/2010	76.15		29.19		46.96
GW-8	01/06/2011	76.15		29.32		46.83
GW-8	04/06/2011	76.15		28.27		47.88
GW-8	07/07/2011	76.15		28.41		47.74
GW-8	10/06/2011	76.15		28.76		47.39
GW-8	04/12/2012	76.15		29.98		46.17
GW-8	01/10/2013	76.15		30.85		45.30
GW-8	04/02/2013	76.15		30.80		45.35
GW-8	10/01/2013	76.15		31.53		44.62
GW-8	04/07/2014	76.15		32.31		43.84
GW-8	04/17/2014	76.15		31.99		44.16
GW-8	10/27/2014	76.15		32.62		43.53
GW-8	04/20/2015	76.15		32.95		43.20
GW-8	10/20/2015	76.15		33.76		42.39
GW-8	10/3/2016	76.15		34.58		41.57
GW-13	11/12/2007	76.85		28.31		48.54
GW-13	07/24/2008	77.45		28.91		48.54
GW-13	10/13/2008	77.45		29.29		48.16
GW-13	02/09/2009	76.85		28.88		47.97
GW-13	04/20/2009	76.85		29.48		47.37
GW-13		76.85		29.92		46.93
GW-13	10/19/2009	+				
	04/12/2010	76.85		29.91		46.94
GW-13	01/06/2011	76.85		33.10		43.75
GW-13	04/08/2011	76.85		29.49		47.36
GW-13	07/07/2011	76.85		29.45		47.40
GW-13	10/06/2011	76.85		29.64		47.21
GW-13	04/12/2012	76.85		30.52		46.33
GW-13	04/18/2012	76.85		30.27		46.58
GW-13	01/10/2013	76.85		31.63		45.22
GW-13	04/02/2013	76.85		31.51		45.34
GW-13	04/08/2013	76.85		31.41		45.44

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				<u> </u>		
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
GW-13	10/01/2013	76.85		32.24		44.61
GW-13	04/07/2014	76.85		33.28		43.57
GW-13	04/15/2014	76.85		33.00		43.85
GW-13	10/27/2014	76.85		33.35		43.50
GW-13	04/20/2015	76.85		33.72		43.13
GW-13	10/19/2015	76.85		34.42		42.43
GW-13	04/11/2016	76.85		34.82		42.03
GW-13	10/3/2016	76.85		35.32		41.53
GW-13(1in)	04/11/2008	77.10		28.30		48.80
GW-13(1in)	01/11/2010	77.10		30.24		46.86
GW-13(1in)	04/07/2010	77.10		30.08		47.02
GW-14	11/09/2007	76.54		27.85		48.69
GW-14	04/14/2008	76.54		27.36		49.18
GW-14	07/24/2008	76.54		26.02		50.52
GW-14	10/13/2008	76.54		28.79		47.75
GW-14	02/10/2009	76.54		26.62		49.92
GW-14	04/20/2009	76.54		28.27		48.27
GW-14	10/19/2009	76.54		27.46		49.08
GW-14	04/08/2010	76.54		28.70		47.84
GW-14	04/12/2010	76.54		28.40		48.14
GW-14	01/08/2011	76.54		29.45		47.09
GW-14	04/08/2011	76.54		27.98		48.56
GW-14	07/08/2011	76.54		28.31		48.23
GW-14	10/06/2011	76.54		28.93		47.61
GW-14	04/12/2012	76.54		29.95		46.59
GW-14	04/20/2012	76.54		29.90		46.64
GW-14	01/10/2013	76.54		33.29		43.25
GW-14	04/03/2013	76.54		31.29		45.25
GW-14	04/08/2013	76.54		31.17		45.37
GW-14	10/02/2013	76.54		32.04		44.50
GW-14	04/09/2014	76.54		32.65		43.89
GW-14	04/16/2014	76.54		32.42		44.12
GW-14	10/27/2014	76.54		32.87		43.67
GW-14		ell decommission	ed in Decembe		medial excavati	
GW-14(1in)	01/12/2010	76.55		29.84		46.71
GW-15	04/11/2008	74.94		26.19		48.75
GW-15	04/12/2010	74.94	27.58	29.63	2.05	48.73 NC
GW-15	04/08/2011	74.94	26.75	29.63	0.01	NC NC
		74.94	27.57	<u> </u>	0.01	NC NC
GW-15	07/07/2011	+		27.61		
GW-15	10/06/2011	74.94	28.38	28.40	0.02	NC NC
GW-15	04/12/2012	74.94	29.54	29.55	0.01	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GW-15	01/11/2013	74.94		30.39		44.55
GW-15	04/03/2013	74.94	29.13	35.20	6.07	NC
GW-15	10/02/2013	74.94	31.70	35.01	3.31	NC
GW-15	04/09/2014	74.94		32.08		42.86
GW-15	04/17/2014	74.94	31.50	33.00	1.50	NC
GW-15	10/27/2014	74.94	32.82	32.87	0.05	NC
GW-15	04/20/2015	74.94		32.39		42.55
GW-15	10/21/2015	74.94		33.34		41.60
GW-15	04/13/2016	74.94	33.68	33.75	0.07	NC
GW-15	10/3/2016	74.94		34.31		40.63
GW-15(1in)	07/24/2008	75.36	27.50	27.55	0.05	NC
GW-15(1in)	10/16/2008	75.36	28.15	28.16	0.01	NC
GW-15(1in)	02/09/2009	75.36	27.98	28.02	0.04	NC
GW-15(1in)	07/17/2009	75.36	28.51	28.59	0.08	NC
GW-15(1in)	04/08/2010	75.36	27.74	29.43	1.69	NC
GW-16	10/19/2009	76.33		29.94		46.39
GW-16	04/12/2010	76.33		28.71		47.62
GW-16	07/07/2011	76.33		28.96		47.37
GW-16	10/06/2011	76.33		29.34		46.99
GW-16	04/12/2012	76.33		30.12		46.21
GW-16	01/11/2013	76.33		31.30		45.03
GW-16	04/03/2013	76.33		31.10		45.23
GW-16	10/02/2013	76.33		31.77		44.56
GW-16	04/09/2014	76.33		32.09		44.24
GW-16	04/16/2014	76.33		31.95		44.38
GW-16	10/27/2014	76.33		32.46		43.87
GW-16	04/20/2015	76.33		32.71		43.62
GW-16	10/21/2015	76.33		33.55		42.78
GW-16	04/13/2016	76.33		34.12		42.21
GW-16	10/3/2016	76.33		34.65		41.68
GW-16(1in)	07/17/2009	76.55		28.87		47.68
GW-16(1in)	01/12/2010	76.55		29.94		46.61
GW-16(1in)	04/07/2011	76.33		28.55		47.78
GWR-1	11/20/1996	73.65		26.79		46.86
GWR-1	07/01/1997	73.65		27.69		45.96
GWR-1	12/31/1997	73.65		27.34		46.31
GWR-1	05/01/1998	73.65		24.04		49.61
GWR-1	05/07/1999	73.65		25.56		48.09
GWR-1	08/09/1999	73.65		25.64		48.01
GWR-1	11/15/1999	73.65		25.86		47.79
GWR-1	05/15/2000	73.65		25.65		48.00

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
GWR-1	11/13/2000	73.65		26.40		47.25
GWR-1	05/07/2001	73.65		24.75		48.90
GWR-1	08/07/2001	73.65		24.39		49.26
GWR-1	11/05/2001	73.65		24.80		48.85
GWR-1	04/08/2002	73.65		29.39		44.26
GWR-1	10/21/2002	73.65		26.03		47.62
GWR-1	04/07/2003	73.65		25.69		47.96
GWR-1	10/06/2003	73.65		25.36		48.29
GWR-1	01/11/2004	73.65		26.72		46.93
GWR-1	05/02/2005	73.65		21.62		52.03
GWR-1	08/01/2005	73.65		22.06		51.59
GWR-1	10/31/2005	73.65		24.16		49.49
GWR-1	05/01/2006	73.65		22.70		50.95
GWR-1	09/18/2006	73.65		24.31		49.34
GWR-1	12/04/2006	73.65		23.95		49.70
GWR-1	04/30/2007	73.65		41.65		32.00
GWR-1	11/12/2007	73.65		24.05		49.60
GWR-1	04/14/2008	73.65		24.40		49.25
GWR-1	10/13/2008	73.65		25.06		48.59
GWR-1	04/20/2009	77.40		28.78		48.62
GWR-1	10/19/2009	77.40		29.98		47.42
GWR-1	05/24/2010	77.40		26.37		51.03
GWR-1	05/28/2010	77.40		25.91		51.49
GWR-1	10/04/2010	77.40		26.15		51.25
GWR-1	04/11/2011	77.40		27.50		49.90
GWR-1	10/10/2011	77.40		25.45		51.95
GWR-1	04/16/2012	77.40		27.53		49.87
GWR-1	10/15/2012	77.40		29.21		48.19
GWR-1	04/08/2013	77.40		29.28		48.12
GWR-1	10/07/2013	77.40		29.66		47.74
GWR-1	04/14/2014	77.40		30.31		47.09
GWR-1	10/27/2014	77.40		30.81		46.59
GWR-1		ell decommission	ed in Decembe		medial excavati	
GWR-2	08/09/1999	73.66		25.74		47.92
GWR-2	10/21/2002	73.66		25.89		47.77
GWR-2	04/07/2003	73.66		26.68		46.98
GWR-3	08/09/1999	74.93	27.45	29.30	1.85	NC
GWR-3	05/15/2000	74.93	28.67	31.92	3.25	NC
GWR-3	11/13/2000	74.93		37.59		37.34
GWR-3	05/07/2001	74.93	27.20	28.15	0.95	NC
GWR-3	11/05/2001	74.93		27.95		46.98

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to	Depth to Groundwater (feet btc)	Measured Product Thickness	Groundwater Elevation
GWR-3	04/08/2002	74.93	(feet btc)	27.58	(feet)	(feet MSL) 47.35
				26.12		
GWR-3	05/02/2005	74.93				48.81
GWR-3	05/01/2006	74.93		26.46 28.27		48.47
GWR-3	12/04/2006	74.93				46.66
GWR-3	04/30/2007	74.93		27.97		46.96
GWR-3	11/12/2007	74.93		27.90		47.03
GWR-3	10/17/2008	74.93		29.88		45.05
GWR-3	04/21/2009	74.93		29.97		44.96
GWR-3	10/04/2010	74.93		30.67		44.26
GWR-3	04/11/2011	74.93		29.94		44.99
GWR-3	10/10/2011	74.93		29.22		45.71
GWR-3	04/16/2012	74.93		29.56		45.37
GWR-3	10/15/2012	77.60		31.21		46.39
GWR-3	04/08/2013	77.60	29.18	29.21	0.03	NC
GWR-3	10/07/2013	77.60	31.67	36.20	4.53	NC
GWR-3	04/14/2014	77.60	32.23	38.80	6.57	NC
GWR-3	10/27/2014	77.60	33.49	34.68	1.19	NC
GWR-3	04/20/2015	77.60	33.34	37.25	3.91	NC
GWR-3	07/24/2015	77.60	33.95	41.30	7.35	NC
GWR-3	10/20/2015	77.60	34.65	35.98	1.33	NC
GWR-3	04/11/2016	77.60		36.90		40.70
GWR-3	10/3/2016	77.60	39.15	39.20	0.05	NC
HL-1	08/07/2001	75.83		26.46		49.37
HL-1	04/08/2002	75.83		27.30		48.53
HL-1	11/04/2002	75.83		28.12		47.71
HL-1	04/07/2003	75.83		27.72		48.11
HL-1	10/06/2003	75.83		27.30		48.53
HL-1	01/11/2004	75.83		28.72		47.11
HL-1	04/19/2004	75.83		28.41		47.42
HL-1	05/02/2005	75.83		23.71		52.12
HL-1	10/31/2005	75.83		25.43		50.40
HL-2	05/28/1996	76.91		30.94		45.97
HL-2	11/20/1996	76.91		30.15		46.76
HL-2	07/01/1997	76.91		31.20		45.71
HL-2	12/31/1997	76.91		30.34		46.57
HL-2	05/01/1998	76.91		28.16		48.75
HL-2	05/04/1999	76.91		28.10		48.81
HL-2	08/09/1999	76.91		28.37		48.54
HL-2		+		1		48.83
	11/15/1999	76.91		28.08		
HL-2 HL-2	05/15/2000 11/13/2000	76.91 76.91		28.23 29.21		48.68 47.70

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
HL-2	05/07/2001	76.91		25.99		50.92
HL-2	05/10/2001	76.91		27.89		49.02
HL-2	11/05/2001	76.91		27.76		49.15
HL-2	04/08/2002	76.91		28.12		48.79
HL-2	10/21/2002	76.91		28.40		48.51
HL-2	04/07/2003	76.91		28.70		48.21
HL-2	07/07/2003	76.94		28.61		48.33
HL-2	10/06/2003	76.91		28.50		48.41
HL-2	01/20/2004	76.94		28.90		48.04
HL-2	04/19/2004	76.94		29.24		47.70
HL-2	04/27/2004	76.94		29.38		47.56
HL-2	06/07/2004	76.94		29.58		47.36
HL-2	07/08/2004	76.94		29.59		47.35
HL-2	05/02/2005	76.94		26.61		50.33
HL-2	10/31/2005	76.94		25.80		51.14
HL-2	05/01/2006	76.94		26.04		50.90
HL-2	12/04/2006	76.94		26.83		50.11
HL-2	04/30/2007	76.94		26.81		50.13
HL-2	11/12/2007	76.94		27.29		49.65
HL-2	04/14/2008	76.94		27.10		49.84
HL-2	10/13/2008	76.94		28.06		48.88
HL-2	04/20/2009	76.94		28.28		48.66
HL-2	10/19/2009	76.94		29.03		47.91
HL-2	05/24/2010	76.94		29.36		47.58
HL-2	05/28/2010	76.94		29.38		47.56
HL-2	10/04/2010	76.94		29.25		47.69
HL-2	01/10/2011	76.94		29.90		47.04
HL-2	04/11/2011	76.94		28.73		48.21
HL-2	10/10/2011	76.94		28.54		48.40
HL-2	01/09/2012	76.94		29.10		47.84
HL-2	04/16/2012	76.94		29.50		47.44
HL-2	07/09/2012	76.94		30.22		46.72
HL-2	10/15/2012	76.94		30.22		46.72
HL-2	01/14/2013	76.94		31.02		45.92
HL-2	04/08/2013	76.94		30.99		45.95
HL-2	10/07/2013	76.94		32.21		44.73
HL-2	04/14/2014	76.94		32.53		44.41
HL-2	10/27/2014	76.94		32.89		44.05
HL-2	04/20/2015	76.94		33.37		43.57
HL-2	10/19/2015	76.94		34.08		42.86
HL-2	04/11/2016	76.94		35.51		41.43

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	40/0/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
HL-2	10/3/2016	76.94		35.17		41.77
HL-3	05/07/2001	76.86		27.92		48.94
HL-3	11/05/2001	76.86		27.99		48.87
HL-3	04/08/2002	76.86		28.73		48.13
HL-3	10/21/2002	76.86		29.13		47.73
HL-3	04/07/2003	76.86		29.04		47.82
HL-3	10/06/2003	76.86		28.74		48.12
HL-3	01/11/2004	76.86		30.21		46.65
HL-3	04/19/2004	76.86		29.98		46.88
HL-3	05/02/2005	76.86		24.80		52.06
HL-3	10/31/2005	76.86		26.28		50.58
HL-3	05/01/2006	76.86		26.01		50.85
HL-3	12/04/2006	76.86		26.86		50.00
HL-3	04/30/2007	76.86		26.92		49.94
HL-3	11/12/2007	76.86		27.39		49.47
HL-3	04/14/2008	76.86		27.62		49.24
HL-3	10/13/2008	76.86		28.29		48.57
HL-3	04/20/2009	76.86		28.45		48.41
HL-3	10/19/2009	76.86		29.46		47.40
HL-3	05/24/2010	76.86		29.27		47.59
HL-3	05/28/2010	76.86		29.34		47.52
HL-3	10/04/2010	76.86		29.36		47.50
HL-3	04/11/2011	76.86		28.28		48.58
HL-3	10/10/2011	76.86		28.70		48.16
HL-3	04/16/2012	76.86		29.83		47.03
HL-3	10/15/2012	76.86		30.64		46.22
HL-3	04/08/2013	76.86		31.61		45.25
HL-3	10/07/2013	76.86		32.50		44.36
HL-3	04/14/2014	76.86		32.68		44.18
HL-3	04/14/2014	76.86		32.68		44.18
HL-3	04/20/2015	76.86		33.43		43.43
HL-3	10/19/2015	76.86		34.15		42.71
HL-3	04/11/2016	76.86		36.03		40.83
HL-3	10/3/2016	76.86		37.22		39.64
HL-4	05/07/1999	75.75		27.76		47.99
HL-4	08/09/1999	75.75		27.77		47.98
HL-4	11/15/1999	75.75		27.85		47.90
HL-4	05/15/2000	75.75		19.32		56.43
HL-4	11/13/2000	75.75		28.59		47.16
HL-4	05/07/2001	75.75		26.93		48.82
HL-4	11/05/2001	75.75		26.90		48.85

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
HL-4	04/08/2002	75.75		27.42		48.33
HL-4	10/21/2002	75.75		28.02		47.73
HL-4	04/07/2003	75.75		25.86		49.89
HL-4	10/06/2003	75.75		27.59		48.16
HL-4	01/11/2004	75.75		29.01		46.74
HL-4	04/19/2004	75.75		28.81		46.94
HL-5	08/07/2001	76.53		27.29		49.24
HL-5	10/21/2002	76.13		28.40		47.73
HL-5	04/07/2003	76.13		26.06		50.07
HL-5	10/06/2003	76.13		27.65		48.48
HL-5	01/11/2004	76.13		29.07		47.06
HL-5	04/19/2004	76.13		28.88		47.25
MW-6	05/28/1996	77.20		30.52		46.68
MW-6	11/20/1996	77.20		30.88		46.32
MW-6	07/01/1997	77.20		32.12		45.08
MW-6	12/31/1997	77.20		31.26		45.94
MW-6	05/01/1998	77.20		29.15		48.05
MW-6	05/03/1999	77.20		29.46		47.74
MW-6	08/09/1999	77.20		29.65		47.55
MW-6	11/15/1999	77.20		29.73		47.47
MW-6	05/15/2000	77.20		29.39		47.81
MW-6	11/13/2000	77.20		30.70		46.50
MW-6	05/07/2001	77.20		28.88		48.32
MW-6	11/05/2001	77.20		28.53		48.67
MW-6	04/08/2002	77.20		29.29		47.91
MW-6	04/08/2002	77.20		29.51		47.69
MW-6	10/21/2002	77.20		29.40		47.80
MW-6	04/07/2003	77.20		29.67		47.53
MW-6	10/06/2003	77.20		29.48		47.72
MW-6	01/11/2004	77.20		30.31		46.89
MW-6	04/19/2004	77.20		30.29		46.91
MW-6	05/02/2005	77.20		27.00		50.20
MW-6	10/31/2005	77.20		26.36		50.84
MW-6	05/01/2006	77.20		26.79		50.41
MW-6	12/04/2006	77.20		27.41		49.79
MW-6	04/30/2007	77.20		27.47		49.73
MW-6	11/12/2007	77.20		27.72		49.48
MW-6	04/14/2008	77.20		28.13		49.07
MW-6	10/13/2008	77.20		30.63		46.57
MW-6	04/20/2009	77.20		28.80		48.40
MW-6	10/19/2009	77.20		29.48		47.72

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	ı	 				ı
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-6	05/24/2010	77.20		30.33		46.87
MW-6	05/28/2010	77.20		30.17		47.03
MW-6	10/04/2010	77.20		29.80		47.40
MW-6	04/11/2011	77.20		29.14		48.06
MW-6	10/10/2011	77.20		29.04		48.16
MW-6	04/16/2012	77.20		30.10		47.10
MW-6	10/15/2012	77.20		30.91		46.29
MW-6	04/08/2013	77.20		31.30		45.90
MW-6	10/07/2013	77.20		32.14		45.06
MW-6	04/14/2014	77.20		32.98		44.22
MW-6	10/27/2014	77.20		33.33		43.87
MW-6	04/20/2015	77.20		33.79		43.41
MW-6	10/19/2015	77.20		34.47		42.73
MW-6	04/11/2016	77.20		35.25		41.95
MW-6	10/3/2016	77.20		35.13		42.07
MW-7	05/28/1996	78.13		32.10		46.03
MW-7	11/20/1996	78.13		32.65		45.48
MW-7	07/01/1997	78.13		34.04		44.09
MW-7	12/31/1997	78.13		32.78		45.35
MW-7	05/01/1998	78.13		30.17		47.96
MW-7	05/03/1999	78.13		30.64		47.49
MW-7	08/09/1999	78.13		30.56		47.57
MW-7	11/15/1999	78.13		30.40		47.73
MW-7	05/15/2000	78.13		30.30		47.83
MW-7	11/13/2000	78.13		31.69		46.44
MW-7	05/07/2001	78.13		29.43		48.70
MW-7	11/05/2001	78.13		29.34		48.79
MW-7	04/08/2002	78.13		30.05		48.08
MW-7	10/21/2002	78.13		30.42		47.71
MW-7	04/07/2003	78.13		31.46		46.67
MW-7	10/06/2003	78.13		30.50		47.63
MW-7	01/11/2004	78.13		32.16		45.97
MW-7	04/19/2004	78.13		32.30		45.83
MW-7	05/02/2005	78.13		27.06		51.07
MW-7	10/31/2005	78.13		27.11		51.02
MW-7	05/01/2006	78.13		27.51		50.62
MW-7	12/04/2006	78.13		28.34		49.79
MW-7	04/30/2007	78.13		28.37		49.76
MW-7	11/12/2007	78.13		28.73		49.40
MW-7	04/14/2008	78.13		29.75		48.38
MW-7	10/13/2008	78.13		29.63		48.50

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
100/ =	0.4/0.0/0.00	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-7	04/20/2009	78.13		29.76		48.37
MW-7	10/19/2009	78.13		30.70		47.43
MW-7	05/24/2010	78.13		30.70		47.43
MW-7	05/28/2010	78.13		30.68		47.45
MW-7	10/04/2010	78.13		28.16		49.97
MW-7	04/11/2011	78.13		29.64		48.49
MW-7	10/10/2011	78.13		30.02		48.11
MW-7	04/16/2012	78.13		31.04		47.09
MW-7	10/15/2012	78.13		31.81		46.32
MW-7	04/08/2013	78.13		32.54		45.59
MW-7	10/07/2013	78.13		33.04		45.09
MW-7	04/14/2014	78.13		34.00		44.13
MW-7	10/27/2014	78.13		34.19		43.94
MW-7	04/20/2015	78.13		34.70		43.43
MW-7	10/19/2015	78.13		32.69		45.44
MW-7	04/11/2016	78.13		36.75		41.38
MW-7	10/3/2016	78.13		37.90		40.23
MW-8	05/28/1996	76.06		26.96		49.10
MW-8	11/20/1996	76.06		28.06		48.00
MW-8	05/03/1999	76.06		25.82		50.24
MW-8	08/09/1999	76.06		26.30		49.76
MW-8	11/15/1999	76.06		26.93		49.13
MW-8	05/15/2000	76.06		26.64		49.42
MW-8	11/13/2000	76.06		27.69		48.37
MW-8	02/05/2001	76.06		27.15		48.91
MW-8	05/07/2001	76.06		25.43		50.63
MW-8	09/18/2001	76.06		25.87		50.19
MW-8	01/29/2002	76.06		26.33		49.73
MW-8	04/08/2002	76.06		26.70		49.36
MW-8	10/21/2002	76.06		27.87		48.19
MW-8	01/27/2003	76.06		27.39		48.67
MW-8	04/07/2003	76.06		26.75		49.31
MW-8	07/31/2003	76.06		26.56		49.50
MW-8	10/06/2003	76.06		26.82		49.24
MW-8	01/11/2004	76.06		28.25		47.81
MW-8	01/27/2004	76.06		27.52		48.54
MW-8	04/19/2004	76.06		29.21		46.85
	+			+		
MW-8	07/19/2004	76.06		27.68		48.38
MW-8	02/01/2005	76.06		26.49		49.57
MW-8 MW-8	05/02/2005 08/01/2005	76.06 76.06		22.01 23.19		54.05 52.87

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well Date Elevation (feet MSL) (feet btc) Groundwater (feet btc) Thickness (feet) MW-8 10/31/2005 76.06 ————————————————————————————————————			<u> </u>		1 1		<u> </u>
MW-8 10/31/2005 76.06 ————————————————————————————————————	Well	Date	Elevation	Product	Groundwater	Product Thickness	Groundwater Elevation
MW-8 02/27/2006 76.06 — 24.41 — 51.6 MW-8 05/01/2006 76.06 — 24.37 — 51.6 MW-8 09/18/2006 76.06 — 25.21 — 50.6 MW-8 12/04/2006 76.06 — 25.46 — 50.0 MW-8 03/12/2007 76.06 — 25.98 — 50.0 MW-8 04/30/2007 76.06 — 25.18 — 50.0 MW-8 08/28/2007 76.06 — 26.40 — 49.0 MW-8 11/12/2007 76.06 — 26.40 — 49.0 MW-8 02/19/2008 76.06 — 26.79 — 49.2 MW-8 04/14/2008 76.06 — 26.29 — 49.7 MW-8 04/14/2008 76.06 — 27.19 — 48.8 MW-8 10/19/2009 76.06 — 27.91<				(feet btc)	 	(feet)	(feet MSL)
MW-8 05/01/2006 76.06 — 24.37 — 51.6 MW-8 09/18/2006 76.06 — 25.21 — 50.6 MW-8 12/04/2006 76.06 — 25.46 — 50.6 MW-8 03/12/2007 76.06 — 25.98 — 50.0 MW-8 04/30/2007 76.06 — 25.18 — 50.6 MW-8 08/28/2007 76.06 — 26.90 — 49.1 MW-8 11/12/2007 76.06 — 26.79 — 49.1 MW-8 11/12/2007 76.06 — 26.79 — 49.2 MW-8 02/19/2008 76.06 — 26.79 — 49.2 MW-8 10/13/2008 76.06 — 27.27 — 48.1 MW-8 10/13/2009 76.06 — 27.19 — 48.1 MW-8 10/19/2010 76.06 — 27.91<			1		+		50.34
MW-8 09/18/2006 76.06							51.65
MW-8 12/04/2006 76.06 — 25.46 — 50.6 MW-8 03/12/2007 76.06 — 25.98 — 50.0 MW-8 04/30/2007 76.06 — 25.18 — 50.6 MW-8 04/30/2007 76.06 — 26.90 — 49.6 MW-8 11/12/2007 76.06 — 26.79 — 49.6 MW-8 04/14/2008 76.06 — 26.79 — 49.2 MW-8 04/14/2008 76.06 — 26.29 — 49.7 MW-8 10/13/2008 76.06 — 27.27 — 48.7 MW-8 10/19/2009 76.06 — 27.19 — 48.8 MW-8 10/19/2009 76.06 — 27.91 — 48.1 MW-8 05/28/2010 76.06 — 27.91 — 48.1 MW-8 10/10/2011 76.06 — 28.53<							51.69
MW-8 03/12/2007 76.06 — 25.98 — 50.0 MW-8 04/30/2007 76.06 — 25.18 — 50.0 MW-8 08/28/2007 76.06 — 26.90 — 49.1 MW-8 11/12/2007 76.06 — 26.40 — 49.6 MW-8 02/19/2008 76.06 — 26.29 — 49.7 MW-8 04/14/2008 76.06 — 26.29 — 49.7 MW-8 10/13/2008 76.06 — 27.27 — 48.7 MW-8 10/19/2009 76.06 — 27.19 — 48.6 MW-8 10/19/2019 76.06 — 27.91 — 48.1 MW-8 10/19/2010 76.06 — 27.90 — 48.1 MW-8 10/10/2011 76.06 — 28.53 — 47.5 MW-8 10/10/2011 76.06 — 28.53<		09/18/2006	76.06				50.85
MW-8 04/30/2007 76.06 — 25.18 — 50.6 MW-8 08/28/2007 76.06 — 26.90 — 49.1 MW-8 11/12/2007 76.06 — 26.40 — 49.6 MW-8 02/19/2008 76.06 — 26.79 — 49.2 MW-8 04/14/2008 76.06 — 26.29 — 49.7 MW-8 10/13/2008 76.06 — 27.19 — 48.7 MW-8 10/19/2009 76.06 — 27.19 — 48.8 MW-8 10/19/2009 76.06 — 27.91 — 48.1 MW-8 05/24/2010 76.06 — 27.91 — 48.1 MW-8 05/28/2010 76.06 — 27.91 — 48.1 MW-8 10/04/2010 76.06 — 28.53 — 47.5 MW-8 01/10/2011 76.06 — 28.31<	MW-8	12/04/2006	76.06		25.46		50.60
MW-8 08/28/2007 76.06	MW-8	03/12/2007	76.06		25.98		50.08
MW-8 11/12/2007 76.06 — 26.40 — 49.6 MW-8 02/19/2008 76.06 — 26.79 — 49.2 MW-8 04/14/2008 76.06 — 26.29 — 49.7 MW-8 10/13/2008 76.06 — 27.27 — 48.7 MW-8 04/20/2009 76.06 — 27.19 — 48.8 MW-8 10/19/2009 76.06 — 27.91 — 48.1 MW-8 05/24/2010 76.06 — 27.91 — 48.1 MW-8 05/28/2010 76.06 — 27.90 — 48.1 MW-8 01/10/2011 76.06 — 28.53 — 47.5 MW-8 04/11/2011 76.06 — 28.63 — 47.5 MW-8 04/10/2011 76.06 — 28.31 — 47.7 MW-8 01/10/202012 76.06 — 28.7	MW-8	04/30/2007	76.06		25.18		50.88
MW-8 02/19/2008 76.06	MW-8	08/28/2007	76.06		26.90		49.16
MW-8 04/14/2008 76.06	MW-8	11/12/2007	76.06		26.40		49.66
MW-8 10/13/2008 76.06	MW-8	02/19/2008	76.06		26.79		49.27
MW-8 04/20/2009 76.06	MW-8	04/14/2008	76.06		26.29		49.77
MW-8 10/19/2009 76.06	MW-8	10/13/2008	76.06		27.27		48.79
MW-8 05/24/2010 76.06	MW-8	04/20/2009	76.06		27.19		48.87
MW-8 05/28/2010 76.06	MW-8	10/19/2009	76.06		28.71		47.35
MW-8 05/28/2010 76.06	MW-8	05/24/2010	76.06		27.91		48.15
MW-8 01/10/2011 76.06 — 28.53 — 47.5 MW-8 04/11/2011 76.06 — 26.84 — 49.2 MW-8 10/10/2011 76.06 — 27.65 — 48.4 MW-8 01/09/2012 76.06 — 28.31 — 47.7 MW-8 04/16/2012 76.06 — 29.63 — 46.4 MW-8 07/09/2012 76.06 — 29.48 — 46.5 MW-8 10/15/2012 76.06 — 29.48 — 46.5 MW-8 01/14/2013 76.06 — 30.82 — 45.2 MW-8 04/08/2013 76.06 — 30.56 — 45.5 MW-8 10/07/2013 76.06 — 31.15 — 44.5 MW-8 04/14/2014 76.06 — 31.51 — 44.5 MW-8 10/27/2014 76.06 — 31.86<	MW-8	05/28/2010	76.06		27.90		48.16
MW-8 01/10/2011 76.06 — 28.53 — 47.5 MW-8 04/11/2011 76.06 — 26.84 — 49.2 MW-8 10/10/2011 76.06 — 27.65 — 48.4 MW-8 01/09/2012 76.06 — 28.31 — 47.7 MW-8 04/16/2012 76.06 — 29.63 — 46.4 MW-8 07/09/2012 76.06 — 29.48 — 46.5 MW-8 10/15/2012 76.06 — 29.48 — 46.5 MW-8 01/14/2013 76.06 — 30.82 — 45.2 MW-8 04/08/2013 76.06 — 30.56 — 45.5 MW-8 10/07/2013 76.06 — 31.15 — 44.5 MW-8 04/14/2014 76.06 — 31.51 — 44.5 MW-8 10/27/2014 76.06 — 31.86<	MW-8	10/04/2010	76.06		28.16		47.90
MW-8 04/11/2011 76.06	MW-8	01/10/2011	76.06		28.53		47.53
MW-8 10/10/2011 76.06	MW-8	04/11/2011	76.06		26.84		49.22
MW-8 01/09/2012 76.06 28.31 47.7 MW-8 04/16/2012 76.06 28.77 47.2 MW-8 07/09/2012 76.06 29.63 46.4 MW-8 10/15/2012 76.06 29.48 46.5 MW-8 01/14/2013 76.06 30.82 45.2 MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.10 44.5 MW-8 10/27/2014 76.06 31.86 44.5 MW-8 04/20/2015 76.06 31.86 43.3 MW-8 10/19/2015 76.06 33.57 42.4 MW-9 11/20/1996	MW-8	10/10/2011	76.06				48.41
MW-8 04/16/2012 76.06 28.77 47.2 MW-8 07/09/2012 76.06 29.63 46.4 MW-8 10/15/2012 76.06 29.48 46.5 MW-8 01/14/2013 76.06 30.82 45.2 MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.51	MW-8	01/09/2012	76.06		+		47.75
MW-8 07/09/2012 76.06 29.63 46.4 MW-8 10/15/2012 76.06 29.48 46.5 MW-8 01/14/2013 76.06 30.82 45.2 MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.51 44.5 MW-8 10/27/2014 76.06 31.86 44.5 MW-8 04/20/2015 76.06 31.86			1				47.29
MW-8 10/15/2012 76.06 29.48 46.5 MW-8 01/14/2013 76.06 30.82 45.2 MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.10 44.5 MW-8 10/27/2014 76.06 31.86 44.5 MW-8 04/20/2015 76.06 31.86 44.5 MW-8 10/19/2015 76.06 32.69 42.4 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 47.3 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997							46.43
MW-8 01/14/2013 76.06 30.82 45.2 MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.51 44.5 MW-8 10/27/2014 76.06 31.86 44.5 MW-8 04/20/2015 76.06 31.86 44.2 MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.72 47.3 MW-9 05/01/1998			+				46.58
MW-8 04/08/2013 76.06 30.56 45.5 MW-8 10/07/2013 76.06 31.15 44.5 MW-8 04/14/2014 76.06 31.51 44.5 MW-8 10/27/2014 76.06 31.86 44.5 MW-8 04/20/2015 76.06 32.69 43.3 MW-8 10/19/2015 76.06 33.57 42.4 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9			+				45.24
MW-8 10/07/2013 76.06 31.15 44.9 MW-8 04/14/2014 76.06 31.10 44.9 MW-8 10/27/2014 76.06 31.51 44.5 MW-8 04/20/2015 76.06 31.86 44.2 MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9			+				45.50
MW-8 04/14/2014 76.06 31.10 44.5 MW-8 10/27/2014 76.06 31.51 44.5 MW-8 04/20/2015 76.06 31.86 44.2 MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9	-						44.91
MW-8 10/27/2014 76.06 31.51 44.5 MW-8 04/20/2015 76.06 31.86 44.2 MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.3 MW-9 05/01/1998 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9							44.96
MW-8 04/20/2015 76.06 31.86 44.2 MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.3 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9							44.55
MW-8 10/19/2015 76.06 32.69 43.3 MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.3 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9			1				44.20
MW-8 04/11/2016 76.06 33.57 42.4 MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.7 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9							43.37
MW-8 10/3/2016 76.06 34.20 41.8 MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.7 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9							42.49
MW-9 11/20/1996 77.11 29.76 47.3 MW-9 07/01/1997 77.11 29.41 47.7 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9			+		+		41.86
MW-9 07/01/1997 77.11 29.41 47.7 MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9			1				47.35
MW-9 12/31/1997 77.11 29.72 47.3 MW-9 05/01/1998 77.11 26.20 50.9							47.70
MW-9 05/01/1998 77.11 26.20 50.9			1				47.70
MW-9 08/09/1999 77.11 28.08 28.50 0.42 NC							NC
				20.00			
			+		+		48.53
							NC 52.85

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-9	05/10/2001	77.11		27.13		49.98
MW-9	09/18/2001	77.11	27.49	27.50	0.01	NC
MW-9	11/05/2001	77.11		27.59		49.52
MW-9	04/08/2002	77.11	28.21	28.30	0.09	NC
MW-9	10/21/2002	77.11	29.10	29.16	0.06	NC
MW-9	04/07/2003	77.11	28.41	28.42	0.01	NC
MW-9	10/06/2003	77.11	28.47	28.48	0.01	NC
MW-9	01/11/2004	77.11		29.63		47.48
MW-9	04/19/2004	77.11	27.50	27.53	0.03	NC
MW-9	05/02/2005	77.11		23.61		53.50
MW-9	10/31/2005	77.11	25.31	25.62	0.31	NC
MW-9	05/01/2006	77.11	25.71	25.75	0.04	NC
MW-9	12/04/2006	77.11		26.67		50.44
MW-9	04/30/2007	77.11		27.29		49.82
MW-9	08/28/2007	77.11	25.29	26.88	1.59	NC
MW-9	11/12/2007	77.11	27.65	27.69	0.04	NC
MW-9	04/14/2008	77.11		27.87		49.24
MW-9	10/13/2008	77.11		28.43		48.68
MW-9	04/20/2009	77.11		28.14		48.97
MW-9	10/19/2009	77.11	29.36	29.40	0.04	NC
MW-9	05/24/2010	77.11		29.11		48.00
MW-9	05/28/2010	77.11		29.04		48.07
MW-9	10/04/2010	77.11		29.35		47.76
MW-9	04/11/2011	77.11		28.18		48.93
MW-9	10/10/2011	77.11		28.66		48.45
MW-9	04/16/2012	77.11		30.22		46.89
MW-9	10/15/2012	77.11		31.30		45.81
MW-9	04/08/2013	77.11		31.40		45.71
MW-9	10/07/2013	77.11		31.95		45.16
MW-9	04/14/2014	77.11		32.55		44.56
MW-9	10/27/2014	77.11		32.89		44.22
MW-9	04/20/2015	77.11		33.24		43.87
MW-9	10/19/2015	77.11		34.05		43.06
MW-9	04/11/2016	77.11		35.43		41.68
MW-9	10/3/2016	77.11		33.56		43.55
MW-10	05/28/1996	79.12		32.22		46.90
MW-10	11/20/1996	79.12		32.80		46.32
MW-10	07/01/1997	79.12		32.86		46.26
MW-10	12/31/1997	79.12		32.92		46.20
MW-10	05/01/1998	79.12		30.28		48.84
MW-10	05/25/1999	79.12		30.79		48.33

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-10	05/15/2000	79.12		32.32		46.80
MW-10	11/13/2000	79.12		30.90		48.22
MW-10	05/07/2001	79.12		31.21		47.91
MW-10	04/08/2002	79.12		31.91		47.21
MW-10	10/21/2002	79.12		31.53		47.59
MW-10	04/07/2003	79.12		31.15		47.97
MW-10	10/06/2003	79.12		31.11		48.01
MW-10	04/19/2004	79.12		32.12		47.00
MW-10	11/01/2004	79.12		31.96		47.16
MW-10	05/02/2005	79.12		27.68		51.44
MW-10	03/06/2006	79.12		28.44		50.68
MW-10	05/01/2006	79.12		28.87		50.25
MW-10	08/26/2006	79.12		29.17		49.95
MW-10	12/01/2006	79.12		29.52		49.60
MW-10	03/21/2007	79.12		29.71		49.41
MW-10	04/27/2007	79.12		29.90		49.22
MW-10	08/28/2007	79.12		30.22		48.90
MW-10	11/12/2007	79.12		30.50		48.62
MW-10	02/05/2008	79.12		30.90		48.22
MW-10	04/11/2008	79.12		30.31		48.81
MW-10	07/24/2008	79.12		30.48		48.64
MW-10	10/13/2008	79.12		31.39		47.73
MW-10	02/09/2009	79.12		30.05		49.07
MW-10	07/16/2009	79.12		31.42		47.70
MW-10	04/07/2010	79.12		32.00		47.12
MW-10	10/01/2010	79.12		32.09		47.03
MW-10	01/06/2011	79.12		32.22		46.90
MW-10	04/08/2011	79.12		31.24		47.88
MW-10	07/07/2011	79.12		31.37		47.75
MW-10	10/06/2011	79.12		31.71		47.41
MW-10	04/12/2012	79.12		32.63		46.49
MW-10	01/10/2013	79.12		33.78		45.34
MW-10 MW-10	04/02/2013	79.12		33.70		45.42
	04/07/2014	79.12		35.23		43.89
MW-10	04/14/2016	79.12	27.62	37.01	2.00	42.11
MW-11	05/28/1996	78.17	27.63	30.52	2.89	NC NC
MW-11	11/20/1996	78.17	31.31	33.60	2.29	NC NC
MW-11	07/01/1997	78.17	31.89	34.15	2.26	NC NC
MW-11	12/31/1997	78.17	31.42	33.49	2.07	NC NC
MW-11 MW-11	05/01/1998 05/25/1999	78.17 78.17	26.96 29.93	28.75 29.95	1.79 0.02	NC NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-11	05/15/2000	78.17		29.88		48.29
MW-11	11/13/2000	78.17		31.47		46.70
MW-11	05/07/2001	78.17		28.95		49.22
MW-11	04/08/2002	78.17		30.70		47.47
MW-11	10/21/2002	78.17		29.98		48.19
MW-11	04/07/2003	78.17		29.95		48.22
MW-11	10/06/2003	78.17		30.36		47.81
MW-11	04/19/2004	78.17		31.94		46.23
MW-11	11/01/2004	78.17		30.80		47.37
MW-11	05/02/2005	78.17		26.97		51.20
MW-11	05/01/2006	78.17		27.86		50.31
MW-11	08/26/2006	78.17		28.28		49.89
MW-11	12/01/2006	78.17		28.56		49.61
MW-11	04/30/2007	78.17		28.94		49.23
MW-11	11/12/2007	78.17		29.50		48.67
MW-11	04/11/2008	78.17		29.15		49.02
MW-11	10/14/2008	78.17		30.18		47.99
MW-11	04/20/2009	78.17		30.00		48.17
MW-11	10/19/2009	78.17		30.91		47.26
MW-11	04/07/2010	78.17		30.72		47.45
MW-11	04/12/2010	78.17		30.55		47.62
MW-11	10/01/2010	78.17		30.97		47.20
MW-11	01/07/2011	78.17		31.12		47.05
MW-11	04/12/2012	78.17		31.52		46.65
MW-11	04/19/2012	78.17		31.34		46.83
MW-11	04/05/2013	78.17		32.71		45.46
MW-12	05/28/1996	75.76		28.18		47.58
MW-12	11/20/1996	75.76		28.97		46.79
MW-12	07/01/1997	75.76		29.49		46.27
MW-12	12/31/1997	75.76		28.98		46.78
MW-12	05/01/1998	75.76		26.27		49.49
MW-12	05/04/1999	75.76		27.53		48.23
MW-12	11/15/1999	75.76		27.65		48.11
MW-12	05/15/2000	75.76		30.34		45.42
MW-12	11/13/2000	75.76		27.38		48.38
MW-12	11/13/2000	75.76		27.44		48.32
MW-12	05/07/2001	75.76		26.72		49.04
MW-12	11/05/2001	75.76		26.75		49.01
MW-12	04/08/2002	75.76		27.52		48.24
MW-12	04/08/2002	75.76		27.70		48.06
MW-12	10/21/2002	75.76		28.08		47.68

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		1		1		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-12	10/21/2002	75.76		28.09		47.67
MW-12	04/07/2003	75.76		27.77		47.99
MW-12	10/06/2003	75.76		27.60		48.16
MW-12	01/11/2004	75.76		29.91		45.85
MW-12	04/19/2004	75.76		28.71		47.05
MW-12	05/02/2005	75.76		23.42		52.34
MW-12	05/02/2005	75.76		23.56		52.20
MW-12	10/31/2005	75.76		25.61		50.15
MW-12	05/01/2006	75.76		24.85		50.91
MW-12	05/01/2006	75.76		25.09		50.67
MW-12	12/01/2006	75.76		25.65		50.11
MW-12	12/04/2006	75.76		25.69		50.07
MW-12	04/30/2007	75.76		25.80		49.96
MW-12	04/30/2007	75.76		26.25		49.51
MW-12	11/12/2007	75.76		27.12		48.64
MW-12	11/12/2007	75.76		26.23		49.53
MW-12	04/11/2008	75.76		26.69		49.07
MW-12	04/14/2008	75.76		29.47		46.29
MW-12	10/13/2008	75.76		27.30		48.46
MW-12	10/14/2008	75.76		27.59		48.17
MW-12	04/20/2009	75.76		27.34		48.42
MW-12	10/19/2009	75.76		28.88		46.88
MW-12	04/08/2010	75.76		27.93		47.83
MW-12	05/24/2010	75.76		28.16		47.60
MW-12	05/28/2010	75.76		28.10		47.66
MW-12	10/04/2010	75.76		28.21		47.55
MW-12	04/11/2011	75.76		27.14		48.62
MW-12	10/10/2011	75.76		27.92		47.84
MW-12	04/16/2012	75.76		29.10		46.66
MW-12	10/15/2012	75.76		30.31		45.45
MW-12	04/08/2013	75.76		30.53		45.23
MW-12	10/07/2013	75.76		31.02		44.74
		+				
MW-12	04/14/2014	75.76		31.61		44.15
MW-12	10/27/2014	75.76		31.88 32.39		43.88 43.37
MW-12	04/20/2015	75.76				
MW-12	11/06/2015	75.76		34.12		41.64
MW-12	04/11/2016	75.76		34.56		41.20
MW-12	10/3/2016	75.76		35.84		39.92
MW-13	05/28/1996	78.25		30.80		47.45
MW-13	11/20/1996	78.25		31.60		46.65
MW-13	07/01/1997	78.25		30.70		47.55

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
NAVA 4 0	40/04/4007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-13	12/31/1997	78.25		31.24		47.01
MW-13	05/01/1998	78.25		28.22		50.03
MW-13	05/25/1999	78.25		29.19		49.06
MW-13	05/15/2000	78.25		29.95		48.30
MW-13	11/13/2000	78.25		27.21		51.04
MW-13	02/05/2001	78.25		29.42		48.83
MW-13	05/07/2001	78.25		28.95		49.30
MW-13	04/08/2002	78.25		30.33		47.92
MW-13	09/19/2002	78.25		30.73		47.52
MW-13	10/21/2002	78.25		30.88		47.37
MW-13	04/07/2003	78.25		30.05		48.20
MW-13	10/06/2003	78.25		29.76		48.49
MW-13	04/19/2004	78.25		30.50		47.75
MW-13	11/01/2004	78.25		30.85		47.40
MW-13	02/28/2005	78.25		27.54		50.71
MW-13	05/02/2005	78.25		25.62		52.63
MW-13	03/06/2006	78.25		27.70		50.55
MW-13	05/01/2006	78.25		27.70		50.55
MW-13	08/26/2006	78.25		28.04		50.21
MW-13	12/01/2006	78.25		28.49		49.76
MW-13	03/21/2007	78.25		28.58		49.67
MW-13	04/27/2007	78.25		29.00		49.25
MW-13	08/28/2007	78.25		29.10		49.15
MW-13	11/12/2007	78.25		29.46		48.79
MW-13	02/05/2008	78.25		30.00		48.25
MW-13	04/11/2008	78.25		29.23		49.02
MW-13	07/24/2008	78.25		29.71		48.54
MW-13	10/13/2008	78.25		30.50		47.75
MW-13	02/09/2009	78.25		29.88		48.37
MW-13	04/20/2009	78.25		30.00		48.25
MW-13	07/16/2009	78.25		30.51		47.74
MW-13	10/19/2009	78.25		30.85		47.40
MW-13	04/07/2010	78.25		30.83		47.42
MW-13	04/12/2010	78.25		30.82		47.42
MW-13	01/06/2011	78.25		31.27		46.98
MW-13	04/07/2011	78.25		29.93		48.32
MW-13	07/07/2011	78.25		30.19		48.06
		+		+		
MW-13	10/06/2011	78.25		30.78		47.47
MW-13	04/12/2012	78.25		31.76		46.49
MW-13 MW-13	04/17/2012 01/10/2013	78.25 78.25		31.46 32.78		46.79 45.47

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwate Elevation
104/40	0.4/0.0/0.40	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-13	04/02/2013	78.25		32.76		45.49
MW-13	04/08/2013	78.25		32.75		45.50
MW-13	10/01/2013	78.25		33.48		44.77
MW-13	04/09/2014	78.25		34.03		44.22
MW-13	04/15/2014	78.25		33.93		44.32
MW-13	10/27/2014	78.25		34.39		43.86
MW-13	04/20/2015	78.25		34.42		43.83
MW-13	10/19/2015	78.25		35.52		42.73
MW-13	04/12/2016	78.25		36.02		42.23
MW-13	10/3/2016	78.25		36.45		41.80
MW-14	05/28/1996	78.60		32.31		46.29
MW-14	11/20/1996	78.60		32.52		46.08
MW-14	07/01/1997	78.60		33.64		44.96
MW-14	12/31/1997	78.60		32.91		45.69
MW-14	05/01/1998	78.60		30.93		47.67
MW-14	02/03/1999	78.60		30.99		47.61
MW-14	05/07/1999	78.60		31.84		46.76
MW-14	05/25/1999	78.60		30.85		47.75
MW-14	08/09/1999	78.60		32.23		46.37
MW-14	02/29/2000	78.60		31.43		47.17
MW-14	05/15/2000	78.60		31.22		47.38
MW-14	08/28/2000	78.60		31.78		46.82
MW-14	11/13/2000	78.60		31.72		46.88
MW-14	02/05/2001	78.60		31.25		47.35
MW-14	05/07/2001	78.60		30.55		48.05
MW-14	09/18/2001	78.60		30.42		48.18
MW-14	01/29/2002	78.60		30.89		47.71
MW-14	04/08/2002	78.60		31.22		47.38
MW-14	07/29/2002	78.60		31.02		47.58
MW-14	10/21/2002	78.60		31.08		47.52
MW-14	01/27/2003	78.60		30.78		47.82
MW-14	04/07/2003	78.60		30.90		47.70
MW-14	10/06/2003	78.60		30.96		47.64
MW-14	04/19/2004	78.60		31.51		47.09
MW-14	11/01/2004	78.60		31.61		46.99
MW-14	02/28/2005	78.60		29.79		48.81
MW-14	05/02/2005	78.60		28.31		50.29
MW-14	03/06/2006	78.60		28.34		50.29
MW-14	05/01/2006	78.60		28.76		49.84
				+ + + + + + + + + + + + + + + + + + + +		1
MW-14 MW-14	08/26/2006 12/01/2006	78.60 78.60		28.89 29.15		49.71 49.45

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	1		1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-14	03/21/2007	78.60		29.21		49.39
MW-14	04/30/2007	78.60		29.44		49.16
MW-14	08/28/2007	78.60		29.77		48.83
MW-14	11/12/2007	78.60		29.91		48.69
MW-14	02/05/2008	78.60		30.24		48.36
MW-14	04/11/2008	78.60		29.73		48.87
MW-14	07/24/2008	78.60		30.21		48.39
MW-14	10/13/2008	78.60		30.71		47.89
MW-14	02/09/2009	78.60		30.77		47.83
MW-14	04/20/2009	78.60		30.80		47.80
MW-14	07/16/2009	78.60		31.21		47.39
MW-14	07/20/2009	78.60		31.31		47.29
MW-14	10/19/2009	78.60		31.43		47.17
MW-14	01/11/2010	78.60		31.94		46.66
MW-14	04/07/2010	78.60		31.79		46.81
MW-14	04/12/2010	78.60		31.44		47.16
MW-14	01/06/2011	78.60		32.86		45.74
MW-14	04/06/2011	78.60		31.13		47.47
MW-14	07/07/2011	78.60		31.13		47.47
MW-14	10/06/2011	78.60		31.31		47.29
MW-14	01/09/2012	78.60		31.40		47.20
MW-14	04/12/2012	78.60		32.07		46.53
MW-14	04/18/2012	78.60		31.83		46.77
MW-14	01/11/2013	78.60		33.24		45.36
MW-14	04/02/2013	78.60		33.13		45.47
MW-14	04/08/2013	78.60		33.80		44.80
MW-14	10/01/2013	78.60		33.90		44.70
MW-14	04/07/2014	78.60		34.98		43.62
MW-14	10/27/2014	78.60		35.03		43.57
MW-14	04/20/2015	78.60		35.38		43.22
MW-14	10/19/2015	78.60		36.12		42.48
MW-14	04/11/2016	78.60		36.49		42.11
MW-14	10/3/2016	78.60		36.37		42.11
MW-15	05/28/1996	76.99		28.96		48.03
						46.03
MW-15 MW-15	11/20/1996	76.99		29.78 29.53		47.46
	07/01/1997	76.99				
MW-15	12/31/1997	76.99		29.90		47.09
MW-15	05/01/1998	76.99		26.57		50.42
MW-15	05/03/1999	76.99		28.06		48.93
MW-15	08/09/1999	76.99		28.35		48.64
MW-15	11/15/1999	76.99		28.59		48.40

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		1		1 1		
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-15	05/15/2000	76.99		28.36		48.63
MW-15	11/13/2000	76.99		29.05		47.94
MW-15	05/07/2001	76.99		27.36		49.63
MW-15	11/05/2001	76.99		27.64		49.35
MW-15	04/08/2002	76.99		28.39		48.60
MW-15	07/29/2002	76.99		29.04		47.95
MW-15	10/21/2002	76.99	29.14	29.15	0.01	NC
MW-15	04/07/2003	76.99	28.51	28.52	0.01	NC
MW-15	10/06/2003	76.99	28.38	28.39	0.01	NC
MW-15	01/11/2004	76.99	29.55	29.64	0.09	NC
MW-15	04/19/2004	76.99	27.60	27.61	0.01	NC
MW-15	05/02/2005	76.99	22.88	22.93	0.05	NC
MW-15	10/31/2005	76.99	27.60	27.81	0.21	NC
MW-15	05/01/2006	76.99		25.92		51.07
MW-15	12/04/2006	76.99		26.76		50.23
MW-15	04/30/2007	76.99		28.17		48.82
MW-15	11/12/2007	76.99	27.02	28.25	1.23	NC
MW-15	04/14/2008	76.99	27.40	28.37	0.97	NC
MW-15	04/14/2008	76.99	27.33	28.31	0.98	NC
MW-15	10/13/2008	76.99		29.05		47.94
MW-15	04/20/2009	76.99	28.24	28.98	0.74	NC
MW-15	10/19/2009	76.99	29.21	30.37	1.16	NC
MW-15	05/24/2010	76.99	28.60	29.49	0.89	NC
MW-15	05/28/2010	76.99	28.57	29.46	0.89	NC
MW-15	10/04/2010	76.99	29.14	30.19	1.05	NC
MW-15	04/11/2011	76.99	28.16	28.62	0.46	NC
MW-15	10/10/2011	76.99	28.59	29.30	0.71	47.69
MW-15	04/27/2012	76.99		31.50		45.49
MW-15	10/15/2012	76.99	31.36	32.38	1.02	NC NC
MW-15	04/08/2013	76.99	31.44	32.40	0.96	NC NC
MW-15	10/07/2013	76.99	31.87	32.18	0.31	NC
MW-15	04/14/2014	76.99	32.59	32.70	0.11	NC NC
MW-15	10/27/2014	76.99		33.33	0.11	43.66
MW-15		ell decommission	ed in Decembe		medial excavati	
MW-16	05/28/1996	76.87	ca in Decembe	28.85	mediai excavati	48.02
MW-16	11/20/1996	76.87		29.84		47.03
MW-16	07/01/1997	76.87		28.17		48.70
MW-16	12/31/1997	76.87		28.47		48.40
MW-16	05/01/1998	76.87		23.99		52.88
MW-16	05/25/1999	76.87		27.49		49.38
MW-16	05/15/2000	76.87		28.17		48.70

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-16	11/13/2000	76.87		28.83		48.04
MW-16	05/07/2001	76.87		27.05		49.82
MW-16	02/01/2002	76.87		27.46		49.41
MW-16	04/08/2002	76.87		28.36		48.51
MW-16	10/21/2002	76.87		28.97		47.90
MW-16	01/27/2003	76.87		28.62		48.25
MW-16	04/07/2003	76.87		28.22		48.65
MW-16	07/30/2003	76.87		27.87		49.00
MW-16	10/06/2003	76.87		28.00		48.87
MW-16	01/27/2004	76.87		28.56		48.31
MW-16	04/19/2004	76.87		28.79		48.08
MW-16	07/19/2004	76.87		28.79		48.08
MW-16	11/01/2004	76.87		29.50		47.37
MW-16	02/01/2005	76.87		27.16		49.71
MW-16	05/02/2005	76.87		23.28		53.59
MW-16	08/01/2005	76.87		24.36		52.51
MW-16	03/06/2006	76.87		25.92		50.95
MW-16	05/01/2006	76.87		25.85		51.02
MW-16	08/26/2006	76.87		26.32		50.55
MW-16	09/18/2006	76.87		26.32		50.55
MW-16	12/01/2006	76.87		26.83		50.04
MW-16	03/21/2007	76.87		27.15		49.72
MW-16	04/30/2007	76.87		27.27		49.60
MW-16	08/28/2007	76.87		27.85		49.02
MW-16	11/12/2007	76.87		27.84		49.03
MW-16	02/05/2008	76.87		28.88		47.99
MW-16	04/14/2008	76.87		27.34		49.53
MW-16	07/24/2008	76.87		28.01		48.86
MW-16	10/14/2008	76.87		28.58		48.29
MW-16	02/10/2009	76.87		28.54		48.33
MW-16	04/20/2009	76.87		28.22		48.65
MW-16	07/16/2009	76.87		29.12		47.75
MW-16	10/19/2009	76.87		29.30		47.57
MW-16	04/08/2010	76.87		28.71		48.16
MW-16	04/12/2010	76.87		28.83		48.04
MW-16	01/08/2011	76.87		29.63		47.24
MW-16	04/07/2011	76.87		27.99		48.88
MW-16	07/08/2011	76.87		28.34		48.53
MW-16	10/06/2011	76.87		28.95		47.92
MW-16	04/12/2012	76.87		30.16		46.71
MW-16	04/17/2012	76.87		29.84		47.03

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-16	01/10/2013	76.87		31.47		45.40
MW-16	04/03/2013	76.87		31.53		45.34
MW-16	04/08/2013	76.87		31.51		45.36
MW-16	10/02/2013	76.87		32.14		44.73
MW-16	04/09/2014	76.87		32.68		44.19
MW-16	04/09/2014	76.87		32.68		44.19
MW-16	10/27/2014	77.87		32.84		45.03
MW-16	04/20/2015	76.87		33.24		43.63
MW-16	10/19/2015	76.87		34.06		42.81
MW-16	04/12/2016	76.87		34.91		41.96
MW-16	10/3/2016	76.87		35.42		41.45
MW-17	05/28/1996	77.86		29.91		47.95
MW-17	11/20/1996	77.86		30.83		47.03
MW-17	07/01/1997	77.86		29.40		48.46
MW-17	12/31/1997	77.86		30.31		47.55
MW-17	05/01/1998	77.86		26.49		51.37
MW-17	05/25/1999	77.86		28.44		49.42
MW-17	05/15/2000	77.86		29.09		48.77
MW-17	11/13/2000	77.86		30.74		47.12
MW-17	05/07/2001	77.86		27.81		50.05
MW-17	04/08/2002	77.86		29.16		48.70
MW-17	10/21/2002	77.86		30.20		47.66
MW-17	04/07/2003	77.86		29.05		48.81
MW-17	10/06/2003	77.86		28.90		48.96
MW-17	04/19/2004	77.86		29.72		48.14
MW-17	11/01/2004	77.86		30.33		47.53
MW-17	05/02/2005	77.86		24.30		53.56
MW-17	03/06/2006	77.86		26.85		51.01
MW-17	05/01/2006	77.86		26.90		50.96
MW-17	08/26/2006	77.86		27.41		50.45
MW-17	12/01/2006	77.86		27.90		49.96
MW-17	03/21/2007	77.86		27.99		49.87
MW-17	04/27/2007	77.86		28.45		49.41
MW-17	08/28/2007	77.86		28.45		49.41
MW-17	11/12/2007	77.86		28.91		48.95
MW-17	02/05/2008	77.86		29.46		48.40
MW-17	04/11/2008	77.86		28.51		49.35
MW-17	07/24/2008	77.86		29.11		48.75
MW-17	10/13/2008	77.86		30.00		47.86
MW-17	02/09/2009	77.86		29.36		48.50
MW-17	04/20/2009	77.86		29.31		48.55

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	0=11010000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-17	07/16/2009	77.86		32.25		45.61
MW-17	10/19/2009	77.86		30.72		47.14
MW-17	04/07/2010	77.86		29.92		47.94
MW-17	04/12/2010	77.86		29.92		47.94
MW-17	01/06/2011	77.86		30.93		46.93
MW-17	04/07/2011	77.86		28.97		48.89
MW-17	07/07/2011	77.86		29.49		48.37
MW-17	10/06/2011	77.86		30.17		47.69
MW-17	04/12/2012	77.86		31.35		46.51
MW-17	04/17/2012	77.86		30.99		46.87
MW-17	01/10/2013	77.86		32.34		45.52
MW-17	04/02/2013	77.86		32.44		45.42
MW-17	04/08/2013	77.86		32.43		45.43
MW-17	10/01/2013	77.86		33.07		44.79
MW-17	04/09/2014	77.86		33.45		44.41
MW-17	04/16/2014	77.86		33.02		44.84
MW-17	10/27/2014	77.86		33.76		44.10
MW-17	04/20/2015	77.86		34.06		43.80
MW-17	10/19/2015	77.86		34.97		42.89
MW-17	04/13/2016	77.86		35.57		42.29
MW-17	10/3/2016	77.86		36.05		41.81
MW-18 (MID)	05/28/1996	75.67	33.20	33.81	0.61	NC
MW-18 (MID)	11/20/1996	75.67		32.82		42.85
MW-18 (MID)	07/01/1997	75.67		29.10		46.57
MW-18 (MID)	12/31/1997	75.67	32.67	33.25	0.58	NC
MW-18 (MID)	05/01/1998	75.67	29.81	29.83	0.02	NC
MW-18 (MID)	08/09/1999	75.67		31.33		44.34
MW-18 (MID)	11/19/1999	75.67		31.86		43.81
MW-18 (MID)	05/15/2000	75.67		24.58		51.09
MW-18 (MID)	11/13/2000	75.67		26.78		48.89
MW-18 (MID)	05/07/2001	75.67		30.38		45.29
MW-18 (MID)	08/07/2001	75.67		30.46		45.21
MW-18 (MID)	11/05/2001	75.67		30.66		45.01
MW-18 (MID)	04/08/2002	75.67		31.22		44.45
MW-18 (MID)	10/21/2002	75.67		32.24		43.43
MW-18 (MID)	10/06/2003	75.67		31.42		44.25
MW-18 (MID)	04/19/2004	75.67		32.34		43.33
MW-18 (MID)	05/02/2005	75.67		27.67		48.00
MW-18 (MID)	10/31/2005	75.67		25.96		49.71
MW-18 (MID)	05/01/2006	75.67		28.92		46.75
, ,	12/04/2006	75.67		29.74		45.93
MW-18 (MID)	12/04/2000	10.01		29.74		40.93

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-18 (MID)	04/30/2007	75.67		29.77		45.90
MW-18 (MID)	11/12/2007	75.67		30.23		45.44
MW-18 (MID)	04/14/2008	75.67		30.45		45.22
MW-18 (MID)	10/13/2008	75.67		31.15		44.52
MW-18 (MID)	04/20/2009	75.67		31.49		44.18
MW-18 (MID)	10/19/2009	75.67		32.62		43.05
MW-18 (MID)	05/24/2010	75.67		32.26		43.41
MW-18 (MID)	05/28/2010	75.67		32.17		43.50
MW-18 (MID)	04/11/2011	75.67		31.28		44.39
MW-18 (MID)	10/10/2011	75.67		31.51		44.16
MW-18 (MID)	04/16/2012	75.67		31.75		43.92
MW-18 (MID)	10/15/2012	75.67		33.41		42.26
MW-18 (MID)	04/08/2013	75.67		30.68		44.99
MW-18 (MID)	10/07/2013	75.67		35.33		40.34
MW-18 (MID)	04/14/2014	75.67		35.40		40.27
MW-18 (MID)	10/27/2014	75.67		35.81		39.86
MW-18 (MID)	04/20/2015	75.67		36.29		39.38
MW-18 (MID)	10/19/2015	75.67		36.99		38.68
MW-18 (MID)	04/11/2016	75.67		38.89		36.78
MW-18 (MID)	10/3/2016	75.67		40.93		34.74
MW-19 (MID)	05/28/1996	78.14		31.52		46.62
MW-19 (MID)	11/20/1996	78.14		32.04		46.10
MW-19 (MID)	07/01/1997	78.14		33.51		44.63
MW-19 (MID)	12/31/1997	78.14		33.72		44.42
MW-19 (MID)	05/01/1998	78.14		29.48		48.66
MW-19 (MID)	02/03/1999	78.14		29.05		49.09
MW-19 (MID)	05/03/1999	78.14		30.91		47.23
MW-19 (MID)	08/09/1999	78.14		30.90		47.24
MW-19 (MID)	11/15/1999	78.14		30.63		47.51
MW-19 (MID)	02/29/2000	78.14		29.59		48.55
MW-19 (MID)	05/15/2000	78.14		25.27		52.87
MW-19 (MID)	08/28/2000	78.14		32.23		45.91
MW-19 (MID)	11/13/2000	78.14		31.90		46.24
MW-19 (MID)	02/05/2001	78.14		30.55		47.59
MW-19 (MID)	05/07/2001	78.14		29.82		48.32
MW-19 (MID)	09/18/2001	78.14		29.81		48.33
MW-19 (MID)	11/05/2001	78.14		29.71		48.43
MW-19 (MID)	01/29/2002	78.14		30.00		48.14
MW-19 (MID)	04/08/2002	78.14		30.12		48.02
MW-19 (MID)	10/21/2002	78.14		41.44		36.70
MW-19 (MID)	04/07/2003	78.14		31.94		46.20

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		<u> </u>		<u> </u>		ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
104 (0 (0 10 0)	10/00/000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-19 (MID)	10/06/2003	78.14		31.10		47.04
MW-19 (MID)	01/11/2004	78.14		32.97		45.17
MW-19 (MID)	04/19/2004	78.14		33.87		44.27
MW-19 (MID)	05/02/2005	78.14		28.00		50.14
MW-19 (MID)	10/31/2005	78.14		28.35		49.79
MW-19 (MID)	05/01/2006	78.14		28.70		49.44
MW-19 (MID)	12/04/2006	78.14		29.65		48.49
MW-19 (MID)	04/30/2007	78.14		29.68		48.46
MW-19 (MID)	11/12/2007	78.14		30.44		47.70
MW-19 (MID)	04/14/2008	78.14		30.70		47.44
MW-19 (MID)	10/13/2008	78.14		32.63		45.51
MW-19 (MID)	04/20/2009	78.14		31.75		46.39
MW-19 (MID)	10/19/2009	78.14		32.88		45.26
MW-19 (MID)	05/24/2010	78.14		33.16		44.98
MW-19 (MID)	05/28/2010	78.14		33.11		45.03
MW-19 (MID)	04/11/2011	78.14		32.64		45.50
MW-19 (MID)	10/10/2011	78.14		32.64		45.50
MW-19 (MID)	04/16/2012	78.14		33.42		44.72
MW-19 (MID)	10/15/2012	78.14		34.29		43.85
MW-19 (MID)	04/08/2013	78.14		34.81		43.33
MW-19 (MID)	10/07/2013	78.14		36.14		42.00
MW-19 (MID)	04/14/2014	78.14		36.37		41.77
MW-19 (MID)	10/27/2014	78.14		37.09		41.05
MW-19 (MID)	04/20/2015	78.14		37.61		40.53
MW-19 (MID)	10/19/2015	78.14		38.26		39.88
MW-19 (MID)	04/11/2016	78.14		32.97		45.17
MW-19 (MID)	10/3/2016	78.14		40.60		37.54
MW-20 (MID)	05/28/1996	77.19		31.42		45.77
MW-20 (MID)	11/20/1996	77.19		31.98		45.21
MW-20 (MID)	07/01/1997	77.19		33.31		43.88
MW-20 (MID)	12/31/1997	77.19		32.89		44.30
MW-20 (MID)	05/01/1998	77.19		29.81		47.38
MW-20 (MID)	05/03/1999	77.19		30.63		46.56
MW-20 (MID)	08/09/1999	77.19		31.07		46.12
` '				31.07		
MW-20 (MID)	11/15/1999	77.19				46.19 46.54
MW-20 (MID)	05/15/2000	77.19		30.65		
MW-20 (MID)	11/13/2000	77.19		32.10		45.09
MW-20 (MID)	05/07/2001	77.19		30.14		47.05
MW-20 (MID)	09/18/2001	77.19		30.15		47.04
MW-20 (MID)	11/05/2001	77.19		30.09		47.10
MW-20 (MID)	04/08/2002	77.19		36.14		41.05

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-20 (MID)	04/08/2002	77.19		30.82		46.37
MW-20 (MID)	10/21/2002	77.19		31.12		46.07
MW-20 (MID)	04/07/2003	77.19		31.25		45.94
MW-20 (MID)	10/06/2003	77.19		31.35		45.84
MW-20 (MID)	01/11/2004	77.19		32.33		44.86
MW-20 (MID)	04/19/2004	77.19		32.04		45.15
MW-20 (MID)	05/02/2005	77.19		28.73		48.46
MW-20 (MID)	10/31/2005	77.19		28.61		48.58
MW-20 (MID)	05/01/2006	77.19		28.65		48.54
MW-20 (MID)	12/04/2006	77.19		29.37		47.82
MW-20 (MID)	04/30/2007	77.19		29.35		47.84
MW-20 (MID)	11/12/2007	77.19		29.98		47.21
MW-20 (MID)	04/14/2008	77.19		30.21		46.98
MW-20 (MID)	10/13/2008	77.19		30.93		46.26
MW-20 (MID)	04/20/2009	77.19		31.09		46.10
MW-20 (MID)	10/19/2009	77.19		32.11		45.08
MW-20 (MID)	05/24/2010	77.19		32.33		44.86
MW-20 (MID)	05/28/2010	77.19		32.29		44.90
MW-20 (MID)	04/11/2011	77.19		31.39		45.80
MW-20 (MID)	10/10/2011	77.19		31.55		45.64
MW-20 (MID)	04/16/2012	77.19		32.20		44.99
MW-20 (MID)	10/15/2012	77.19		33.05		44.14
MW-20 (MID)	04/08/2013	77.19		33.35		43.84
MW-20 (MID)	10/07/2013	77.19		34.37		42.82
MW-20 (MID)	04/14/2014	77.19		34.95		42.24
MW-20 (MID)	10/27/2014	77.19		35.65		41.54
MW-20 (MID)	04/20/2015	77.19		35.94		41.25
MW-20 (MID)	10/19/2015	77.19		37.73		39.46
MW-20 (MID)	04/11/2016	77.19		37.55		39.64
MW-20 (MID)	10/3/2016	77.19		38.22		38.97
MW-21 (MID)	05/04/1999	77.55		28.99		48.56
MW-21 (MID)	08/09/1999	77.55		29.67		47.88
MW-21 (MID)	11/15/1999	77.55		30.50		47.05
MW-21 (MID)	05/15/2000	77.55		27.30		50.25
MW-21 (MID)	11/13/2000	77.55		30.41		47.14
MW-21 (MID)	05/07/2001	77.55		28.68		48.87
MW-21 (MID)	11/05/2001	77.55		28.67		48.88
MW-21 (MID)	04/08/2002	77.55		49.51		28.04
MW-21 (MID)	10/21/2002	77.55		29.92		47.63
MW-21 (MID)	04/07/2003	77.55		29.90		47.65
MW-21 (MID)	10/06/2003	77.55		29.51		48.04

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>						•
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-21 (MID)	01/11/2004	77.55	(leet bic)	30.91		46.64
` ′		+		+		ł
MW-21 (MID)	04/19/2004	77.55		30.66		46.89
MW-21 (MID)	05/02/2005	77.55		25.61		51.94
MW-21 (MID)	10/31/2005	77.55		26.31		51.24
MW-21 (MID)	05/01/2006	77.55		26.66		50.89
MW-21 (MID)	12/04/2006	77.55		27.55		50.00
MW-21 (MID)	04/30/2007	77.55		27.68		49.87
MW-21 (MID)	11/12/2007	77.55		28.08		49.47
MW-21 (MID)	04/14/2008	77.55		28.32		49.23
MW-21 (MID)	10/13/2008	77.55		28.96		48.59
MW-21 (MID)	04/20/2009	77.55		29.19		48.36
MW-21 (MID)	10/19/2009	77.55		30.30		47.25
MW-21 (MID)	05/24/2010	77.55		30.00		47.55
MW-21 (MID)	05/28/2010	77.55		29.97		47.58
MW-21 (MID)	04/11/2011	77.55		29.00		48.55
MW-21 (MID)	10/10/2011	77.55		29.44		48.11
MW-21 (MID)	04/16/2012	77.55		30.54		47.01
MW-21 (MID)	10/15/2012	77.55		31.23		46.32
MW-21 (MID)	04/08/2013	77.55		32.29		45.26
MW-21 (MID)	10/07/2013	77.55		32.62		44.93
MW-21 (MID)	04/14/2014	77.55		33.38		44.17
MW-21 (MID)	10/27/2014	77.55		33.62		43.93
MW-21 (MID)	04/20/2015	77.55		34.08		43.47
MW-21 (MID)	10/19/2015	77.55		34.77		42.78
MW-21 (MID)	04/11/2016	77.55		36.42		41.13
MW-21 (MID)	10/3/2016	77.55		37.83		39.72
MW-22 (MID)	05/28/1996	79.57		33.53		46.04
MW-22 (MID)	11/20/1996	79.57		34.39		45.18
MW-22 (MID)	07/01/1997	79.57		35.42		44.15
MW-22 (MID)	12/31/1997	79.57		34.06		45.51
MW-22 (MID)	05/01/1998	79.57		32.12		47.45
MW-22 (MID)	02/02/1999	79.57		31.76		47.81
MW-22 (MID)	05/04/1999	79.57		32.60		46.97
MW-22 (MID)	05/25/1999	79.57		32.02		47.55
MW-22 (MID)	08/09/1999	79.57		33.24		46.33
MW-22 (MID)	02/29/2000	79.57		32.76		46.81
MW-22 (MID)	05/15/2000	79.57		32.72		46.85
MW-22 (MID)	08/28/2000	79.57		33.80		45.77
MW-22 (MID)	11/13/2000	79.57		32.61		46.96
	11/13/2000			33.47		
MW-22 (MID)		79.57				46.10
MW-22 (MID)	02/05/2001	79.57		32.62		46.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 		 		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-22 (MID)	05/07/2001	79.57	(leet btc)	32.01	(leet)	47.56
		+		+		
MW-22 (MID)	05/07/2001 09/18/2001	79.57		32.05 32.07		47.52
MW-22 (MID)		79.57				47.50
MW-22 (MID)	01/29/2002	79.57		32.32		47.25
MW-22 (MID)	04/08/2002	79.57		32.61		46.96
MW-22 (MID)	07/29/2002	79.57		32.76		46.81
MW-22 (MID)	10/21/2002	79.57		32.66		46.91
MW-22 (MID)	01/27/2003	79.57		32.44		47.13
MW-22 (MID)	04/07/2003	79.57		32.50		47.07
MW-22 (MID)	10/06/2003	79.57		32.98		46.59
MW-22 (MID)	04/19/2004	79.57		33.32		46.25
MW-22 (MID)	11/01/2004	79.57		33.44		46.13
MW-22 (MID)	02/28/2005	79.57		31.66		47.91
MW-22 (MID)	05/02/2005	79.57		29.93		49.64
MW-22 (MID)	03/06/2006	79.57		30.12		49.45
MW-22 (MID)	05/01/2006	79.57		30.54		49.03
MW-22 (MID)	08/26/2006	79.57		31.04		48.53
MW-22 (MID)	12/01/2006	79.57		31.18		48.39
MW-22 (MID)	03/21/2007	79.57		31.49		48.08
MW-22 (MID)	04/30/2007	79.57		31.33		48.24
MW-22 (MID)	08/28/2007	79.57		31.96		47.61
MW-22 (MID)	11/12/2007	79.57		32.19		47.38
MW-22 (MID)	02/05/2008	79.57		32.51		47.06
MW-22 (MID)	04/11/2008	79.57		31.83		47.74
MW-22 (MID)	10/13/2008	79.57		33.01		46.56
MW-22 (MID)	02/09/2009	79.57		32.96		46.61
MW-22 (MID)	04/20/2009	79.57		32.65		46.92
MW-22 (MID)	07/16/2009	79.57		33.51		46.06
MW-22 (MID)	07/20/2009	79.57		33.96		45.61
MW-22 (MID)	10/19/2009	79.57		33.87		45.70
MW-22 (MID)	01/11/2010	79.57		34.14		45.43
MW-22 (MID)	04/07/2010	79.57		34.02		45.55
MW-22 (MID)	04/12/2010	79.57		33.62		45.95
MW-22 (MID)	01/07/2011	79.57		34.50		45.07
MW-22 (MID)	04/06/2011	79.57		33.39		46.18
MW-22 (MID)	07/08/2011	79.57		33.34		46.23
MW-22 (MID)	10/06/2011	79.57		33.57		46.00
MW-22 (MID)	01/09/2012	79.57		33.72		45.85
MW-22 (MID)	04/12/2012	79.57		34.22		45.35
MW-22 (MID)	04/18/2012	79.57		33.98		45.59
MW-22 (MID)	01/11/2013	79.57		35.48		45.59

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MM 22 (MID)	04/02/2042		(leet bic)	35.32	(leet)	
MW-22 (MID)	04/03/2013	79.57		+		44.25
MW-22 (MID)	04/08/2013	79.57		35.30		44.27
MW-22 (MID)	10/02/2013	79.57		36.18		43.39
MW-22 (MID)	04/09/2014	79.57		37.08		42.49
MW-22 (MID)	04/15/2014	79.57		36.84		42.73
MW-22 (MID)	10/27/2014	79.57		37.57		42.00
MW-22 (MID)	04/20/2015	79.57		37.94		41.63
MW-22 (MID)	10/19/2015	79.57		38.72		40.85
MW-22 (MID)	04/11/2016	79.57		39.20		40.37
MW-22 (MID)	10/3/2016	79.57		39.79		39.78
MW-23 (MID)	05/28/1996	79.59		32.44		47.15
MW-23 (MID)	11/20/1996	79.59		33.20		46.39
MW-23 (MID)	07/01/1997	79.59		32.94		46.65
MW-23 (MID)	12/31/1997	79.59		33.14		46.45
MW-23 (MID)	05/01/1998	79.59		30.25		49.34
MW-23 (MID)	05/25/1999	79.59		31.03		48.56
MW-23 (MID)	05/15/2000	79.59		31.97		47.62
MW-23 (MID)	11/13/2000	79.59		31.21		48.38
MW-23 (MID)	05/07/2001	79.59		28.30		51.29
MW-23 (MID)	04/08/2002	79.59		32.27		47.32
MW-23 (MID)	10/21/2002	79.59		31.44		48.15
MW-23 (MID)	04/07/2003	79.59		30.22		49.37
MW-23 (MID)	10/06/2003	79.59		31.50		48.09
MW-23 (MID)	04/19/2004	79.59		32.65		46.94
MW-23 (MID)	11/01/2004	79.59		32.33		47.26
MW-23 (MID)	05/02/2005	79.59		27.72		51.87
MW-23 (MID)	03/06/2006	79.59		28.81		50.78
MW-23 (MID)	05/01/2006	79.59		29.21		50.38
MW-23 (MID)	08/26/2006	79.59		29.56		50.03
MW-23 (MID)	12/01/2006	79.59		29.91		49.68
MW-23 (MID)	03/21/2007	79.59		30.14		49.45
MW-23 (MID)	04/27/2007	79.59		30.33		49.26
MW-23 (MID)	08/28/2007	79.59		31.05		48.54
MW-23 (MID)	11/12/2007	79.59		30.95		48.64
MW-23 (MID)	02/05/2008	79.59		31.91		47.68
MW-23 (MID)	04/11/2008	79.59		30.72		48.87
MW-23 (MID)	07/24/2008	79.59		31.02		48.57
MW-23 (MID)	10/13/2008	79.59		31.82		47.77
MW-23 (MID)	02/09/2009	79.59		32.78		46.81
` ′						
MW-23 (MID)	04/20/2009	79.59		32.46		47.13
MW-23 (MID)	07/16/2009	79.59		31.79		47.80

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
MM 22 (MID)	10/10/2000	(feet MSL)	(feet btc)	(feet btc) 32.44	(feet)	(feet MSL)
MW-23 (MID)	10/19/2009	79.59				47.15
MW-23 (MID)	04/07/2010	79.59		32.29		47.30
MW-23 (MID)	04/12/2010	79.59		31.83		47.76
MW-23 (MID)	01/06/2011	79.59		32.53		47.06
MW-23 (MID)	04/06/2011	79.59		31.34		48.25
MW-23 (MID)	07/07/2011	79.59		31.62		47.97
MW-23 (MID)	10/06/2011	79.59		32.03		47.56
MW-23 (MID)	04/12/2012	79.59		33.10		46.49
MW-23 (MID)	04/19/2012	79.59		32.87		46.72
MW-23 (MID)	01/10/2013	79.59		34.27		45.32
MW-23 (MID)	04/02/2013	79.59		34.25		45.34
MW-23 (MID)	04/08/2013	79.59		34.19		45.40
MW-24	05/28/1996	78.51		32.08		46.43
MW-24	11/20/1996	78.51		32.33		46.18
MW-24	07/01/1997	78.51		33.97		44.54
MW-24	12/31/1997	78.51		32.72		45.79
MW-24	05/01/1998	78.51		30.42		48.09
MW-24	05/25/1999	78.51		30.59		47.92
MW-24	05/15/2000	78.51		31.33		47.18
MW-24	11/13/2000	78.51		31.60		46.91
MW-24	05/07/2001	78.51		30.44		48.07
MW-24	04/08/2002	78.51		31.12		47.39
MW-24	10/21/2002	78.51		31.09		47.42
MW-24	04/07/2003	78.51		30.80		47.71
MW-24	10/06/2003	78.51		30.77		47.74
MW-24	04/19/2004	78.51		31.49		47.02
MW-24	11/01/2004	78.51		31.45		47.06
MW-24	05/02/2005	78.51		27.71		50.80
MW-24	05/01/2006	78.51		28.50		50.01
MW-24	12/01/2006	78.51		29.06		49.45
MW-24	04/30/2007	78.51		29.44		49.07
MW-24	11/12/2007	78.51		29.91		48.60
MW-24	04/11/2008	78.51		29.74		48.77
MW-24	07/24/2008	78.51		29.96		48.55
MW-24	10/13/2008	78.51		30.79		47.72
MW-24	02/09/2009	78.51		29.67		48.84
MW-24	04/20/2009	78.51		30.66		47.85
				+		
MW-24	10/19/2009	78.51		31.61		46.90
MW-24	04/07/2010	78.51		31.62		46.89
MW-24 MW-24	04/12/2010 01/06/2011	78.51 78.51		31.26 31.96		47.25 46.55

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>	T			1 1		1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-24	04/06/2011	78.51		30.98		47.53
MW-24	07/07/2011	78.51		31.03		47.48
MW-24	10/06/2011	78.51		31.26		47.25
MW-24	04/12/2012	78.51		32.04		46.47
MW-24	04/18/2012	78.51		31.82		46.69
MW-24	01/10/2013	78.51		33.24		45.27
MW-24	04/02/2013	78.51		33.09		45.42
MW-24	04/08/2013	78.51		33.01		45.50
MW-24	10/01/2013	78.51		33.87		44.64
MW-24	04/07/2014	78.51		34.75		43.76
MW-24	04/15/2014	78.51		34.52		43.99
MW-24	10/27/2014	78.51		34.96		43.55
MW-24	04/20/2015	78.51		35.34		43.17
MW-24	10/19/2015	78.51		36.02		42.49
MW-24	04/11/2016	78.51		36.42		42.09
MW-25	05/28/1996	79.15		32.77		46.38
MW-25	11/20/1996	79.15		33.90		45.25
MW-25	07/01/1997	79.15		34.59		44.56
MW-25	12/31/1997	79.15		33.41		45.74
MW-25	05/01/1998	79.15		31.26		47.89
MW-25	05/04/1999	79.15		32.01		47.14
MW-25	05/25/1999	79.15		31.45		47.70
MW-25	08/09/1999	79.15		32.56		46.59
MW-25	05/15/2000	79.15		31.86		47.29
MW-25	11/13/2000	79.15		33.56		45.59
MW-25	11/13/2000	79.15		32.50		46.65
MW-25	05/07/2001	79.15		31.12		48.03
MW-25	05/07/2001	79.15		31.15		48.00
MW-25	04/08/2002	79.15		31.81		47.34
MW-25	10/21/2002	79.15		31.59		47.56
MW-25	04/07/2003	79.15		31.40		47.75
MW-25	10/06/2003	79.15		31.73		47.42
		1				
MW-25	04/19/2004	79.15		32.19		46.96
MW-25	11/01/2004	79.15		32.25		46.90
MW-25	05/02/2005	79.15		28.89		50.26
MW-25	05/01/2006	79.15		29.44		49.71
MW-25	12/01/2006	79.15		29.84		49.31
MW-25	04/30/2007	79.15		29.99		49.16
MW-25	11/12/2007	79.15		30.50		48.65
MW-25	04/11/2008	79.15		30.27		48.88
MW-25	07/24/2008	79.15		30.90		48.25

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
NAVA 05	40/40/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-25	10/13/2008	79.15		31.44		47.71
MW-25	02/09/2009	79.15		30.70		48.45
MW-25	04/20/2009	79.15		31.32		47.83
MW-25	10/19/2009	79.15		32.00		47.15
MW-25	04/07/2010	79.15		32.39		46.76
MW-25	04/12/2010	79.15		31.86		47.29
MW-25	01/07/2011	79.15		32.76		46.39
MW-25	04/06/2011	79.15		31.64		47.51
MW-25	07/08/2011	79.15		31.55		47.60
MW-25	10/06/2011	79.15		31.78		47.37
MW-25	04/12/2012	79.15		32.58		46.57
MW-25	04/17/2012	79.15		32.35		46.80
MW-25	01/11/2013	79.15		33.86		45.29
MW-25	04/03/2013	79.15		33.65		45.50
MW-25	04/08/2013	79.15		33.44		45.71
MW-26	05/28/1996	77.40		30.70		46.70
MW-26	11/20/1996	77.40		31.25		46.15
MW-26	07/01/1997	77.40		32.24		45.16
MW-26	12/31/1997	77.40		31.44		45.96
MW-26	05/01/1998	77.40		28.96		48.44
MW-26	05/25/1999	77.40		29.54		47.86
MW-26	05/15/2000	77.40		29.97		47.43
MW-26	11/13/2000	77.40		30.73		46.67
MW-26	05/07/2001	77.40		29.05		48.35
MW-26	04/08/2002	77.40		29.94		47.46
MW-26	10/21/2002	77.40		29.73		47.67
MW-26	04/07/2003	77.40		29.50		47.90
MW-26	10/06/2003	77.40		29.78		47.62
MW-26	04/19/2004	77.40		30.54		46.86
MW-26	11/01/2004	77.40		30.43		46.97
MW-26	05/02/2005	77.40		26.06		51.34
MW-26	05/01/2006	77.40		27.46		49.94
MW-26	12/01/2006	77.40		28.00		49.40
MW-26	04/30/2007	77.40		28.18		49.40
				1		49.22
MW-26	11/12/2007	77.40		28.75		•
MW-26	04/11/2008	77.40		28.46		48.94
MW-26	07/24/2008	77.40		29.00		48.40
MW-26	10/13/2008	77.40		29.42		47.98
MW-26	02/09/2009	77.40		29.11		48.29
MW-26	04/20/2009	77.40		29.42		47.98

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
NAVA / OC	04/07/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-26	04/07/2010	77.40		30.24		47.16
MW-26	04/12/2010	77.40		29.82		47.58
MW-26	01/07/2011	77.40		30.77		46.63
MW-26	04/06/2011	77.40		29.52		47.88
MW-26	07/08/2011	77.40		29.48		47.92
MW-26	10/06/2011	77.40		29.88		47.52
MW-26	04/12/2012	77.40		30.77		46.63
MW-26	04/17/2012	77.40		30.58		46.82
MW-26	01/11/2013	77.40		32.17		45.23
MW-26	04/03/2013	77.40		31.94		45.46
MW-26	04/08/2013	77.40		31.86		45.54
MW-26	10/02/2013	77.40		32.72		44.68
MW-26	04/09/2014	77.40		33.63		43.77
MW-26	04/15/2014	77.40		33.38		44.02
MW-26	10/27/2014	77.40		33.81		43.59
MW-26	04/20/2015	77.40		34.22		43.18
MW-26	10/19/2015	77.40		34.94		42.46
MW-26	04/11/2016	77.40		35.48		41.92
MW-26	10/3/2016	77.40		35.90		41.50
MW-27	05/28/1996	78.46		31.43		47.03
MW-27	11/20/1996	78.46		32.13		46.33
MW-27	07/01/1997	78.46		32.99		45.47
MW-27	12/31/1997	78.46		32.21		46.25
MW-27	05/01/1998	78.46		29.05		49.41
MW-27	05/25/1999	78.46		30.27		48.19
MW-27	05/15/2000	78.46		30.81		47.65
MW-27	11/13/2000	78.46		31.79		46.67
MW-27	05/07/2001	78.46		29.61		48.85
MW-27	04/08/2002	78.46		30.69		47.77
MW-27	10/21/2002	78.46		30.62		47.84
MW-27	04/07/2003	78.46		30.40		48.06
MW-27	10/06/2003	78.46		30.79		47.67
MW-27	04/19/2004	78.46		31.87		46.59
MW-27	11/01/2004	78.46		31.66		46.80
MW-27	05/02/2005	78.46		26.48		51.98
MW-27	05/02/2005	78.46		28.17		50.29
MW-27	12/01/2006	78.46		28.99		49.47
				+		
MW-27	04/30/2007	78.46		29.17		49.29
MW-27	11/12/2007	78.46		29.75		48.71
MW-27 MW-27	04/11/2008 07/24/2008	78.46 78.46		29.25 29.96		49.21 48.50

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	101101000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-27	10/13/2008	78.46		30.34		48.12
MW-27	02/09/2009	78.46		30.44		48.02
MW-27	04/20/2009	78.46		30.27		48.19
MW-27	10/19/2009	78.46		31.23		47.23
MW-27	04/07/2010	78.46		30.95		47.51
MW-27	04/12/2010	78.46		30.79		47.67
MW-27	01/07/2011	78.46		31.53		46.93
MW-27	04/06/2011	78.46		29.82		48.64
MW-27	07/08/2011	78.46		30.03		48.43
MW-27	10/06/2011	78.46		30.06		48.40
MW-27	04/12/2012	78.46		31.72		46.74
MW-27	04/17/2012	78.46		31.49		46.97
MW-27	01/11/2013	78.46		33.24		45.22
MW-27	04/03/2013	78.46		33.02		45.44
MW-27	04/08/2013	78.46		32.98		45.48
MW-27	10/02/2013	78.46		33.78		44.68
MW-27	10/27/2014	78.46		34.63		43.83
MW-27	04/20/2015	78.46		35.03		43.43
MW-27	10/19/2015	78.46		35.79		42.67
MW-27	04/11/2016	78.46		36.66		41.80
MW-27	10/3/2016	78.46		37.16		41.30
MW-28	05/28/1996	78.53		31.13		47.40
MW-28	11/20/1996	78.53		31.79		46.74
MW-28	07/01/1997	78.53		31.98		46.55
MW-28	12/31/1997	78.53		31.51		47.02
MW-28	05/01/1998	78.53		29.09		49.44
MW-28	05/25/1999	78.53		29.83		48.70
MW-28	05/15/2000	78.53		30.45		48.08
MW-28	11/13/2000	78.53		30.65		47.88
MW-28	05/07/2001	78.53		29.18		49.35
MW-28	04/08/2002	78.53		30.25		48.28
MW-28	10/21/2002	78.53		30.23		47.76
MW-28	04/07/2003	78.53		29.85		48.68
	10/06/2003	†				
MW-28		78.53		30.10		48.43
MW-28	04/19/2004	78.53		31.45		47.08
MW-28	11/01/2004	78.53		31.25		47.28
MW-28	05/02/2005	78.53		25.17		53.36
MW-28	05/01/2006	78.53		27.55		50.98
MW-28	12/01/2006	78.53		28.66		49.87
MW-28	04/30/2007	78.53		29.05		49.48
MW-28	11/12/2007	78.53		29.64		48.89

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>		 				<u> </u>
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-28	04/11/2008	78.53		29.28		49.25
MW-28	10/14/2008	78.53		30.38		48.15
MW-28	04/08/2010	78.53		30.58		47.95
MW-28	10/01/2010	78.53		31.07		47.46
MW-28	01/07/2011	78.53		31.13		47.40
MW-28	04/12/2012	78.53		31.76		46.77
MW-28	10/02/2013	78.53		33.89		44.64
MW-28	04/07/2014	78.53		34.91		43.62
MW-28	10/27/2014	78.53		34.79		43.74
MW-28	04/20/2015	78.53		35.10		43.43
MW-29	05/28/1996	79.13	31.36	31.49	0.13	NC
MW-29	11/20/1996	79.13	32.41	32.66	0.25	NC
MW-29	07/01/1997	79.13	31.60	31.65	0.05	NC
MW-29	12/31/1997	79.13		31.99		47.14
MW-29	05/01/1998	79.13		29.06		50.07
MW-29	05/25/1999	79.13		30.03		49.10
MW-29	05/15/2000	79.13		30.81		48.32
MW-29	11/13/2000	79.13		31.30		47.83
MW-29	05/07/2001	79.13		29.30		49.83
MW-29	02/01/2002	79.13		29.71		49.42
MW-29	04/08/2002	79.13		31.12		48.01
MW-29	10/21/2002	79.13		31.48		47.65
MW-29	04/07/2003	79.13		30.42		48.71
MW-29	10/06/2003	79.13		30.40		48.73
MW-29	04/19/2004	79.13		31.39		47.74
MW-29	11/01/2004	79.13		31.72		47.41
MW-29	03/06/2006	79.13		27.38		51.75
MW-29	05/01/2006	79.13		27.52		51.61
MW-29	08/26/2006	79.13		28.23		50.90
MW-29	12/01/2006	79.13		28.92		50.21
MW-29	03/21/2007	79.13		28.72		50.41
MW-29	04/30/2007	79.13		29.66		49.47
MW-29		79.13		29.00		
MW-29	08/28/2007	1				50.12
	11/12/2007	79.13		30.25		48.88
MW-29	02/05/2008	79.13		29.91		49.22
MW-29	07/24/2008	79.13		30.03		49.10
MW-29	10/14/2008	79.13		30.94		48.19
MW-29	02/10/2009	79.13		30.26		48.87
MW-29	07/16/2009	79.13		31.15		47.98
MW-29	04/08/2010	79.13		31.04		48.09
MW-29	10/01/2010	79.13		31.64		47.49

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-29	01/08/2011	79.13		31.90		47.23
MW-29	04/06/2011	79.13		30.19		48.94
MW-29	07/08/2011	79.13		30.65		48.48
MW-29	10/06/2011	79.13		31.30		47.83
MW-29	04/12/2012	79.13		32.52		46.61
MW-29	01/10/2013	79.13		33.79		45.34
MW-29	04/03/2013	79.13		33.78		45.35
MW-29	04/08/2013	79.13		33.58		45.55
MW-29	10/02/2013	79.13		34.50		44.63
MW-29	04/09/2014	79.13		35.19		43.94
MW-29	04/17/2014	79.13		34.78		44.35
MW-29	10/27/2014	79.13		35.26		43.87
MW-29	04/20/2015	79.13		35.65		43.48
MW-29	10/19/2015	79.13		36.46		42.67
MW-29	4.11.16	79.13		37.27		41.86
MW-29	10/3/2016	79.13		37.74		41.39
MW-O-1	04/08/2002	75.48		24.31		51.17
MW-O-1	10/06/2003	75.48		25.54		49.94
MW-O-1	01/11/2004	75.48	26.52	26.60	0.08	NC
MW-O-1	05/02/2005	75.48	22.85	22.89	0.04	NC
MW-O-1	10/31/2005	75.48	27.43	27.51	0.08	NC
MW-O-1	05/01/2006	75.48	22.62	24.09	1.47	NC
MW-O-1	12/04/2006	75.48	23.62	24.86	1.24	NC
MW-O-1	04/30/2007	75.48	23.98	24.10	0.12	NC
MW-O-1	08/14/2007	75.48	23.78	25.31	1.53	NC
MW-O-1	08/28/2007	75.48	23.06	23.07	0.01	NC
MW-O-1	11/12/2007	75.48	24.25	24.27	0.02	NC
MW-O-1	10/17/2008	75.48		25.30		50.18
MW-O-1	04/21/2009	75.48		25.41		50.07
MW-O-1	10/19/2009	75.48		26.30		49.18
MW-O-1	10/04/2010	75.48		26.90		48.58
MW-O-1	04/11/2011	75.48		25.59		49.89
MW-O-1	10/10/2011	75.48		26.52		48.96
MW-O-1	04/16/2012	75.48		27.25		48.23
MW-O-1	10/15/2012	75.48		28.94		46.54
MW-O-1	04/08/2013	75.48		28.81		46.67
MW-O-1	10/07/2013	75.48		29.21		46.27
MW-O-1	04/14/2014	75.48		29.82		45.66
MW-O-1	04/20/2015	75.48		30.39		45.09
MW-O-1	10/27/2015	75.48		27.67		47.81
MW-O-1	04/11/2016	75.48		DRY		

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

						•
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
10000	40/0/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-O-1	10/3/2016	75.48		DRY (to 32.71)		
MW-O-2	05/28/1996	74.38	25.39	27.40	2.01	NC
MW-O-2	11/20/1996	74.38	25.55	29.58	4.03	NC
MW-O-2	07/01/1997	74.31	26.15	26.49	0.34	NC
MW-O-2	12/31/1997	74.31	26.78	29.00	2.22	NC
MW-O-2	05/15/2000	74.31	25.37	29.63	4.26	NC
MW-O-2	11/13/2000	74.31	25.61	26.32	0.71	NC
MW-O-2	11/05/2001	74.31		24.62		49.69
MW-O-2	04/08/2002	74.31		25.71		48.60
MW-O-2	10/06/2003	74.31	23.00	24.19	1.19	NC
MW-O-2	05/02/2005	74.31		27.02		47.29
MW-O-2	10/31/2005	74.31	27.58	27.82	0.24	NC
MW-O-2	05/22/2006	74.31	21.31	21.32	0.01	NC
MW-O-2	12/04/2006	74.31		23.10		51.21
MW-O-2	04/30/2007	74.31		22.53		51.78
MW-O-2	11/12/2007	71.90		23.10		48.80
MW-O-2	10/17/2008	71.90		24.85		47.05
MW-O-2	10/04/2010	71.90		26.05		45.85
MW-O-2	04/13/2011	71.90		23.31		48.59
MW-O-2	10/10/2011	71.90		27.53		44.37
MW-O-2	01/09/2012	71.90		28.13		43.77
MW-O-2	07/09/2012	71.90		26.53		45.37
MW-O-2	10/15/2012	71.90		26.89		45.01
MW-O-2	01/14/2013	71.90		26.93		44.97
MW-O-2	06/06/2013	71.90		28.99		42.91
MW-O-2	10/07/2013	71.90		29.06		42.84
MW-O-2	04/14/2014	71.90		29.36		42.54
MW-O-2	10/27/2014	71.90	29.65	29.81	0.16	NC
MW-O-2	04/20/2015	71.90	29.34	30.94	1.60	NC
MW-O-2	05/21/2015	71.90	27.31	32.50	5.19	NC
MW-O-2	10/19/2015	71.90	30.53	32.39	1.86	NC
MW-O-2	04/11/2016	71.90	32.54	33.03	0.49	NC
MW-O-2	10/3/2016	71.90	34.22	34.30	0.43	NC
MW-O-4	05/04/1999	75.00	24.14	24.19	0.05	NC NC
MW-O-4	04/08/2002	75.00	<u> </u>	22.71	0.00	52.29
MW-SF-1	08/07/2001	76.31	29.07	29.18	0.11	NC
MW-SF-1	04/08/2002	78.93		29.16	0.11	49.12
MW-SF-1	11/04/2002	78.93	31.02	31.03		49.12 NC
		1	31.02		0.01	
MW-SF-1	07/30/2003	78.93		29.97		48.96
MW-SF-1	10/06/2003	78.93		30.01		48.92
MW-SF-1	01/11/2004	78.93		31.12		47.81

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-1	04/19/2004	78.93		30.71		48.22
MW-SF-1	05/02/2005	78.93		26.21		52.72
MW-SF-1	10/31/2005	78.93		27.09		51.84
MW-SF-1	05/01/2006	78.93		27.51		51.42
MW-SF-1	12/04/2006	78.93		28.28		50.65
MW-SF-1	03/12/2007	78.93		28.71		50.22
MW-SF-1	04/30/2007	78.93		28.44		50.49
MW-SF-1	08/28/2007	78.93		27.94		50.99
MW-SF-1	11/12/2007	78.93		28.76		50.17
MW-SF-1	02/19/2008	78.93		29.50		49.43
MW-SF-1	04/14/2008	78.93		29.16		49.77
MW-SF-1	08/11/2008	78.93		29.75		49.18
MW-SF-1	10/13/2008	78.93		29.86		49.07
MW-SF-1	04/20/2009	78.93		29.97		48.96
MW-SF-1	07/20/2009	78.93		30.98		47.95
MW-SF-1	10/19/2009	78.93		31.11		47.82
MW-SF-1	03/15/2010	78.93		31.74		47.19
MW-SF-1	05/24/2010	78.93		30.79		48.14
MW-SF-1	05/28/2010	78.93		30.57		48.36
MW-SF-1	10/04/2010	78.93		30.88		48.05
MW-SF-1	01/10/2011	78.93		32.51		46.42
MW-SF-1	04/11/2011	78.93		29.87		49.06
MW-SF-1	07/11/2011	78.93		29.84		49.09
MW-SF-1	10/10/2011	78.93		29.60		49.33
MW-SF-1	01/09/2012	78.93		31.25		47.68
MW-SF-1	04/16/2012	78.93		32.59		46.34
MW-SF-1	07/09/2012	78.93		31.24		47.69
MW-SF-1	10/15/2012	78.93		32.23		46.70
MW-SF-1	01/14/2013	78.93		33.88		45.05
MW-SF-1	04/08/2013	78.93		33.38		45.55
MW-SF-1	10/07/2013	78.93	31.72	37.14	5.42	NC
MW-SF-1	04/14/2014	78.93	32.69	37.40	4.71	NC
MW-SF-1	10/27/2014	78.93	34.43	34.80	0.37	NC
MW-SF-1	04/20/2015	78.93	34.48	34.89	0.41	NC
MW-SF-1	10/19/2015	78.93	35.53	36.35	0.82	NC
MW-SF-1	04/11/2016	78.93		37.96		40.97
MW-SF-1	10/3/2016	78.93		39.20		39.73
MW-SF-2	11/20/1996	78.45	30.31	36.68	6.37	NC
MW-SF-2	07/01/1997	78.45	28.43	45.25	16.82	NC
MW-SF-2	12/31/1997	78.45	30.86	33.92	3.06	NC
MW-SF-2	05/01/1998	78.45	20.73	27.55	6.82	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-2	05/15/2000	78.45	27.56	30.01	2.45	NC
MW-SF-2	11/13/2000	78.45	29.27	30.32	1.05	NC
MW-SF-2	05/07/2001	78.45	28.00	29.75	1.75	NC
MW-SF-2	08/07/2001	78.45	28.79	30.25	1.46	NC
MW-SF-2	11/05/2001	78.45	29.50	30.49	0.99	NC
MW-SF-2	10/21/2002	78.45	29.74	30.74	1.00	NC
MW-SF-2	10/06/2003	78.93	29.87	29.88	0.01	NC
MW-SF-2	04/19/2004	78.45	30.90	30.91	0.01	NC
MW-SF-2	05/02/2005	78.45	26.25	26.52	0.27	NC
MW-SF-2	10/31/2005	78.45	26.30	29.71	3.41	NC
MW-SF-2	05/01/2006	78.45	27.22	27.96	0.74	NC
MW-SF-2	12/04/2006	78.45	27.98	28.82	0.84	NC
MW-SF-2	04/30/2007	78.45	28.34	28.35	0.01	NC
MW-SF-2	11/12/2007	78.45	28.71	29.18	0.47	NC
MW-SF-2	08/12/2008	78.45		31.11		47.34
MW-SF-2	10/17/2008	78.45	31.00	31.55	0.55	NC
MW-SF-2	04/21/2009	78.53		29.98		48.55
MW-SF-2	10/04/2010	78.53	30.75	30.96	0.21	NC
MW-SF-2	04/11/2011	78.53		29.83		48.70
MW-SF-2	10/10/2011	78.53		29.82		48.71
MW-SF-2	01/09/2012	78.53		30.52		48.01
MW-SF-2	04/16/2012	78.53		31.28		47.25
MW-SF-2	07/09/2012	78.53		33.18		45.35
MW-SF-2	10/15/2012	78.53		32.11		46.42
MW-SF-2	01/14/2013	78.53		33.59		44.94
MW-SF-2	04/08/2013	78.53		33.32		45.21
MW-SF-2	10/07/2013	78.53	33.08	34.58	1.50	NC
MW-SF-2	04/14/2014	78.53	33.27	37.50	4.23	NC
MW-SF-2	10/27/2014	78.53	33.54	37.04	3.50	NC
MW-SF-2	04/20/2015	78.53	34.73	36.15	1.42	NC
MW-SF-2	10/21/2015	78.53	36.13	36.32	0.19	NC
MW-SF-2	04/11/2016	78.53		37.47		41.06
MW-SF-2	10/3/2016	78.53		39.60		38.93
MW-SF-3	08/07/2001	76.03	27.67	29.20	1.53	NC
MW-SF-3	04/08/2002	77.62		27.17		50.45
MW-SF-3	11/04/2002	77.62	29.72	29.93	0.21	NC
MW-SF-3	10/06/2003	78.93	28.92	29.09	0.17	NC
MW-SF-3	04/19/2004	77.62	29.92	30.81	0.89	NC
MW-SF-3	05/02/2005	77.62	25.09	26.70	1.61	NC
MW-SF-3	10/31/2005	77.62		27.91		49.71
MW-SF-3	05/01/2006	77.62	26.37	26.81	0.44	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-3	12/04/2006	77.62	27.18	27.77	0.59	NC
MW-SF-3	04/30/2007	77.62	27.45	27.72	0.27	NC
MW-SF-3	11/12/2007	77.62	28.28	29.34	1.06	NC
MW-SF-3	08/12/2008	77.62	29.05	30.30	1.25	NC
MW-SF-3	10/17/2008	77.62		29.45		48.17
MW-SF-3	04/21/2009	78.12	29.50	29.51	0.01	NC
MW-SF-3	10/04/2010	78.12	30.30	30.88	0.58	NC
MW-SF-3	04/12/2011	78.12		29.44		48.68
MW-SF-3	10/10/2011	78.12		30.75		47.37
MW-SF-3	10/15/2012	78.12		32.47		45.65
MW-SF-3	05/24/2013	78.12	32.51	33.35	0.84	NC
MW-SF-3	11/14/2013	78.12		33.26		44.86
MW-SF-3	04/18/2014	78.12	33.62	33.72	0.10	NC
MW-SF-3	10/27/2014	78.12	33.85	34.49	0.64	NC
MW-SF-3	04/20/2015	78.12		34.52		43.60
MW-SF-3	10/21/2015	78.12		35.18		42.94
MW-SF-3	04/11/2016	78.12		37.17		40.95
MW-SF-3	10/3/2016	78.12		39.40		38.72
MW-SF-4	11/20/1996	79.38	32.17	35.90	3.73	NC
MW-SF-4	07/01/1997	79.38	31.85	36.92	5.07	NC
MW-SF-4	12/31/1997	79.38	32.10	33.89	1.79	NC
MW-SF-4	05/01/1998	79.38	28.27	29.99	1.72	NC
MW-SF-4	11/19/1999	79.38	28.80	36.87	8.07	NC
MW-SF-4	05/07/2001	79.38		24.62		54.76
MW-SF-4	05/10/2001	79.38		24.61		54.77
MW-SF-4	11/05/2001	79.38		30.05		49.33
MW-SF-4	04/08/2002	79.38		28.46		50.92
MW-SF-4	10/21/2002	79.38		31.50		47.88
MW-SF-4	07/30/2003	79.38	31.89	31.92	0.03	NC NC
MW-SF-4	10/06/2003	79.38		30.82		48.56
MW-SF-4	01/27/2004	79.38	31.30	31.94	0.64	NC NC
MW-SF-4	04/19/2004	79.38	31.65	32.70	1.05	NC NC
MW-SF-4	07/19/2004	79.38	31.42	31.81	0.39	NC
MW-SF-4	02/01/2005	79.38	30.34	30.71	0.37	NC NC
MW-SF-4	05/02/2005	79.38	26.85	27.00	0.37	NC NC
MW-SF-4	08/01/2005	79.38	27.43	27.81	0.38	NC NC
MW-SF-4	10/31/2005	79.38		27.11		52.27
MW-SF-4	02/27/2006	79.38	28.20	28.39	0.19	NC
MW-SF-4	05/01/2006	79.38	28.34	28.56	0.22	NC
MW-SF-4	09/18/2006	79.38	29.56	29.94	0.22	NC
MW-SF-4	12/04/2006	79.38		26.98		52.40
10100-01 -4	12/07/2000	19.50		20.30		JZ.70

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	 		T		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-4	03/12/2007	79.38	29.41	30.01	0.60	NC
MW-SF-4	04/30/2007	79.38	29.11	29.96	0.85	NC NC
MW-SF-4	08/28/2007	79.38	28.30	29.95	1.65	NC
MW-SF-4	11/12/2007	79.38	29.69	29.70	0.01	NC
MW-SF-4	02/19/2008	79.38	29.09	30.22		49.16
MW-SF-4	04/14/2008	79.38		29.95		49.18
MW-SF-4	08/08/2008	79.38		30.51		49.43
MW-SF-4	08/11/2008	79.38		30.57		48.81
MW-SF-4	10/16/2008	79.38		30.77		48.61
MW-SF-4	04/20/2009	79.38	29.94	30.02	0.08	NC
MW-SF-4	07/20/2009	79.38	31.61	31.65	0.04	NC
MW-SF-4	10/19/2009	79.38	31.90	31.93	0.03	NC
MW-SF-4	03/15/2010	79.38	31.91	31.95	0.04	NC
MW-SF-4	05/24/2010	79.38		31.60		47.78
MW-SF-4	05/28/2010	79.38		26.40		52.98
MW-SF-4	10/04/2010	79.38		31.81		47.57
MW-SF-4	01/10/2011	79.38		32.99		46.39
MW-SF-4	04/11/2011	79.38		30.85		48.53
MW-SF-4	07/11/2011	79.38		30.35		49.03
MW-SF-4	01/09/2012	79.38		32.07		47.31
MW-SF-4	04/16/2012	79.38		33.35		46.03
MW-SF-4	07/09/2012	79.38		32.11		47.27
MW-SF-4	10/15/2012	79.38		34.04		45.34
MW-SF-4	01/14/2013	79.38		34.52		44.86
MW-SF-4	04/25/2014	79.38	34.23	40.03	5.80	NC
MW-SF-4	10/27/2014	79.38	35.25	35.54	0.29	NC
MW-SF-4	04/20/2015	79.38	35.29	37.78	2.49	NC
MW-SF-4	10/19/2015	79.38	36.25	38.12	1.87	NC
MW-SF-4	04/11/2016	79.38		37.76		41.62
MW-SF-4	10/3/2016	79.38		41.05		38.33
MW-SF-5	08/07/2001	75.63		30.33		45.30
MW-SF-5	04/08/2002	79.74		26.42		53.32
MW-SF-5	11/04/2002	79.74	31.77	31.79	0.02	NC
MW-SF-5	10/06/2003	79.74	31.14	31.15	0.01	NC
MW-SF-5	04/19/2004	79.74		32.22		47.52
MW-SF-5	05/02/2005	79.74		27.50		52.24
MW-SF-5	10/31/2005	79.74		27.99		51.75
MW-SF-5	05/01/2006	79.74		28.42		51.32
MW-SF-5	12/04/2006	79.74		28.23		51.51
MW-SF-5	04/30/2007	79.74		29.54		50.20
MW-SF-5	08/28/2007	79.74		28.84		50.90

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-5	11/12/2007	79.74		29.93		49.81
MW-SF-5	04/14/2008	79.74		30.20		49.54
MW-SF-5	08/11/2008	79.74		30.85		48.89
MW-SF-5	10/13/2008	79.74		30.93		48.81
MW-SF-5	04/20/2009	79.74		30.99		48.75
MW-SF-5	05/24/2010	79.74		31.55		48.19
MW-SF-5	05/28/2010	79.74		31.44		48.30
MW-SF-5	10/04/2010	79.74		31.39		48.35
MW-SF-5	01/10/2011	79.74		33.80		45.94
MW-SF-5	04/11/2011	79.74		31.03		48.71
MW-SF-5	10/10/2011	79.74		31.28		48.46
MW-SF-5	01/09/2012	79.74		32.12		47.62
MW-SF-5	04/16/2012	79.74		33.30		46.44
MW-SF-5	07/09/2012	79.74		34.45		45.29
MW-SF-5	10/15/2012	79.74		33.28		46.46
MW-SF-5	01/14/2013	79.74		33.37		46.37
MW-SF-5	04/08/2013	79.74		34.28		45.46
MW-SF-5	10/07/2013	79.74		34.58		45.16
MW-SF-5	04/14/2014	79.74		35.33		44.41
MW-SF-5	10/27/2014	79.74		35.48		44.26
MW-SF-5	04/20/2015	79.74		36.05		43.69
MW-SF-5	10/19/2015	79.74		36.82		42.92
MW-SF-5	04/11/2016	79.74		DRY		
MW-SF-5	10/3/2016	79.74		DRY (to 37.80)		
MW-SF-6	11/20/1996	80.59	31.88	39.82	7.94	NC
MW-SF-6	07/01/1997	80.59	33.20	39.18	5.98	NC
MW-SF-6	12/31/1997	80.59	34.38	39.94	5.56	NC
MW-SF-6	05/01/1998	80.59	24.82	30.01	5.19	NC
MW-SF-6	05/15/2000	80.59	29.67	31.19	1.52	NC
MW-SF-6	05/01/2006	79.96		25.43		54.53
MW-SF-6	04/30/2007	79.96	27.20	27.44	0.24	NC
MW-SF-6	11/12/2007	79.96		27.14		52.82
MW-SF-6	08/12/2008	79.96		29.82		50.14
MW-SF-6	10/17/2008	79.96		29.75		50.21
MW-SF-6	04/21/2009	76.80		28.45		48.35
MW-SF-6	10/04/2010	76.80		29.09		47.71
MW-SF-6	01/10/2011	76.80		30.87		45.93
MW-SF-6	04/11/2011	76.80		28.16		48.64
MW-SF-6	10/10/2011	76.80		28.21		48.59
MW-SF-6	01/09/2012	76.80		29.03		47.77
MW-SF-6	04/16/2012	76.80		29.66		47.14

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		Τ		<u> </u>		
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
MW-SF-6	07/09/2012	76.80		31.46		45.34
MW-SF-6	10/15/2012	76.80		31.44		45.36
MW-SF-6	01/14/2013	76.80		31.53		45.27
MW-SF-6	04/08/2013	76.80	28.81	30.21	1.40	NC
MW-SF-6	11/14/2013	76.80		31.90		44.90
MW-SF-6	04/18/2014	76.80	32.15	33.30	1.15	NC
MW-SF-6	10/27/2014	76.80	32.58	32.92	0.34	NC
MW-SF-6	04/20/2015	76.80	33.11	33.23	0.12	NC
MW-SF-6	10/21/2015	76.80		34.28		42.52
MW-SF-6	04/11/2016	76.80		35.83		40.97
MW-SF-6	10/3/2016	76.80		38.45		38.35
MW-SF-9	11/19/1999	74.10		25.57		48.53
MW-SF-9	11/05/2001	74.10		32.11		41.99
MW-SF-9	04/08/2002	74.10		31.62		42.48
MW-SF-9	07/30/2003	74.10		25.12		48.98
MW-SF-9	10/06/2003	74.10		25.23		48.87
MW-SF-9	01/11/2004	74.10	26.00	26.02	0.02	NC
MW-SF-9	04/19/2004	74.10	26.20	26.23	0.03	NC
MW-SF-9	05/02/2005	74.10		20.41		53.69
MW-SF-9	10/31/2005	74.10		27.09		47.01
MW-SF-9	05/01/2006	74.10		22.57		51.53
MW-SF-9	12/04/2006	74.10		23.30		50.80
MW-SF-9	04/30/2007	74.10		22.66		51.44
MW-SF-9	08/28/2007	74.10		20.55		53.55
MW-SF-9	11/12/2007	74.10		22.96		51.14
MW-SF-9	04/14/2008	74.10		24.23		49.87
MW-SF-9	10/13/2008	74.10		24.83		49.27
MW-SF-9	04/20/2009	74.10		25.27		48.83
MW-SF-9	10/19/2009	74.10		26.45		47.65
MW-SF-9	05/24/2010	74.10		25.80		48.30
MW-SF-9	05/28/2010	74.10		25.66		48.44
MW-SF-9	10/04/2010	74.10		26.10		48.00
MW-SF-9	01/10/2011	74.10		27.41		46.69
MW-SF-9	04/11/2011	74.10		24.16		49.94
MW-SF-9	10/10/2011	74.10		25.02		49.08
MW-SF-9	01/09/2012	74.10		25.98		48.12
MW-SF-9	04/16/2012	74.10		25.92		48.18
MW-SF-9	07/09/2012	74.10		26.44		47.66
MW-SF-9	06/06/2013	74.10		28.53		45.57
MW-SF-9	10/07/2013	74.10		28.95		45.15
MW-SF-9	04/25/2014	74.10	27.95	34.75	6.80	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		 		T 1		1
Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-9	10/27/2014	74.10	29.89	30.29	0.40	NC
MW-SF-9	04/20/2015	74.10	27.67	36.69	9.02	NC
MW-SF-9	10/19/2015	74.10	31.04	31.44	0.40	NC
MW-SF-9	04/11/2016	74.10		32.89		41.21
MW-SF-10	10/17/2008	76.53		27.49		49.04
MW-SF-10	10/19/2009	76.53		28.61		47.92
MW-SF-10	10/04/2010	76.53	28.36	28.50	0.14	NC
MW-SF-10	04/11/2011	76.53	27.37	27.41	0.04	NC
MW-SF-10	10/10/2011	76.53		27.60		48.93
MW-SF-10	04/16/2012	76.53		28.81		47.72
MW-SF-10	10/15/2012	76.53		29.27		47.26
MW-SF-10	10/19/2015	76.53		DRY (to 30.27)		
MW-SF-10	04/11/2016	76.53		DRY		
MW-SF-10	10/3/2016	76.53		DRY (to 30.40)		
MW-SF-11	08/28/2007	78.56		28.22		50.34
MW-SF-11	11/12/2007	78.56		29.03		49.53
MW-SF-11	08/15/2008	78.56		30.13		48.43
MW-SF-11	10/17/2008	78.56		30.50		48.45
MW-SF-11	04/21/2009	78.56		30.03		48.53
MW-SF-11	10/04/2010	78.56		30.94		47.62
MW-SF-11	04/12/2011	78.56		30.94		47.74
MW-SF-11	10/10/2011	78.56		30.62		48.46
MW-SF-11	10/15/2011	78.56		33.28		45.28
		1		33.26		45.45
MW-SF-11 MW-SF-11	04/08/2013 10/07/2013	78.56 78.56		33.91		
MW-SF-11		78.56	24.05	-	0.25	44.65 NC
	04/14/2014	+	34.95	35.20	0.25	
MW-SF-11	10/27/2014	78.56	33.99	36.20	2.21	NC NC
MW-SF-11	04/20/2015	78.56	34.86	38.89	4.03	NC NC
MW-SF-11	10/20/2015	78.56	35.38	37.42	2.04	NC 40.04
MW-SF-11	04/11/2016	78.56		37.62		40.94
MW-SF-11	10/3/2016	78.56		40.05		38.51
MW-SF-12	08/28/2007	78.07		27.58		50.49
MW-SF-12	11/12/2007	78.07		28.33		49.74
MW-SF-12	08/12/2008	78.07		30.02		48.05
MW-SF-12	10/17/2008	78.08		30.42		47.66
MW-SF-12	04/21/2009	78.07		29.52		48.55
MW-SF-12	10/04/2010	78.07		30.70		47.37
MW-SF-12	04/11/2011	78.07		29.47		48.60
MW-SF-12	10/10/2011	78.07		26.60		51.47
MW-SF-12	04/16/2012	78.07		31.40		46.67
MW-SF-12	10/15/2012	78.07		32.12		45.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-12	04/14/2014	78.07	32.67	38.04	5.37	NC
MW-SF-12	09/05/2014	78.07	32.93	38.52	5.59	NC
MW-SF-12	10/27/2014	78.07	33.08	37.40	4.32	NC
MW-SF-12	04/20/2015	78.07	34.05	36.42	2.37	NC
MW-SF-12	10/20/2015	78.07	34.84	36.78	1.94	NC
MW-SF-12	04/11/2016	78.07		37.13		40.94
MW-SF-12	10/3/2016	78.07		39.45		38.62
MW-SF-13	08/28/2007	73.40		22.85		50.55
MW-SF-13	11/12/2007	73.40		23.70		49.70
MW-SF-13	08/15/2008	73.40	24.11	27.38	3.27	NC
MW-SF-13	10/17/2008	73.40	24.33	27.28	2.95	NC
MW-SF-13	10/21/2008	73.40	24.26	27.14	2.88	NC
MW-SF-13	04/21/2009	73.40	24.78	24.86	0.08	NC
MW-SF-13	10/04/2010	73.40	25.92	26.95	1.03	NC
MW-SF-13	04/12/2011	73.40	24.78	24.79	0.01	NC
MW-SF-13	10/10/2011	73.40		26.00		47.40
MW-SF-13	04/16/2012	73.40		27.19		46.21
MW-SF-13	10/15/2012	73.40		27.01		46.39
MW-SF-13	04/08/2013	73.40		27.90		45.50
MW-SF-13	11/14/2013	73.40	28.25	29.95	1.70	NC
MW-SF-13	04/14/2014	73.40	28.47	31.36	2.89	NC
MW-SF-13	10/27/2014	73.40	29.06	30.21	1.15	NC
MW-SF-13	04/20/2015	73.40	29.04	32.44	3.40	NC
MW-SF-13	10/19/2015	73.40	29.31	35.16	5.85	NC
MW-SF-13	04/11/2016	73.40		32.28		41.12
MW-SF-13	10/3/2016	73.40		34.20		39.20
MW-SF-14	08/28/2007	78.16		27.53		50.63
MW-SF-14	08/15/2008	78.16	29.24	29.77	0.53	NC
MW-SF-14	10/17/2008	78.16	29.50	29.52	0.02	NC
MW-SF-14	04/21/2009	78.16		29.61		48.55
MW-SF-14	10/04/2010	78.16		30.54		47.62
MW-SF-14	04/12/2011	78.16		29.55		48.61
MW-SF-14	10/10/2011	78.16		29.84		48.32
MW-SF-14	10/15/2012	78.16		30.02		48.14
MW-SF-14	05/24/2013	78.16		32.75		45.41
MW-SF-14	11/14/2013	78.16	33.19	33.57	0.38	NC
MW-SF-14	04/14/2014	78.16	33.56	34.81	1.25	NC
MW-SF-14	10/27/2014	78.16	33.97	34.40	0.43	NC
MW-SF-14	04/20/2015	78.16		34.48		43.68
MW-SF-14	10/21/2015	78.16		35.25		42.91
MW-SF-14	04/11/2016	78.16		37.14		41.02

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW-SF-14	10/3/2016	78.16	(leet btc)	DRY (to 40.15)	(1661)	(leet MOL)
MW-SF-15	08/28/2007	78.10	27.61	27.65		NC
MW-SF-15	11/12/2007	78.27	27.61	28.75	0.04	49.52
		<u> </u>	20.25		0.77	
MW-SF-15	08/15/2008	78.27	29.35	30.12	0.77	NC NC
MW-SF-15	10/17/2008	78.27	29.44	30.80	1.36	NC NC
MW-SF-15	04/21/2009	78.27	29.60	29.96	0.36	NC
MW-SF-15	10/04/2010	78.27	30.65	30.66	0.01	NC
MW-SF-15	04/12/2011	78.27	29.40	30.50	1.10	NC
MW-SF-15	10/10/2011	78.27		29.60		48.67
MW-SF-15	04/16/2012	78.27	32.39	32.48	0.09	NC
MW-SF-15	10/15/2012	78.16		33.04		45.12
MW-SF-15	05/24/2013	78.27		33.90		44.37
MW-SF-15	11/14/2013	78.27	33.38	33.41	0.03	NC
MW-SF-15	04/18/2014	78.27		33.85		44.42
MW-SF-15	10/27/2014	78.27		35.82		42.45
MW-SF-15	04/20/2015	78.27	34.12	36.63	2.51	NC
MW-SF-15	10/19/2015	78.27	34.87	37.90	3.03	NC
MW-SF-15	04/11/2016	78.27		37.24		41.03
MW-SF-15	10/3/2016	78.27		39.56		38.71
MW-SF-16	08/28/2007	78.21		27.51		50.70
MW-SF-16	11/12/2007	78.21		28.40		49.81
MW-SF-16	08/15/2008	78.21		29.36		48.85
MW-SF-16	10/17/2008	78.21		29.51		48.70
MW-SF-16	04/21/2009	78.21		29.60		48.61
MW-SF-16	10/04/2010	78.21		30.49		47.72
MW-SF-16	04/12/2011	78.21		29.52		48.69
MW-SF-16	10/10/2011	78.21		29.85		48.36
MW-SF-16	10/15/2012	78.21		32.47		45.74
MW-SF-16	05/24/2013	78.21	32.73	32.97	0.24	NC
MW-SF-16	11/14/2013	78.21	33.21	33.80	0.59	NC
MW-SF-16	04/18/2014	78.21	33.65	34.20	0.55	NC
MW-SF-16	10/27/2014	78.21		34.25		43.96
MW-SF-16	04/20/2015	78.21		34.52		43.69
MW-SF-16	10/21/2015	78.21		34.56		43.65
MW-SF-16	04/11/2016	78.21		37.15		41.06
MW-SF-16	10/3/2016	78.21		39.35		38.86
OLD TF-24	11/20/1996	76.36		31.18		45.18
_		+				
_		+				
				1		
		†				
OLD_TF-24 PW-1 PW-1 PW-1	04/27/2007 05/28/1996 11/20/1996 07/01/1997	76.36 75.52 75.52 75.52		27.39 29.74 29.04 30.17		48.97 45.78 46.48 45.35

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
D\A/ 4	40/04/4007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PW-1	12/31/1997	75.52		28.95		46.57
PW-1	05/01/1998	75.52		27.37		48.15
PW-1	05/06/1999	75.52		27.44		48.08
PW-1	08/09/1999	75.52		27.87		47.65
PW-1	11/15/1999	75.52		27.78		47.74
PW-1	05/15/2000	75.52		27.63		47.89
PW-1	11/13/2000	75.52		28.84		46.68
PW-1	05/07/2001	75.52		27.01		48.51
PW-1	11/05/2001	75.52		26.72		48.80
PW-1	04/08/2002	75.52		27.45		48.07
PW-1	10/21/2002	75.52		27.63		47.89
PW-1	04/07/2003	75.52		27.60		47.92
PW-1	10/06/2003	75.52		27.68		47.84
PW-1	01/11/2004	75.52		28.61		46.91
PW-1	04/19/2004	75.52		28.85		46.67
PW-1	05/02/2005	75.52		25.43		50.09
PW-1	05/01/2006	75.52		25.03		50.49
PW-1	12/04/2006	75.52		25.83		49.69
PW-1	04/30/2007	75.52		25.80		49.72
PW-1	11/12/2007	75.52		26.03		49.49
PW-1	04/14/2008	75.52		26.41		49.11
PW-1	10/13/2008	75.52		26.85		48.67
PW-1	11/21/2008	75.52		26.80		48.72
PW-1	04/20/2009	75.52		27.27		48.25
PW-1	10/19/2009	75.52		27.74		47.78
PW-1	05/24/2010	75.52		28.00		47.52
PW-1	05/28/2010	75.52		27.98		47.54
PW-1	10/04/2010	75.52		28.10		47.42
PW-1	04/11/2011	75.52		27.03		48.49
PW-1	10/10/2011	75.52		26.77		48.75
PW-1	10/15/2012	75.52		27.76		47.76
PW-1	10/19/2015	75.52		DRY (to 27.85)		
PW-1	04/11/2016	75.52		DRY		
PW-1	10/3/2016	75.52		DRY (to 28.40)		
PW-2	05/28/1996	74.65		27.83		46.82
PW-2	11/20/1996	74.65		28.82		45.83
PW-2	07/01/1997	74.65		31.20		43.45
PW-2	12/31/1997	74.65		28.52		46.13
PW-2	05/01/1998	74.65		26.34		48.31
		+		+		•
PW-2 PW-2	02/02/1999 05/06/1999	74.65 74.65		25.39 26.42		49.26 48.23

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
D)4/ 0	00/00/4000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PW-2	08/09/1999	74.65		26.92		47.73
PW-2	11/15/1999	74.65		28.05		46.60
PW-2	02/29/2000	74.65		26.82		47.83
PW-2	05/15/2000	74.65		27.12		47.53
PW-2	08/28/2000	74.65		28.10		46.55
PW-2	11/13/2000	74.65		28.36		46.29
PW-2	02/05/2001	74.65		26.84		47.81
PW-2	05/07/2001	74.65		26.22		48.43
PW-2	09/18/2001	74.65		25.85		48.80
PW-2	11/05/2001	74.65		26.00		48.65
PW-2	01/29/2002	74.65		26.09		48.56
PW-2	04/08/2002	74.65		26.69		47.96
PW-2	10/21/2002	74.65		26.95		47.70
PW-2	01/14/2003	74.65		26.86		47.79
PW-2	04/07/2003	74.65		28.96		45.69
PW-2	07/07/2003	74.71		27.51		47.20
PW-2	10/06/2003	74.65		27.00		47.65
PW-2	01/11/2004	74.71		28.02		46.69
PW-2	01/20/2004	74.71		29.28		45.43
PW-2	04/19/2004	74.71		26.21		48.50
PW-2	04/27/2004	74.71		27.69		47.02
PW-2	06/07/2004	74.71		28.13		46.58
PW-2	07/08/2004	74.71		29.35		45.36
PW-2	05/02/2005	74.71		24.56		50.15
PW-2	10/31/2005	74.71		23.80		50.91
PW-2	05/01/2006	74.71		24.28		50.43
PW-2	12/04/2006	74.71		25.05		49.66
PW-2	04/30/2007	74.71		25.02		49.69
PW-2	11/12/2007	74.71		25.41		49.30
PW-2	04/14/2008	74.71		25.75		48.96
PW-2	10/13/2008	74.71		25.15		49.56
PW-2	10/19/2015	74.71		DRY (to 25.98)		
PW-2	04/11/2016	74.71		DRY		
PW-2	10/3/2016	74.71		DRY (to 25.90)		
PW-3	05/28/1996	73.64		26.73		46.91
PW-3	11/20/1996	73.64		27.11		46.53
PW-3	07/01/1997	73.64		28.84		44.80
PW-3	_					
	12/31/1997	73.64		27.29		46.35
PW-3	05/01/1998	73.64		25.10		48.54
PW-3	02/03/1999 05/04/1999	73.64 73.64		24.23 25.05		49.41 48.59

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PW-3	08/10/1999	73.64		25.35		48.29
PW-3	11/13/2000	73.64		26.46		47.18
PW-3	02/05/2001	73.64		25.60		48.04
PW-3	05/07/2001	73.64		24.96		48.68
PW-3	09/18/2001	73.64		24.72		48.92
PW-3	11/05/2001	73.64		24.80		48.84
PW-3	01/29/2002	73.64		24.91		48.73
PW-3	04/08/2002	73.64		25.30		48.34
PW-3	10/21/2002	73.64		25.76		47.88
PW-3	01/14/2003	73.64		25.72		47.92
PW-3	04/07/2003	73.64		26.17		47.47
PW-3	07/07/2003	73.71		25.81		47.90
PW-3	10/06/2003	73.64		25.63		48.01
PW-3	01/11/2004	73.71		26.03		47.68
PW-3	01/20/2004	73.71		26.36		47.35
PW-3	04/19/2004	73.71		26.63		47.08
PW-3	04/27/2004	73.71		26.34		47.37
PW-3	06/07/2004	73.71		26.63		47.08
PW-3	07/08/2004	73.71		26.81		46.90
PW-3	05/02/2005	73.71		23.48		50.23
PW-3	10/31/2005	73.71		23.61		50.10
PW-3	05/01/2006	73.71		23.22		50.49
PW-3	12/04/2006	73.71		23.95		49.76
PW-3	04/30/2007	73.71		23.99		49.72
PW-3	11/12/2007	73.71		24.33		49.38
PW-3	04/14/2008	73.71		24.75		48.96
PW-3	10/13/2008	73.71		26.20		47.51
PW-3	04/20/2009	73.71		25.40		48.31
PW-3	10/19/2009	73.71		26.03		47.68
PW-3	05/24/2010	73.71		26.45		47.26
PW-3	05/28/2010	73.71		26.41		47.30
PW-3	10/04/2010	73.71		26.61		47.10
PW-3	04/11/2011	73.71		25.60		48.11
PW-3	10/10/2011	73.71		25.57		48.14
PW-3	04/16/2012	73.71		26.55		47.16
PW-3	04/08/2013	73.71		27.79		45.92
PW-3	10/07/2013	73.71		28.57		45.14
PW-3	04/14/2014	73.71		29.20		44.51
PW-3	10/27/2014	73.71		29.73		43.98
PW-3	04/20/2015	73.71		30.62		43.09
PW-3	10/19/2015	73.71		31.08		42.63

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
PW-3	04/11/2016	73.71		32.37		41.34
PW-3	10/3/2016	73.71		33.23		40.48
PZ-1	11/20/1996	73.74		26.91		46.83
PZ-1	07/01/1997	73.74		27.61		46.13
PZ-1	12/31/1997	73.74		27.03		46.71
PZ-1	05/01/1998	73.74		24.13		49.61
PZ-1	05/04/1999	73.74		25.74		48.00
PZ-1	08/09/1999	73.74		25.77		47.97
PZ-1	11/15/1999	73.74		26.46		47.28
PZ-1	05/15/2000	73.74		26.09		47.65
PZ-1	11/13/2000	73.74		26.51		47.23
PZ-1	05/07/2001	73.74		24.78		48.96
PZ-1	11/05/2001	73.74		24.81		48.93
PZ-1	04/08/2002	73.74		25.50		48.24
PZ-2	05/28/1996	73.96		28.26		45.70
PZ-2	11/20/1996	73.96		27.49		46.47
PZ-2	07/01/1997	73.96	27.56	28.92	1.36	NC
PZ-2	12/31/1997	73.96	28.87	29.45	0.58	NC
PZ-2	05/01/1998	73.96	23.83	25.40	1.57	NC
PZ-2	05/04/1999	73.96	25.38	27.20	1.82	NC
PZ-2	08/09/1999	73.96	25.71	27.58	1.87	NC
PZ-2	11/15/1999	73.96		26.83		47.13
PZ-2	05/15/2000	73.96		26.17		47.79
PZ-2	11/13/2000	73.96	26.58	26.88	0.30	NC
PZ-2	05/07/2001	73.96	24.99	25.21	0.22	NC
PZ-2	11/05/2001	73.96	24.87	25.09	0.22	NC
PZ-2	04/08/2002	73.96	24.96	24.96	0.00	NC
PZ-2	10/21/2002	73.96	26.31	26.44	0.13	NC
PZ-2	04/07/2003	73.96	26.12	26.22	0.10	NC
PZ-2	10/06/2003	73.96	25.51	25.53	0.02	NC
PZ-2	04/19/2004	73.96	26.81	26.89	0.08	NC
PZ-2	11/02/2004	73.96	27.19	27.24	0.05	NC
PZ-2	05/02/2005	73.96		22.18		51.78
PZ-2	10/31/2005	73.96		24.11		49.85
PZ-2	05/22/2006	73.96		23.16		50.80
PZ-2	12/04/2006	73.96		23.85		50.11
PZ-2	04/30/2007	73.96		23.97		49.99
PZ-2	11/12/2007	73.96		24.30		49.66
PZ-2	04/14/2008	73.96		24.69		49.27
PZ-2	10/13/2008	73.96		25.35		48.61
PZ-2	05/22/2009	73.96		25.55		48.41

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
PZ-2	05/24/2010	73.96		26.30		47.66
PZ-2	05/28/2010	73.96		26.30		47.66
PZ-2	10/04/2010	73.96		26.36		47.60
PZ-2	01/10/2011	73.96		27.57		46.39
PZ-2	04/11/2011	73.96		25.32		48.64
PZ-2	10/10/2011	73.96		25.67		48.29
PZ-2	01/09/2012	73.96		27.21		46.75
PZ-2	04/27/2012	73.96		27.83		46.13
PZ-2	07/09/2012	73.96		28.16		45.80
PZ-2	10/15/2012	73.96		27.76		46.20
PZ-2	04/08/2013	73.96		28.68		45.28
PZ-2	10/07/2013	73.96		29.28		44.68
PZ-2	04/14/2014	73.96		29.74		44.22
PZ-2	04/20/2015	73.96		30.48		43.48
PZ-2	10/19/2015	73.96		31.18		42.78
PZ-2 PZ-2	04/11/2016	73.96		32.97		40.99
PZ-2	10/3/2016	73.96		34.67		39.29
PZ-3	05/28/1996	76.17	27.83	32.71	4.88	NC
PZ-3	11/20/1996	76.17	28.79	32.80	4.01	NC NC
PZ-3	07/01/1997	76.17	28.75	30.69	1.94	NC NC
PZ-3	12/31/1997	76.17	28.60	32.86	4.26	NC NC
PZ-3	05/01/1998	76.17	18.34	25.21	6.87	NC NC
PZ-3	05/25/1999	76.17		31.70		44.47
PZ-3	05/19/2000	76.17	27.48	31.54	4.06	NC
PZ-3	11/13/2000	76.17	27.40	30.05	3.04	NC NC
PZ-3	05/07/2001	76.17	25.99	30.30	4.31	NC NC
PZ-3	04/08/2002	76.17		31.00		45.17
PZ-3	09/19/2002	76.17	28.84	29.94	1.10	NC
PZ-3	10/21/2002	76.17	28.10	29.66	1.56	NC
PZ-3	04/07/2003	76.17	27.81	28.80	0.99	NC NC
PZ-3	10/06/2003	76.17	27.65	28.90	1.25	NC
PZ-3	04/19/2004	76.17	29.08	29.68	0.60	NC
PZ-3	11/01/2004	76.17	28.32	29.63	1.31	NC
PZ-3	02/28/2005	76.17	24.32	26.89	2.57	NC NC
PZ-3	03/06/2006	76.17	24.97	25.12	0.15	NC NC
PZ-3	05/01/2006	76.17	25.39	25.96	0.13	NC NC
PZ-3	08/26/2006	76.17	25.76	26.26	0.50	NC NC
PZ-3	12/01/2006	76.17	26.11	26.77	0.66	NC
PZ-3	03/21/2007	76.17	26.05	26.16	0.11	NC
PZ-3	04/30/2007	76.17	26.66	26.68	0.02	NC
PZ-3	02/05/2008	76.17		27.84		48.33

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
PZ-3	07/24/2008	76.17		27.33		48.84
PZ-3	10/14/2008	76.17		28.07		48.10
PZ-3	02/10/2009	76.17		27.31		48.86
PZ-3	04/20/2009	76.17		27.94		48.23
PZ-3	07/16/2009	76.17		28.97		47.20
PZ-3	04/08/2010	76.17		28.40		47.77
PZ-3	04/12/2010	76.17		28.14		48.03
PZ-3	01/08/2011	76.17		28.85		47.32
PZ-3	04/08/2011	76.17		27.63		48.54
PZ-3	07/08/2011	76.17		27.85		48.32
PZ-3	10/07/2011	76.17		28.46		47.71
PZ-3	04/12/2012	76.17		29.48		46.69
PZ-3	04/19/2012	76.17		29.30		46.87
PZ-3	01/11/2013	76.17	30.20	33.08	2.88	NC
PZ-3	04/03/2013	76.17	30.63	30.86	0.23	NC
PZ-3	04/08/2013	76.17	30.56	30.99	0.43	NC
PZ-3	10/02/2013	76.17		31.45		44.72
PZ-3	04/07/2014	76.17		32.27		43.90
PZ-3	04/18/2014	76.17		31.92		44.25
PZ-3	10/27/2014	76.17		32.41		43.76
PZ-3	04/20/2015	76.17		32.80		43.37
PZ-3	10/20/2015	76.17	33.38	34.09	0.71	NC
PZ-3	04/11/2016	76.17		34.07		42.10
PZ-3	10/3/2016	76.17	34.37	35.14	0.77	NC
PZ-4	05/28/1996	76.13		28.79		47.34
PZ-4	11/20/1996	76.13		29.80		46.33
PZ-4	07/01/1997	76.13		29.66		46.47
PZ-4	12/31/1997	76.13		29.63		46.50
PZ-4	05/01/1998	76.13		26.82		49.31
PZ-4	05/25/1999	76.13		27.57		48.56
PZ-4	05/15/2000	76.13		28.28		47.85
PZ-4	11/13/2000	76.13		27.89		48.24
PZ-4	05/07/2001	76.13		25.08		51.05
PZ-4	05/07/2001	76.13		26.97		49.16
PZ-4	04/08/2002	76.13		28.16		47.97
PZ-4	09/19/2002	76.13		29.20		46.93
PZ-4	04/07/2003	76.13		28.08		48.05
PZ-4	10/06/2003	76.13		28.03		48.10
PZ-4	04/19/2004	76.13		29.50		46.63
PZ-4	11/01/2004	76.13		28.80		47.33
PZ-4	02/28/2005	76.13		25.13		51.00

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PZ-4	05/02/2005	76.13		24.50		51.63
PZ-4	03/06/2006	76.13		25.25		50.88
PZ-4	05/01/2006	76.13		25.63		50.50
PZ-4	08/26/2006	76.13		26.05		50.08
PZ-4	12/01/2006	76.13		26.38		49.75
PZ-4	03/21/2007	76.13		26.12		50.01
PZ-4	04/30/2007	76.13		26.93		49.20
PZ-4	08/28/2007	76.13		26.54		49.59
PZ-4	11/12/2007	76.13		27.50		48.63
PZ-4	02/05/2008	76.13		27.42		48.71
PZ-4	04/11/2008	76.13		24.85		51.28
PZ-4	10/14/2008	76.13		28.31		47.82
PZ-4	02/10/2009	76.13		27.05		49.08
PZ-4	04/20/2009	76.13		28.44		47.69
PZ-4	07/16/2009	76.13		29.05		47.08
PZ-4	04/08/2010	76.13		28.41		47.72
PZ-4	10/01/2010	76.13		28.93		47.20
PZ-4	01/08/2011	76.13		28.98		47.15
PZ-4	04/12/2012	76.13		29.61		46.52
PZ-5	05/07/2001	73.97		23.13		50.84
PZ-5	10/06/2003	73.97		24.58		49.39
PZ-5	05/02/2005	73.97		19.12		54.85
PZ-5	10/31/2005	73.97		21.13		52.84
PZ-5	02/27/2006	73.97		22.06		51.91
PZ-5	05/01/2006	73.97		22.20		51.77
PZ-5	09/18/2006	73.97		22.91		51.06
PZ-5	12/04/2006	73.97		23.26		50.71
PZ-5	03/12/2007	73.97		23.71		50.26
PZ-5	04/30/2007	73.97		23.85		50.12
PZ-5	08/28/2007	73.97		23.85		50.12
PZ-5	11/12/2007	73.97		24.26		49.71
PZ-5	02/19/2008	73.97		24.68		49.29
PZ-5	04/14/2008	73.97		24.10		49.87
PZ-5	08/11/2008	73.97		24.53		49.44
PZ-5	10/13/2008	73.97		25.12		48.85
PZ-5	04/20/2009	73.97		24.81		49.16
PZ-5	07/20/2009	73.97		25.20		48.77
PZ-5	10/19/2009	73.97		26.41		47.56
PZ-5	03/15/2010	73.97		25.99		47.98
PZ-5	04/16/2010	73.97		25.12		48.85
PZ-5	05/24/2010	73.97		25.71		48.26

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
PZ-5	05/28/2010	73.97		25.68		48.29
PZ-5	06/22/2010	73.97		25.54		48.43
PZ-5	07/12/2010	73.97		26.09		47.88
PZ-5	08/12/2010	73.97		26.16		47.81
PZ-5	09/20/2010	73.97		26.52		47.45
PZ-5	10/04/2010	73.97		25.98		47.99
PZ-5	11/16/2010	73.97		26.46		47.51
PZ-5	12/22/2010	73.97		25.12		48.85
PZ-5	01/10/2011	73.97		26.54		47.43
PZ-5	02/24/2011	73.97		25.55		48.42
PZ-5	03/23/2011	73.97		25.28		48.69
PZ-5	04/11/2011	73.97		24.70		49.27
PZ-5	05/13/2011	73.97		25.21		48.76
PZ-5	06/22/2011	73.97		25.37		48.60
PZ-5	07/11/2011	73.97		25.47		48.50
PZ-5	08/19/2011	73.97		25.35		48.62
PZ-5	09/22/2011	73.97		25.96		48.01
PZ-5	10/10/2011	73.97		25.55		48.42
PZ-5	11/28/2011	73.97		26.16		47.81
PZ-5	12/21/2011	73.97		26.48		47.49
PZ-5	01/09/2012	73.97		26.47		47.50
PZ-5	02/23/2012	73.97		27.27		46.70
PZ-5	03/28/2012	73.97		27.10		46.87
PZ-5	04/16/2012	73.97		26.59		47.38
PZ-5	05/25/2012	73.97		26.94		47.03
PZ-5	06/15/2012	73.97		27.44		46.53
PZ-5	07/09/2012	73.97		27.26		46.71
PZ-5	08/29/2012	73.97		27.72		46.25
PZ-5	09/26/2012	73.97		28.03		45.94
PZ-5	10/15/2012	73.97		28.25		45.72
PZ-5	11/29/2012	73.97		28.34		45.63
PZ-5	12/26/2012	73.97		28.30		45.67
PZ-5	01/14/2013	73.97		28.42		45.55
PZ-5	02/20/2013	73.97		28.40		45.57
PZ-5	04/08/2013	73.97		28.41		45.56
PZ-5	10/07/2013	73.97		29.31		44.66
PZ-5	04/14/2014	73.97		28.91		45.06
PZ-5	10/27/2014	73.97		29.41		44.56
PZ-5	04/20/2015	73.97		29.66		44.31
PZ-5	10/19/2015	73.97		30.50		43.47
PZ-5	04/11/2016	73.97		31.36		42.61

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PZ-5	10/3/2016	73.97		31.00		42.97
PZ-6	07/07/2003	73.91		25.65		48.26
PZ-6	01/20/2004	73.91		25.94		47.97
PZ-6	04/27/2004	73.91		26.49		47.42
PZ-6	06/07/2004	73.91		26.56		47.35
PZ-6	07/08/2004	73.91		26.57		47.34
PZ-7A	08/01/2005	73.87		20.22		53.65
PZ-7A	05/24/2010	73.87		25.30		48.57
PZ-7A	05/28/2010	73.87		25.29		48.58
PZ-7A	10/04/2010	73.87		25.70		48.17
PZ-7A	04/11/2011	73.87		24.48		49.39
PZ-7A	10/10/2011	73.87		25.15		48.72
PZ-7A	04/20/2015	73.87		29.52		44.35
PZ-7B	08/01/2005	73.79		20.80		52.99
PZ-7B	05/24/2010	73.79		25.32		48.47
PZ-7B	05/28/2010	73.79		25.30		48.49
PZ-7B	10/04/2010	73.79		25.88		47.91
PZ-7B	04/11/2011	73.79		24.57		49.22
PZ-7B	10/10/2011	73.79		25.30		48.49
PZ-7B	04/20/2015	73.79		29.60		44.19
PZ-8A	08/01/2005	75.81		22.39		53.42
PZ-8A	12/04/2006	75.81		25.14		50.67
PZ-8A	05/24/2010	75.81		27.60		48.21
PZ-8A	05/28/2010	75.81		27.38		48.43
PZ-8A	10/04/2010	75.81		27.79		48.02
PZ-8A	04/11/2011	75.81		26.50		49.31
PZ-8A	10/10/2011	75.81		27.28		48.53
PZ-8A	04/20/2015	75.81		31.29		44.52
PZ-8B	08/01/2005	75.69		23.61		52.08
PZ-8B	12/04/2006	75.69		25.16		50.53
PZ-8B	05/24/2010	75.69		27.37		48.32
PZ-8B	05/28/2010	75.69		27.66		48.03
PZ-8B	10/04/2010	75.69		27.90		47.79
PZ-8B	04/11/2011	75.69		26.52		49.17
PZ-8B	10/10/2011	75.69		27.32		48.37
PZ-8B	04/20/2015	75.69		31.69		44.00
PZ-9A	08/01/2005	76.14		22.93		53.21
PZ-9A	10/04/2010	76.14		28.20		47.94
PZ-9A	04/11/2011	76.14		26.94		49.20
PZ-9A	10/10/2011	76.14		27.75		49.20
PZ-9A PZ-9A	04/16/2012	76.14		28.95		46.39

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
D7.04	40/45/0040	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
PZ-9A	10/15/2012	76.14		30.18		45.96
PZ-9A	04/08/2013	76.14		30.67		45.47
PZ-9A	04/20/2015	76.14		32.21		43.93
PZ-9B	08/01/2005	76.26		23.71		52.55
PZ-9B	10/04/2010	76.26		28.51		47.75
PZ-9B	04/11/2011	76.26		27.20		49.06
PZ-9B	10/10/2011	76.26		28.00		48.26
PZ-9B	04/16/2012	76.26		29.10		47.16
PZ-9B	10/15/2012	76.26		30.54		45.72
PZ-9B	04/08/2013	76.26		30.89		45.37
PZ-9B	04/20/2015	76.26		32.24		44.02
PZ-10	07/30/2003	74.19		25.74		48.45
PZ-10	10/06/2003	74.19		25.79		48.40
PZ-10	01/27/2004	74.19		26.13		48.06
PZ-10	04/19/2004	74.34		26.76		47.58
PZ-10	07/19/2004	74.34		26.40		47.94
PZ-10	11/01/2004	74.34		27.11		47.23
PZ-10	02/01/2005	74.34		23.33		51.01
PZ-10	05/02/2005	74.34		21.80		52.54
PZ-10	08/01/2005	74.34		22.21		52.13
PZ-10	10/31/2005	74.34		27.13		47.21
PZ-10	02/27/2006	74.34		23.18		51.16
PZ-10	05/01/2006	74.34		23.18		51.16
PZ-10	09/18/2006	74.34		24.37		49.97
PZ-10	12/04/2006	74.34		24.10		50.24
PZ-10	03/12/2007	74.34		24.44		49.90
PZ-10	04/30/2007	73.92		23.38		50.54
PZ-10	08/28/2007	74.34		22.67		51.67
PZ-10	11/12/2007	74.34		23.61		50.73
PZ-10	02/19/2008	74.34		25.16		49.18
PZ-10	04/14/2008	74.34		24.75		49.59
PZ-10	10/13/2008	74.34		25.61		48.73
PZ-10	04/20/2009	74.34		25.71		48.63
PZ-10	07/20/2009	74.34		26.60		47.74
PZ-10	10/19/2009	74.34		26.96		47.38
PZ-10	05/24/2010	74.34		26.51		47.83
PZ-10	05/28/2010	74.34		26.46		47.88
PZ-10 PZ-10		+		+		
	10/04/2010	74.34		26.66		47.68
PZ-10	04/11/2011	74.34		25.57		48.77
PZ-10 PZ-10	04/16/2012 10/15/2012	74.34 74.34		28.00 29.81		46.34 44.53

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
D7 10	04/09/2012		(feet btc)	(feet btc)	(feet)	(feet MSL)
PZ-10	04/08/2013	74.34		28.94		45.40
PZ-10	04/20/2015	74.34		30.72		43.62
PZ-10	10/19/2015	74.34		31.42		42.92
PZ-10	04/11/2016	74.34		33.37		40.97
PZ-10	10/3/2016	74.34		DRY (to 34.81)		40.04
TF-8	11/20/1996	75.60		29.39		46.21
TF-8	07/01/1997	75.60		29.70		45.90
TF-8	12/31/1997	75.60		29.33		46.27
TF-8	05/01/1998	75.60		26.64		48.96
TF-8	05/25/1999	75.60		27.60		48.00
TF-8	05/15/2000	75.60		27.32		48.28
TF-8	05/07/2001	75.60		28.91		46.69
TF-8	04/08/2002	74.86		26.79		48.07
TF-8	09/19/2002	75.60		28.77		46.83
TF-8	10/21/2002	75.60		26.32		49.28
TF-8	04/22/2003	74.86		27.50		47.36
TF-8	10/06/2003	74.86		27.32		47.54
TF-8	04/19/2004	74.86		28.62		46.24
TF-8	11/01/2004	74.86		28.54		46.32
TF-8	02/28/2005	74.86		24.95		49.91
TF-8	05/02/2005	74.86		24.26		50.60
TF-8	03/06/2006	74.86		24.21		50.65
TF-8	05/01/2006	74.86		24.51		50.35
TF-8	08/26/2006	74.86		25.84		49.02
TF-8	12/01/2006	74.86		26.17		48.69
TF-8	03/21/2007	74.86		25.52		49.34
TF-8	04/30/2007	74.86		25.54		49.32
TF-8	08/28/2007	75.60		25.92		49.68
TF-8	11/12/2007	74.86		26.12		48.74
TF-8	02/05/2008	75.60		26.69		48.91
TF-8	04/11/2008	74.86		25.78		49.08
TF-8	07/16/2008	75.60		28.42		47.18
TF-8	07/24/2008	75.60		27.05		48.55
TF-8	10/14/2008	75.60		27.84		47.76
TF-8	02/10/2009	75.60		27.69		47.91
TF-8	04/08/2010	75.60		28.30		47.30
TF-8	10/01/2010	74.86		27.81		47.05
TF-8	01/07/2011	74.86		27.90		46.96
TF-8	04/08/2011	74.86		26.52		48.34
TF-8	07/08/2011	74.86		26.66		48.20
TF-8	10/07/2011	74.86		27.18		47.68

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
	0.444.0400.40	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-8	04/12/2012	74.86		28.14		46.72
TF-8	01/11/2013	74.86		29.56		45.30
TF-8	04/03/2013	74.86		29.35		45.51
TF-8	10/02/2013	74.86		30.14		44.72
TF-8	04/09/2014	74.86		30.91		43.95
TF-8	04/17/2014	74.86		30.79		44.07
TF-8	10/27/2014	74.86		31.22		43.64
TF-8	04/20/2015	74.86		31.51		43.35
TF-8	10/20/2015	74.86		32.18		42.68
TF-8	04/11/2016	74.86		32.88		41.98
TF-8	10/3/2016	74.86		33.41		41.45
TF-9	11/20/1996	75.27		31.31		43.96
TF-9	07/01/1997	75.27		30.55		44.72
TF-9	12/31/1997	75.27		29.12		46.15
TF-9	05/01/1998	75.27	26.32	26.35	0.03	NC
TF-9	05/25/1999	75.27	27.00	27.04	0.04	NC
TF-9	05/15/2000	75.27		26.85		48.42
TF-9	05/07/2001	75.27		29.62		45.65
TF-9	04/08/2002	74.47		27.83		46.64
TF-9	09/19/2002	75.27		28.60		46.67
TF-9	10/21/2002	75.27		27.72		47.55
TF-9	04/22/2003	75.27		27.13		48.14
TF-9	10/06/2003	74.47		26.73		47.74
TF-9	04/19/2004	74.47		28.18		46.29
TF-9	11/01/2004	75.27		28.61		46.66
TF-9	02/28/2005	75.27		25.54		49.73
TF-9	05/02/2005	75.27	24.06	24.09	0.03	NC
TF-9	03/06/2006	75.27		23.97		51.30
TF-9	05/01/2006	74.47		24.22		50.25
TF-9	08/26/2006	75.27	25.38	25.40	0.02	NC
TF-9	12/01/2006	75.27		25.74		49.53
TF-9	03/21/2007	75.27		25.18		50.09
TF-9	04/30/2007	74.47		25.00		49.47
TF-9	08/28/2007	75.27		26.02		49.25
TF-9	11/12/2007	74.47		25.90		48.57
TF-9	02/05/2008	75.27		26.88		48.39
TF-9	04/11/2008	74.47		25.50		48.97
TF-9	07/24/2008	74.47		27.16		47.31
TF-9	02/10/2009	75.27		27.82		47.45
TF-9	07/16/2009	75.27		28.28		46.99
TF-9	04/07/2010	75.27		27.79		47.48

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-9	10/01/2010	74.47		27.05		47.42
TF-9	01/07/2011	74.47		27.38		47.09
TF-9	04/08/2011	74.47		25.92		48.55
TF-9	07/08/2011	74.47		26.03		48.44
TF-9	04/12/2012	74.47		27.62		46.85
TF-9	01/11/2013	74.47		29.14		45.33
TF-9	04/03/2013	74.47		28.93		45.54
TF-9	10/02/2013	74.47		29.83		44.64
TF-9	04/09/2014	74.47		30.43		44.04
TF-9	04/17/2014	74.47		30.32		44.15
TF-9	10/27/2014	74.47		30.67		43.80
TF-9	W	ell decommission	ed in Decembe	r 2014 prior to re	medial excavati	on
TF-10	11/20/1996	74.19		28.03		46.16
TF-10	07/01/1997	74.19		30.60		43.59
TF-10	12/31/1997	74.19		27.97		46.22
TF-10	05/01/1998	74.19		25.40		48.79
TF-10	05/25/1999	74.19		26.79		47.40
TF-10	05/15/2000	74.19		26.05		48.14
TF-10	04/08/2002	73.61		26.16		47.45
TF-10	09/19/2002	74.19		27.28		46.91
TF-10	10/21/2002	73.61		26.50		47.11
TF-10	04/22/2003	73.61		25.95		47.66
TF-10	10/06/2003	73.61		25.60		48.01
TF-10	04/19/2004	73.61		26.82		46.79
TF-10	11/01/2004	73.61		27.32		46.29
TF-10	02/28/2005	73.61		23.82		49.79
TF-10	05/02/2005	73.61		22.32		51.29
TF-10	03/06/2006	73.61		22.89		50.72
TF-10	05/01/2006	73.61		23.00		50.61
TF-10	08/26/2006	73.61		24.20		49.41
TF-10	12/01/2006	73.61		24.52		49.09
TF-10	03/21/2007	73.61		24.00		49.61
TF-10	04/30/2007	73.61		24.15		49.46
TF-10	08/28/2007	74.19		24.21		49.98
TF-10	11/12/2007	73.61		25.66		47.95
TF-10	02/05/2008	74.19		25.11		49.08
TF-10	04/11/2008	73.61		25.24		48.37
TF-10	07/24/2008	73.61		24.91		48.70
TF-10	10/14/2008	73.61		25.48		48.13
TF-10	02/10/2009	74.19		25.94		48.25
TF-10	07/16/2009	73.61		27.02		46.59

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-10	04/08/2010	73.61		25.75		47.86
TF-10	10/01/2010	73.61		26.93		46.68
TF-10	01/07/2011	73.61		26.64		46.97
TF-10	04/08/2011	73.61		24.92		48.69
TF-10	07/08/2011	73.61		25.15		48.46
TF-10	10/06/2011	73.61		25.54		48.07
TF-10	04/12/2012	73.61		26.72		46.89
TF-10	01/11/2013	73.61		28.42		45.19
TF-10	04/03/2013	73.61		28.19		45.42
TF-11	11/20/1996	74.95		32.55		42.40
TF-11	07/01/1997	74.95	32.60	32.75	0.15	NC
TF-11	12/31/1997	74.95		28.52		46.43
TF-11	05/01/1998	74.95		25.99		48.96
TF-11	05/25/1999	74.95	26.60	26.62	0.02	NC
TF-11	05/15/2000	74.95		26.63		48.32
TF-11	05/07/2001	74.95		28.50		46.45
TF-11	04/08/2002	74.40		25.64		48.76
TF-11	09/19/2002	74.95	28.15	28.33	0.18	NC
TF-11	10/21/2002	74.95		27.02		47.93
TF-11	04/22/2003	74.40		31.15		43.25
TF-11	10/06/2003	74.40		27.12		47.28
TF-11	04/19/2004	74.95		28.56		46.39
TF-11	11/01/2004	74.95		27.86		47.09
TF-11	02/28/2005	74.95		23.82		51.13
TF-11	05/02/2005	74.95		22.90		52.05
TF-11	03/06/2006	74.95		24.31		50.64
TF-11	05/01/2006	74.95		24.35		50.60
TF-11	08/26/2006	74.95		24.79		50.16
TF-11	12/01/2006	74.95		25.17		49.78
TF-11	03/21/2007	74.95		25.26		49.69
TF-11	04/30/2007	74.40		25.62		48.78
TF-11	08/28/2007	74.95		26.06		48.89
TF-11	11/12/2007	74.95		26.26		48.69
TF-11	02/05/2008	74.95		27.15		47.80
TF-11	04/11/2008	74.40		25.87		48.53
TF-11	07/24/2008	74.40		26.05		48.35
TF-11	10/14/2008	74.40		26.85		47.55
TF-11	02/10/2009	74.95		26.90		48.05
TF-11	07/16/2009	74.95		27.70		47.25
TF-11	04/08/2010	74.95		27.11		47.84
TF-11	10/01/2010	74.40		27.62		46.78

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
TE 44	04/00/0044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-11	01/08/2011	74.40		27.17		47.23
TF-11	04/08/2011	74.40		24.98		49.42
TF-11	07/08/2011	74.40		25.40		49.00
TF-11	10/06/2011	74.40		26.07		48.33
TF-11	04/12/2012	74.40		27.51		46.89
TF-11	01/11/2013	74.40		29.45		44.95
TF-11	04/03/2013	74.40		29.35		45.05
TF-13	11/20/1996	75.90		30.90		45.00
TF-13	07/01/1997	75.90	30.90	30.95	0.05	NC
TF-13	12/31/1997	75.90	28.05	30.97	2.92	NC
TF-13	05/01/1998	75.90	30.65	31.10	0.45	NC
TF-13	05/25/1999	75.90	27.12	27.40	0.28	NC
TF-13	05/15/2000	75.90	31.25	31.65	0.40	NC
TF-13	05/07/2001	75.90		31.20		44.70
TF-13	04/08/2002	75.47		28.10		47.37
TF-13	09/19/2002	75.90		28.76		47.14
TF-13	10/21/2002	75.90		31.10		44.80
TF-13	04/22/2003	75.47		31.05		44.42
TF-13	10/06/2003	75.47		27.65		47.82
TF-13	04/19/2004	75.90		29.03		46.87
TF-13	11/01/2004	75.90		28.05		47.85
TF-13	02/28/2005	75.90		24.22		51.68
TF-13	05/02/2005	75.90		22.24		53.66
TF-13	03/06/2006	75.90		25.37		50.53
TF-13	05/01/2006	75.90		25.22		50.68
TF-13	08/26/2006	75.90		25.63		50.27
TF-13	12/01/2006	75.90		25.96		49.94
TF-13	03/21/2007	75.90		26.52		49.38
TF-13	04/30/2007	75.90		26.52		49.38
TF-13	08/28/2007	75.90		26.69		49.21
TF-13	11/12/2007	75.47		27.11		48.36
TF-13	02/05/2008	75.90		27.32		48.58
TF-13	04/14/2008	75.90		26.73		49.17
TF-13	07/24/2008	75.47		27.02		48.45
TF-13	10/14/2008	75.90		27.81		48.09
TF-13	02/10/2009	75.90		26.14		49.76
TF-13	07/17/2009	75.90		27.81		48.09
TF-13	04/08/2010	75.90		28.14		47.76
TF-13	10/01/2010	75.47		28.63		46.84
TF-13	01/08/2011	75.47		28.21		47.26
TF-13	04/07/2011	75.47		26.85		47.26

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-13	07/08/2011	75.47	(leet bic)	27.13	(leet)	48.34
TF-13	10/07/2011	75.47		27.63		47.84
TF-13	01/10/2013	75.47		30.15		47.84
TF-13	04/03/2013	75.47		30.00		45.32
TF-13	11/20/1996	74.78	30.45	31.11	0.66	45.47 NC
TF-14	07/01/1997	74.78	30.45	31.10	0.50	NC NC
TF-14		74.78	27.03	4	4.82	NC NC
	12/31/1997			31.85		
TF-14	05/01/1998	74.78	29.95	30.75	0.80	NC NC
TF-14	05/25/1999	74.78	25.60	28.86	3.26	NC NC
TF-14	05/15/2000	74.78	26.65	27.95	1.30	NC 10
TF-14	05/07/2001	74.78		26.30		48.48
TF-14	04/08/2002	74.35	28.40	28.48	0.08	NC
TF-14	09/19/2002	74.78		27.68		47.10
TF-14	10/21/2002	74.78		28.42		46.36
TF-14	04/22/2003	74.35		26.61		47.74
TF-14	10/06/2003	74.35		26.52		47.83
TF-14	04/19/2004	74.35		27.94		46.41
TF-14	11/01/2004	74.35		27.24		47.11
TF-14	02/28/2005	74.35		23.62		50.73
TF-14	05/02/2005	74.35		22.51		51.84
TF-14	03/06/2006	74.78		24.06		50.72
TF-14	05/01/2006	74.78		24.13		50.65
TF-14	08/26/2006	74.78		24.54		50.24
TF-14	12/01/2006	74.78		24.82		49.96
TF-14	03/21/2007	74.78		25.24		49.54
TF-14	04/30/2007	74.78		25.37		49.41
TF-14	08/28/2007	74.78		25.89		48.89
TF-14	11/12/2007	74.35		25.91		48.44
TF-14	02/05/2008	74.78		26.95		47.83
TF-14	04/14/2008	74.78		26.55		48.23
TF-14	07/24/2008	74.35		26.05		48.30
TF-14	10/14/2008	74.78		26.63		48.15
TF-14	02/10/2009	74.78		26.91		47.87
TF-14	07/17/2009	74.78		26.91		47.87
TF-14	04/08/2010	74.78		26.92		47.86
TF-14	10/01/2010	74.35		27.42		46.93
TF-14	04/08/2011	74.35		25.65		48.70
TF-14	07/08/2011	74.35		25.93		48.42
TF-14	10/06/2011	74.35		26.41		47.94
TF-14	04/12/2012	74.35		27.49		46.86
TF-14	01/10/2013	74.35		29.25		45.10

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-14	04/03/2013	74.35		28.76		45.59
TF-15	11/20/1996	75.40	31.09	31.42	0.33	NC
TF-15	07/01/1997	75.40	31.40	31.65	0.25	NC
TF-15	12/31/1997	75.40	27.79	31.56	3.77	NC
TF-15	05/01/1998	75.40	28.35	30.05	1.70	NC
TF-15	05/25/1999	75.40	26.41	26.94	0.53	NC
TF-15	05/15/2000	75.40	28.90	29.54	0.64	NC
TF-15	05/07/2001	75.40	28.90	29.30	0.40	NC
TF-15	04/08/2002	74.78		27.56		47.22
TF-15	09/19/2002	75.40		28.21		47.19
TF-15	10/21/2002	75.40	29.00	29.24	0.24	NC
TF-15	04/22/2003	74.78		27.45		47.33
TF-15	10/06/2003	74.78		27.03		47.75
TF-15	04/19/2004	74.78		28.17		46.61
TF-15	11/01/2004	74.78	27.77	27.79	0.02	NC
TF-15	02/28/2005	74.78		23.05		51.73
TF-15	05/02/2005	74.78		21.67		53.11
TF-15	03/06/2006	75.40		23.91		51.49
TF-15	05/01/2006	75.40		23.90		51.50
TF-15	08/26/2006	75.40		24.49		50.91
TF-15	12/01/2006	75.40		25.31		50.09
TF-15	03/21/2007	75.40		25.18		50.22
TF-15	04/30/2007	75.40		25.88		49.52
TF-15	08/28/2007	75.40		25.62		49.78
TF-15	11/12/2007	74.78		26.39		48.39
TF-15	02/05/2008	75.40		26.42		48.98
TF-15	04/14/2008	75.40		25.72		49.68
TF-15	07/24/2008	74.78		26.72		48.06
TF-15	10/14/2008	75.40		27.29		48.11
TF-15	02/10/2009	75.40		27.78		47.62
TF-15	07/17/2009	75.40		26.82		48.58
TF-15	04/08/2010	75.40		27.43		47.97
TF-15	10/01/2010	74.78		28.03		46.75
TF-15	01/08/2011	74.78		27.55		47.23
TF-15	04/08/2011	74.78		25.96		48.82
TF-15	07/08/2011	74.78		26.33		48.45
TF-15	10/06/2011	74.78		26.81		47.97
TF-15	04/12/2012	74.78		27.94		46.84
TF-15	01/11/2013	74.78	29.50	29.63	0.13	NC
TF-15	04/03/2013	74.78		29.22		45.56
TF-15	10/02/2013	74.78	29.97	30.04	0.07	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1		•
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-15	04/09/2014	74.78	30.22	32.25	2.03	NC
TF-15	04/16/2014	74.78	30.18	32.06	1.88	NC
TF-15	10/27/2014	74.78	30.31	30.86	0.55	NC
TF-15	04/20/2015	74.78	30.68	33.50	2.82	NC
TF-16	11/20/1996	76.48	32.52	32.75	0.23	NC
TF-16	07/01/1997	76.48	32.50	33.10	0.60	NC
TF-16	12/31/1997	76.48	28.69	32.79	4.10	NC
TF-16	05/01/1998	76.48	32.07	32.61	0.54	NC
TF-16	05/25/1999	76.48	27.82	27.90	0.08	NC
TF-16	05/15/2000	76.48	32.03	32.48	0.45	NC
TF-16	05/07/2001	76.48	31.96	32.20	0.24	NC
TF-16	04/08/2002	75.89	31.40	31.49	0.09	NC
TF-16	09/19/2002	76.48		29.36		47.12
TF-16	10/21/2002	76.48		32.21		44.27
TF-16	04/22/2003	75.89		28.22		47.67
TF-16	10/06/2003	75.89		28.10		47.79
TF-16	04/19/2004	76.48		29.16		47.32
TF-16	11/01/2004	76.48		28.95		47.53
TF-16	02/28/2005	76.48		25.20		51.28
TF-16	05/02/2005	76.48		23.70		52.78
TF-16	03/06/2006	76.48		25.54		50.94
TF-16	05/01/2006	76.48		25.66		50.82
TF-16	08/26/2006	76.48		26.06		50.42
TF-16	12/01/2006	76.48		26.45		50.03
TF-16	03/21/2007	76.48		26.52		49.96
TF-16	04/30/2007	76.48		27.04		49.44
TF-16	08/28/2007	76.48		27.11		49.37
TF-16	11/12/2007	75.89		27.60		48.29
TF-16	02/05/2008	76.48		27.94		48.54
TF-16	04/14/2008	76.48		27.17		49.31
TF-16	07/24/2008	75.89		27.50		48.39
TF-16	10/14/2008	76.48		28.37		48.11
TF-16	02/10/2009	76.48		27.73		48.75
TF-16	04/20/2009	75.89		27.63		48.26
TF-16	07/17/2009	76.48		28.35		48.13
TF-16	10/19/2009	75.89		29.66		46.23
TF-16	04/08/2010	76.48		27.06		49.42
TF-16	04/12/2010	75.89		27.36		48.53
TF-16	10/01/2010	75.89		28.59		47.30
TF-16	01/08/2011	75.89		28.72		47.17
		1				
TF-16	04/07/2011	75.89		27.18		48.71

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-16	07/08/2011	75.89		27.51		48.38
TF-16	10/07/2011	75.89		28.10		47.79
TF-16	04/12/2012	75.89		29.05		46.84
TF-16	04/19/2012	75.89		29.08		46.81
TF-16	01/11/2013	75.89		30.63		45.26
TF-16	04/03/2013	75.89		30.47		45.42
TF-16	04/08/2013	75.89		30.25		45.64
TF-16	10/02/2013	75.89		31.16		44.73
TF-16	04/09/2014	75.89		31.68		44.21
TF-16	04/16/2014	75.89		32.42		43.47
TF-16	10/27/2014	75.89	31.58	32.92	1.34	NC
TF-16	04/20/2015	75.89	31.87	34.70	2.83	NC
TF-16	04/11/2016	75.89	33.41	36.15	2.74	NC
TF-16	10/3/2016	75.89	33.73	37.12	3.39	NC
TF-17	11/20/1996	75.26	30.00	30.53	0.53	NC
TF-17	07/01/1997	75.26	30.10	30.20	0.10	NC
TF-17	12/31/1997	75.26		27.50		47.76
TF-17	05/01/1998	75.26	24.86	25.18	0.32	NC
TF-17	05/25/1999	75.26	25.40	28.24	2.84	NC
TF-17	05/15/2000	75.26	28.84	29.32	0.48	NC
TF-17	05/07/2001	75.26		26.20		49.06
TF-17	04/08/2002	74.88	27.01	27.04	0.03	NC
TF-17	09/19/2002	75.26		28.68		46.58
TF-17	10/21/2002	75.26		27.40		47.86
TF-17	04/22/2003	74.88	27.85	27.99	0.14	NC
TF-17	10/06/2003	74.88		26.63		48.25
TF-17	04/19/2004	75.26	27.32	28.83	1.51	NC
TF-17	11/01/2004	75.26	27.80	28.30	0.50	NC
TF-17	02/28/2005	75.26	22.62	23.33	0.71	NC
TF-17	05/02/2005	75.26	21.57	22.25	0.68	NC
TF-17	03/06/2006	75.26	23.42	23.98	0.56	NC
TF-17	05/01/2006	75.26	23.39	26.35	2.96	NC
TF-17	08/26/2006	75.26	24.08	26.52	2.44	NC
TF-17	12/01/2006	74.88	24.77	26.62	1.85	NC
TF-17	03/21/2007	75.26	24.67	25.02	0.35	NC
TF-17	04/30/2007	75.26	25.00	26.16	1.16	NC
TF-17	11/09/2007	74.88	25.35	26.01	0.66	NC
TF-17	02/05/2008	75.26	25.98	28.18	2.20	NC
TF-17	07/24/2008	75.26	26.15	27.29	1.14	NC
TF-17	10/13/2008	75.26	26.67	27.95	1.28	NC
TF-17	02/10/2009	75.26	26.05	27.66	1.61	NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
TE 47	07/47/2000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-17	07/17/2009	74.88	26.90	27.64	0.74	NC NC
TF-17	04/08/2010	74.88	26.76	26.78	0.02	NC NC
TF-17	10/01/2010	74.88	27.72	28.14	0.42	NC 10 11
TF-17	04/08/2011	74.88		25.74		49.14
TF-17	07/08/2011	74.88		26.40		48.48
TF-17	10/06/2011	74.88		27.07		47.81
TF-17	04/12/2012	74.88		27.96		46.92
TF-17	01/11/2013	74.88		29.55		45.33
TF-17	04/03/2013	74.88		29.71		45.17
TF-17	10/02/2013	74.88		30.42		44.46
TF-17	04/09/2014	74.88		30.97		43.91
TF-17	04/16/2014	74.88		30.59		44.29
TF-17	10/27/2014	74.88		31.16		43.72
TF-17	W	ell decommissione	ed in Decembe	r 2014 prior to re	medial excavati	on
TF-18	05/25/1999	73.94	24.22	25.83	1.61	NC
TF-18	05/15/2000	73.94	25.13	26.22	1.09	NC
TF-18	05/07/2001	73.94		25.30		48.64
TF-18	04/08/2002	73.94	27.10	27.42	0.32	NC
TF-18	09/19/2002	73.94	25.80	26.89	1.09	NC
TF-18	10/21/2002	73.94	27.92	27.94	0.02	NC
TF-18	04/22/2003	73.94		28.11		45.83
TF-18	10/06/2003	73.94	25.09	25.28	0.19	NC
TF-18	04/19/2004	73.94		26.00		47.94
TF-18	11/01/2004	73.94	26.25	27.76	1.51	NC
TF-18	02/28/2005	73.94		22.27		51.67
TF-18	05/02/2005	73.94	20.45	20.67	0.22	NC
TF-18	03/06/2006	73.94	22.62	22.67	0.05	NC
TF-18	05/01/2006	73.94	22.57	22.59	0.02	NC
TF-18	08/26/2006	73.94	23.14	23.29	0.15	NC
TF-18	12/01/2006	73.94		23.97		49.97
TF-18	03/21/2007	73.94	23.91	24.02	0.11	NC
TF-18	04/30/2007	73.94	24.30	24.35	0.05	NC
TF-18	11/09/2007	73.94		24.85		49.09
TF-18	02/05/2008	73.94		25.49		48.45
TF-18	07/24/2008	73.94		24.97		48.43
TF-18	10/14/2008	73.94		25.62		48.32
TF-18	02/10/2009	73.94		25.88		48.06
		-				
TF-18	07/16/2009	73.94	25.70	26.42	0.02	47.52
TF-18	04/08/2010	73.94	25.70	25.73	0.03	NC 47.50
TF-18 TF-18	10/01/2010 01/08/2011	73.94 73.94	26.65	26.35 26.86	0.21	47.59 NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
TE 40	04/07/2014	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-18	04/07/2011	73.94	24.95	25.11	0.16	NC NC
TF-18	07/08/2011	73.94	25.30	25.40	0.10	NC NC
TF-18	10/06/2011	73.94	25.95	25.97	0.02	NC 10.01
TF-18	04/12/2012	73.94		27.30		46.64
TF-18	01/10/2013	73.94	27.85	30.25	2.40	NC
TF-18	04/03/2013	73.94	28.04	28.80	0.76	NC
TF-18	10/02/2013	73.94	28.68	29.47	0.79	NC
TF-18	04/09/2014	73.94	29.37	30.90	1.53	NC
TF-18	04/16/2014	73.94	29.38	31.15	1.77	NC
TF-18	10/27/2014	73.94	29.48	30.91	1.43	NC
TF-18	04/20/2015	73.94	29.36	30.11	0.75	NC
TF-18	10/20/2015	73.94	30.41	33.06	2.65	NC
TF-18	04/11/2016	73.94	31.12	34.08	2.96	NC
TF-18	10/3/2016	73.94	31.61	34.35	2.74	NC
TF-19	11/20/1996	75.61		29.06		46.55
TF-19	07/01/1997	75.61	29.20	29.30	0.10	NC
TF-19	12/31/1997	75.61		28.27		47.34
TF-19	05/01/1998	75.61		25.70		49.91
TF-19	05/25/1999	75.61		26.42		49.19
TF-19	05/15/2000	75.61	32.33	32.90	0.57	NC
TF-19	05/07/2001	75.61		28.61		47.00
TF-19	04/08/2002	75.07		26.40		48.67
TF-19	09/19/2002	75.61		27.90		47.71
TF-19	10/21/2002	75.61		27.08		48.53
TF-19	04/22/2003	75.07		27.09		47.98
TF-19	10/06/2003	75.07		26.87		48.20
TF-19	04/19/2004	75.07		26.90		48.17
TF-19	11/01/2004	75.61		28.20		47.41
TF-19	02/28/2005	75.61		23.79		51.82
TF-19	05/02/2005	75.61		22.25		53.36
TF-19	03/06/2006	75.61		24.62		50.99
TF-19	05/01/2006	75.61		24.60		51.01
TF-19	08/26/2006	75.61		25.11		50.50
TF-19	12/01/2006	75.61		25.60		50.01
TF-19	03/21/2007	75.61		25.96		49.65
TF-19	04/30/2007	75.61		26.07		49.54
TF-19	08/28/2007	75.61		26.21		49.40
TF-19						
	11/12/2007	75.61		26.66		48.95
TF-19	02/05/2008	75.61		27.15		48.46
TF-19 TF-19	04/14/2008 07/24/2008	75.61 75.61		26.12 26.95		49.49 48.66

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
TE 40	40/44/2000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-19	10/14/2008	75.61		27.40		48.21
TF-19	02/10/2009	75.61		27.70		47.91
TF-19	07/16/2009	75.61		27.69		47.92
TF-19	04/08/2010	75.61		27.48		48.13
TF-19	10/01/2010	75.07		28.11		46.96
TF-19	01/08/2011	75.07		27.66		47.41
TF-19	04/07/2011	75.07		25.96		49.11
TF-19	07/08/2011	75.07		26.37		48.70
TF-19	10/06/2011	75.07		27.00		48.07
TF-19	04/12/2012	75.07		28.08		46.99
TF-19	01/10/2013	75.07		29.38		45.69
TF-19	04/03/2013	75.07		29.45		45.62
TF-19	10/02/2013	75.07		30.14		44.93
TF-19	04/09/2014	75.07		30.68		44.39
TF-19	04/16/2014	75.07	30.75	30.76	0.01	NC
TF-19	10/27/2014	75.07	30.72	31.46	0.74	NC
TF-19	04/20/2015	75.07	30.77	33.03	2.26	NC
TF-19	10/20/2015	75.07	32.45	32.46	0.01	NC
TF-19	04/11/2016	75.07		33.03		42.04
TF-19	10/3/2016	75.07		32.92		42.15
TF-20	11/20/1996	75.59		29.02		46.57
TF-20	07/01/1997	75.59		29.40		46.19
TF-20	12/31/1997	75.59		28.49		47.10
TF-20	05/01/1998	75.59		25.93		49.66
TF-20	05/25/1999	75.59		26.74		48.85
TF-20	05/15/2000	75.59		31.44		44.15
TF-20	05/07/2001	75.59		27.96		47.63
TF-20	04/08/2002	75.08		31.40		43.68
TF-20	09/19/2002	75.59		28.52		47.07
TF-20	10/21/2002	75.59		31.29		44.30
TF-20	04/22/2003	75.08		31.28		43.80
TF-20	10/06/2003	75.08		27.60		47.48
TF-20	04/19/2004	75.08		27.78		47.30
TF-20	11/01/2004	75.59		28.88		46.71
TF-20	02/28/2005	75.59		24.92		50.67
TF-20	05/02/2005	75.59		22.54		53.05
TF-20	03/06/2006	75.59	24.34	24.48	0.14	NC
TF-20	05/01/2006	75.59	24.67	27.70	3.03	NC
TF-20	08/26/2006	75.59	25.05	28.68	3.63	NC
TF-20	12/01/2006	75.59	25.48	29.67	4.19	NC NC
TF-20	03/21/2007	75.59	25.42	25.49	0.07	NC NC

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

l 		<u> </u>		1		•
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-20	04/30/2007	75.59		25.84		49.75
TF-20	11/09/2007	75.59	26.45	29.02	2.57	NC
TF-20	02/05/2008	75.08	27.47	28.65	1.18	NC
TF-20	07/24/2008	75.08		27.51		47.57
TF-20	10/13/2008	75.08		28.28		46.80
TF-20	02/10/2009	75.08	27.24	27.85	0.61	NC
TF-20	07/17/2009	75.08		28.02		47.06
TF-20	04/08/2010	75.08		27.59		47.49
TF-20	10/01/2010	75.08		28.47		46.61
TF-20	01/08/2011	75.08		28.73		46.35
TF-20	04/08/2011	75.08		26.90		48.18
TF-20	07/08/2011	75.08		27.45		47.63
TF-20	10/06/2011	75.08		28.05		47.03
TF-20	04/12/2012	75.08		28.88		46.20
TF-20	01/11/2013	75.08	30.38	30.43	0.05	NC
TF-20	04/03/2013	75.08	30.30	30.32	0.02	NC
TF-20	10/02/2013	75.08	30.93	30.95	0.02	NC
TF-20	04/09/2014	75.08		31.47		43.61
TF-20	04/16/2014	75.08	31.32	31.35	0.03	NC
TF-20	10/27/2014	75.08	31.76	31.79	0.03	NC
TF-20	W	ell decommission	ed in Decembe	r 2014 prior to re	medial excavati	on
TF-21	11/20/1996	75.60	29.83	29.91	0.08	NC
TF-21	07/01/1997	75.60	30.80	31.10	0.30	NC
TF-21	12/31/1997	75.60		28.35		47.25
TF-21	05/01/1998	75.60		25.56		50.04
TF-21	05/25/1999	75.60	26.49	26.58	0.09	NC
TF-21	05/15/2000	75.60	28.68	29.04	0.36	NC
TF-21	05/07/2001	75.60		29.81		45.79
TF-21	04/08/2002	74.96		28.50		46.46
TF-21	09/19/2002	75.60		28.63		46.97
TF-21	10/21/2002	75.60		30.16		45.44
TF-21	04/22/2003	74.96		27.62		47.34
TF-21	10/06/2003	74.96		26.55		48.41
TF-21	04/19/2004	74.96		27.28		47.68
TF-21	11/01/2004	75.60		27.88		47.72
TF-21	02/28/2005	75.60		23.76		51.84
TF-21	05/02/2005	75.60		22.00		53.60
TF-21	03/06/2006	75.60		24.06		51.54
TF-21	05/01/2006	75.60		24.09		51.51
TF-21	08/26/2006	75.60		24.76		50.84
TF-21	12/01/2006	75.60		25.22		50.38

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
TF-21	03/21/2007	75.60		25.51		50.09
TF-21	04/30/2007	75.60		25.72		49.88
TF-21	08/28/2007	75.60		26.17		49.43
TF-21	11/12/2007	74.76		26.35		48.41
TF-21	02/05/2008	75.60		27.25		48.35
TF-21	04/14/2008	75.60		25.93		49.67
TF-21	07/24/2008	74.96		26.51		48.45
TF-21	10/13/2008	74.96		27.10		47.86
TF-21	02/10/2009	75.60		26.72		48.88
TF-21	04/20/2009	74.96		21.85		53.11
TF-21	07/17/2009	75.60		27.31		48.29
TF-21	10/19/2009	74.96		29.84		45.12
TF-21	04/08/2010	75.60		27.30		48.30
TF-21	04/12/2010	74.96		27.00		47.96
TF-21	01/08/2011	74.96		27.89		47.07
TF-21	04/08/2011	74.96		26.09		48.87
TF-21	07/08/2011	74.96		26.59		48.37
TF-21	10/06/2011	74.96		27.23		47.73
TF-21	04/12/2012	74.96		28.16		46.80
TF-21	04/20/2012	74.96		28.14		46.82
TF-21	01/11/2013	74.96		29.63		45.33
TF-21	04/03/2013	74.96		29.43		45.53
TF-21	04/08/2013	74.96		29.90		45.06
TF-21	10/02/2013	74.96		30.15		44.81
TF-21	04/09/2014	74.96		30.68		44.28
TF-21	04/16/2014	74.96		30.66		44.30
TF-21	10/27/2014	74.96		30.92		44.04
TF-21	04/20/2015	74.96		31.26		43.70
TF-21	10/3/2016	ns		36.31		
TF-22	11/20/1996	74.95	30.56	31.98	1.42	NC
TF-22	07/01/1997	74.95	30.70	31.00	0.30	NC
TF-22	12/31/1997	74.95	28.01	28.90	0.89	NC
TF-22	05/01/1998	74.95	23.57	25.24	1.67	NC
TF-22	05/25/1999	74.95	26.02	26.44	0.42	NC
TF-22	05/15/2000	74.95	32.65	32.96	0.31	NC
TF-22	05/07/2001	74.95	32.70	33.01	0.31	NC
TF-22	04/08/2002	74.76	32.80	32.98	0.18	NC
TF-22	09/19/2002	74.95		27.63		47.32
TF-22	10/21/2002	74.95	31.42	32.60	1.18	NC
TF-22	04/22/2003	74.76		27.60		47.16
TF-22	10/06/2003	74.76		26.37		48.39

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T	 				1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-22	04/19/2004	74.95	27.30	27.32	0.02	NC
TF-22	11/01/2004	74.95		27.52		47.43
TF-22	02/28/2005	74.95		23.49		51.46
TF-22	05/02/2005	74.95		21.88		53.07
TF-22	03/06/2006	74.95		23.98		50.97
TF-22	05/01/2006	74.95		23.99		50.96
TF-22	08/26/2006	74.95		24.42		50.53
TF-22	12/01/2006	74.95		24.97		49.98
TF-22	03/21/2007	74.95		25.24		49.71
TF-22	04/30/2007	74.95	25.50	25.51	0.01	NC
TF-22	08/28/2007	74.95		26.07		48.88
TF-22	11/12/2007	74.95		26.03		48.92
TF-22	02/05/2008	74.95		26.87		48.08
TF-22	04/14/2008	74.95		25.59		49.36
TF-22	07/24/2008	74.95		26.40		48.55
TF-22	10/13/2008	74.95		27.06		47.89
TF-22	02/10/2009	74.95		26.32		48.63
TF-22	07/17/2009	74.95		27.61		47.34
TF-22	04/08/2010	74.95		28.24		46.71
TF-22	10/01/2010	74.76		27.58		47.18
TF-22	04/08/2011	74.76		25.92		48.84
TF-22	07/08/2011	74.76		26.30		48.46
TF-22	10/06/2011	74.76		26.95		47.81
TF-22	04/12/2012	74.76		27.90		46.86
TF-22	01/11/2013	74.76		29.35		45.41
TF-22	04/03/2013	74.76		29.15		45.61
TF-23	05/25/1999	75.31		26.12		49.19
TF-23	05/15/2000	75.31	27.35	27.38	0.03	NC
TF-23	05/07/2001	75.31		27.30		48.01
TF-23	04/08/2002	75.31		28.74		46.57
TF-23	09/19/2002	75.31		27.55		47.76
TF-23	10/21/2002	75.31	31.24	31.44	0.20	NC
TF-23	10/21/2002	75.31		26.52	0.20	48.79
TF-23	04/19/2004	75.31		27.51		47.80
TF-23		75.31				
	11/01/2004			27.60		47.71
TF-23	02/28/2005	75.31		23.89		51.42
TF-23	05/02/2005	75.31		22.32		52.99
TF-23	03/06/2006	75.31		24.21		51.10
TF-23	05/01/2006	75.31		24.31		51.00
TF-23	03/21/2007	75.31		25.51		49.80
TF-23	04/30/2007	75.31		25.67		49.64

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		Top of Casing	Depth to	Depth to	Measured Product	Groundwater
Well	Date	Elevation	Product	Groundwater	Thickness	Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-23	11/12/2007	75.31		26.20		49.11
TF-23	02/05/2008	75.31		26.75		48.56
TF-23	04/14/2008	75.31		25.81		49.50
TF-23	07/24/2008	75.31		26.45		48.86
TF-23	10/13/2008	75.31		27.15		48.16
TF-23	02/10/2009	75.31		26.46		48.85
TF-23	07/17/2009	75.31		26.93		48.38
TF-23	04/08/2010	75.31		27.20		48.11
TF-23	10/01/2010	75.31		27.67		47.64
TF-23	01/08/2011	75.31		27.88		47.43
TF-23	04/08/2011	75.31		26.43		48.88
TF-23	07/08/2011	75.31		26.76		48.55
TF-23	10/06/2011	75.31		27.34		47.97
TF-23	04/12/2012	75.31	28.38	28.41	0.03	NC
TF-23	01/11/2013	75.31		29.67		45.64
TF-23	04/03/2013	75.31	29.60	29.70	0.10	NC
TF-23	10/02/2013	75.31	30.34	30.56	0.22	NC
TF-23	04/09/2014	75.31	30.92	31.16	0.24	NC
TF-23	04/16/2014	75.31	30.90	31.08	0.18	NC
TF-23	10/27/2014	75.31	31.15	31.16	0.01	NC
TF-23	04/20/2015	75.31	31.51	31.54	0.03	NC
TF-23	04/11/2016	75.31	32.84	33.11	0.27	NC
TF-23	10/3/2016	75.31	33.25	33.64	0.39	NC
TF-24	12/31/1997	76.36		30.05		46.31
TF-24	05/01/1998	76.36		27.19		49.17
TF-24	05/25/1999	72.43	27.10	29.04	1.94	NC
TF-24	05/15/2000	76.36	27.82	29.42	1.60	NC
TF-24	04/08/2002	76.43		29.19		47.24
TF-24	10/21/2002	76.35		28.12		48.23
TF-24	04/22/2003	76.35	27.95	28.65	0.70	NC
TF-24	11/01/2004	76.43		29.40		47.03
TF-24	02/28/2005	76.43		24.77		51.66
TF-24	05/02/2005	76.43		24.78		51.65
TF-24	03/06/2006	76.43	24.92	25.86	0.94	NC
TF-24	05/01/2006	76.43		26.21		50.22
TF-24	08/26/2006	76.43		26.59		49.84
TF-24	03/21/2007	76.43	25.88	26.52	0.64	NC
TF-24	11/12/2007	76.43		28.03		48.40
TF-24	04/11/2008	76.43		27.80		48.63
TF-24	07/24/2008	76.43		28.10		48.33
TF-24	10/13/2008	76.43		28.90		47.53

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>				1 1		ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-24	02/09/2009	76.43		29.90		46.53
TF-24	07/16/2009	76.43		29.11		47.32
TF-24	04/07/2010	76.43		29.20		47.23
TF-24	10/01/2010	76.43		29.45		46.98
TF-24	01/08/2011	76.43		29.45		46.98
TF-24	04/08/2011	76.43		28.23		48.20
TF-24	07/07/2011	76.43		28.47		47.96
TF-24	10/07/2011	76.43		28.98		47.45
TF-24	04/12/2012	76.43		29.98		46.45
TF-24	01/10/2013	76.43		31.13		45.30
TF-24	04/02/2013	76.43		31.11		45.32
TF-24	10/01/2013	76.43		31.84		44.59
TF-24	04/07/2014	76.43		32.62		43.81
TF-24	04/17/2014	76.43		32.35		44.08
TF-24	10/27/2014	76.43		32.90		43.53
TF-24	04/20/2015	76.43		33.21		43.22
TF-24	10/3/2016	76.43		34.85		41.58
TF-25	05/07/2001	74.85		26.56		48.29
TF-25	04/08/2002	74.85		28.55		46.30
TF-25	09/19/2002	74.85		28.70		46.15
TF-25	10/21/2002	74.85		27.82		47.03
TF-25	04/22/2003	74.85		29.61		45.24
TF-25	10/06/2003	74.85		27.54		47.31
TF-25	04/19/2004	74.85		28.96		45.89
TF-25	11/01/2004	74.85		28.15		46.70
TF-25	02/28/2005	74.85		24.44		50.41
TF-25	05/02/2005	74.85		23.72		51.13
TF-25	03/06/2006	74.85		24.81		50.04
TF-25	05/01/2006	74.85		25.10		49.75
TF-25	08/26/2006	74.85		25.48		49.37
TF-25	12/01/2006	74.85		25.79		49.06
TF-25	03/21/2007	74.85		26.00		48.85
TF-25	04/30/2007	74.85		26.34		48.51
TF-25	08/28/2007	74.85		26.89		47.96
TF-25	11/12/2007	74.85		26.13		48.72
TF-25	02/05/2008	74.85		27.71		47.14
TF-25	04/11/2008	74.85		26.61		48.24
TF-25	07/24/2008	74.85		26.95		47.90
TF-25	10/14/2008	74.85		27.62		47.23
TF-25	02/10/2009	74.85		27.62		47.23
TF-25	07/16/2009	74.85		28.88		45.97

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	T					ı
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-25	04/08/2010	74.85		27.95		46.90
TF-25	10/01/2010	74.85		27.63		47.22
TF-25	01/08/2011	74.85		27.63		47.22
TF-25	04/08/2011	74.85		26.40		48.45
TF-25	07/08/2011	74.85		26.63		48.22
TF-25	10/07/2011	74.85		27.27		47.58
TF-25	04/12/2012	74.85		28.29		46.56
TF-25	01/11/2013	74.85		29.65		45.20
TF-25	04/03/2013	74.85		29.49		45.36
TF-25	04/09/2014	74.85		30.98		43.87
TF-26	05/07/2001	75.85		27.83		48.02
TF-26	04/08/2002	75.85		29.12		46.73
TF-26	09/19/2002	75.85		29.52		46.33
TF-26	10/21/2002	75.85		28.82		47.03
TF-26	04/22/2003	75.85		28.60		47.25
TF-26	10/06/2003	75.85		28.42		47.43
TF-26	04/19/2004	75.85		29.71		46.14
TF-26	11/01/2004	75.85		29.18		46.67
TF-26	02/28/2005	75.85		25.38		50.47
TF-26	05/02/2005	75.85		24.62		51.23
TF-26	03/06/2006	75.85		25.62		50.23
TF-26	05/01/2006	75.85		26.04		49.81
TF-26	08/26/2006	75.85		26.40		49.45
TF-26	12/01/2006	75.85		26.78		49.07
TF-26	03/21/2007	75.85		26.84		49.01
TF-26	04/27/2007	75.85		27.18		48.67
TF-26	08/28/2007	75.85		27.06		48.79
TF-26	11/12/2007	75.85		27.80		48.05
TF-26	02/05/2008	75.85		28.11		47.74
TF-26	04/11/2008	75.85		27.59		48.26
TF-26	07/24/2008	75.85		28.01		47.84
TF-26	10/13/2008	75.85		28.59		47.26
TF-26	02/09/2009	75.85		27.91		47.94
TF-26	07/17/2009	75.85		28.87		46.98
TF-26	04/07/2010	75.85		28.11		47.74
TF-26	10/01/2010	75.85		28.41		47.44
TF-26	04/08/2011	75.85		27.20		48.65
TF-26	07/07/2011	75.85		27.50		48.35
TF-26	10/06/2011	75.85		22.97		52.88
TF-26	04/12/2012	75.85		29.04		46.81
TF-26	01/10/2013	75.85		30.21		45.64

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		I I				1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
TF 00	0.4/0.0/0.4.0	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
TF-26	04/02/2013	75.85	30.55	31.39	0.84	NC
TF-26	04/09/2014	75.85	31.48	32.58	1.10	NC
VEW-1	10/19/2015	NS		DRY (to 29.02)		
VEW-1	04/11/2016	NS		DRY		
VEW-1	10/3/2016	NS		DRY (to 12.35)		
VEW-2	10/19/2015	NS		DRY (to 29.71)		
VEW-2	04/11/2016	NS		DRY		
VEW-2	10/3/2016	NS		DRY (to 29.70)		
VE-1	04/07/2003	77.70		29.55		48.15
VE-1	10/06/2003	77.70		29.39		48.31
VE-1	04/19/2004	77.70		30.17		47.53
VE-1	11/01/2004	77.70		30.05		47.65
VE-1	05/01/2006	77.70		26.58		51.12
VE-1	04/11/2008	77.70		28.68		49.02
VE-1	10/13/2008	77.70		29.78		47.92
VE-1	04/08/2010	77.70		30.02		47.68
VE-2	04/07/2003	77.26		28.95		48.31
VE-2	10/06/2003	77.26		28.89		48.37
VE-2	04/19/2004	77.26		30.02		47.24
VE-2	11/01/2004	77.26		29.69		47.57
VE-2	05/01/2006	77.26		25.93		51.33
VE-2	04/11/2008	77.26		28.25		49.01
VE-2	10/13/2008	77.26		29.33		47.93
VE-2	04/07/2010	77.26		30.36		46.90
VS-01	10/06/2003			26.30		
VS-01	04/19/2004			26.88		
VS-01	05/01/2006			24.01		
VS-01	05/01/2006			23.95		
VS-01	12/01/2006			24.92		
VS-01	12/01/2006			24.81		
VS-01	11/12/2007			24.92		
VS-01	11/12/2007			24.81		
VS-01	04/14/2008			25.48		
VS-01	04/14/2008			25.18		
VS-01	10/14/2008			26.87		
VS-01	10/14/2008			26.69		
VS-01 VS-02	10/06/2003			25.63		
VS-02 VS-02	04/19/2004			25.08		
VS-02 VS-02	04/27/2004			25.50		
				+ + + + + + + + + + + + + + + + + + + +		
VS-03 VS-03	10/06/2003 04/19/2004			27.04 28.25		

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
1/0.00	05/04/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
VS-03	05/01/2006			24.36		
VS-03	05/01/2006			24.21		
VS-03	12/01/2006			25.21		
VS-03	12/01/2006			25.18		
VS-03	04/27/2007			25.51		
VS-03	04/30/2007			25.51		
VS-03	11/12/2007			26.33		
VS-03	11/12/2007			26.01		
VS-03	04/11/2008			25.90		
VS-03	04/11/2008			25.56		
VS-03	10/14/2008			26.85		
VS-03	10/14/2008			26.60		
VS-03	04/08/2010			27.10		
VS-03	04/08/2010			26.48		
WCW-1	05/28/1996	72.86		25.95		46.91
WCW-1	11/20/1996	72.86		26.13		46.73
WCW-1	07/01/1997	72.86		26.77		46.09
WCW-1	12/31/1997	72.86		26.09		46.77
WCW-1	05/01/1998	72.86		24.21		48.65
WCW-1	02/02/1999	72.86		23.24		49.62
WCW-1	05/04/1999	72.86		23.78		49.08
WCW-1	08/09/1999	72.86		24.15		48.71
WCW-1	11/15/1999	72.86		24.27		48.59
WCW-1	02/28/2000	72.86		24.31		48.55
WCW-1	05/15/2000	72.86		27.79		45.07
WCW-1	08/28/2000	72.86		24.68		48.18
WCW-1	11/13/2000	72.86		24.66		48.20
WCW-1	02/05/2001	72.86		24.60		48.26
WCW-1	05/07/2001	72.86		23.99		48.87
WCW-1	09/18/2001	72.86		23.68		49.18
WCW-1	01/29/2002	72.86		23.85		49.01
WCW-1	04/08/2002	72.86		24.13		48.73
WCW-1	10/21/2002	72.86		24.65		48.21
WCW-1	04/07/2003	72.86		24.65		48.21
WCW-1	10/06/2003	72.86		24.49		48.37
WCW-1	04/19/2004	72.86		24.98		47.88
WCW-1	05/10/2004	72.86		24.93		47.93
WCW-1	11/01/2004	72.86		25.26		47.60
WCW-1	05/02/2005	72.86		23.26		50.29
		+		+		
WCW-1	05/01/2006 12/01/2006	72.86 72.86		22.13 22.91		50.73 49.95

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwat Elevation
11/01/1/		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-1	04/30/2007	72.86		22.20		50.66
WCW-1	11/12/2007	72.86		23.52		49.34
WCW-1	04/14/2008	72.86		23.57		49.29
WCW-1	10/14/2008	72.86		24.19		48.67
WCW-1	04/20/2009	72.86		24.26		48.60
WCW-1	01/12/2010	72.86		25.91		46.95
WCW-1	05/24/2010	72.86		25.10		47.76
WCW-1	05/28/2010	72.86		25.05		47.81
WCW-1	10/01/2010	72.86		25.29		47.57
WCW-1	04/08/2011	72.86		24.82		48.04
WCW-1	04/11/2011	72.86		24.73		48.13
WCW-1	07/07/2011	72.86		24.40		48.46
WCW-1	10/06/2011	72.86		24.57		48.29
WCW-1	04/16/2012	72.86		25.23		47.63
WCW-1	04/08/2013	72.86		26.83		46.03
WCW-1	10/07/2013	72.86		27.63		45.23
WCW-1	04/14/2014	72.86		27.73		45.13
WCW-1	10/27/2014	72.86		28.53		44.33
WCW-1	04/20/2015	72.86		29.08		43.78
WCW-1	10/19/2015	72.86		29.90		42.96
WCW-1	04/11/2016	72.86		30.70		42.16
WCW-1	10/3/2016	72.86		31.50		41.36
WCW-2	05/28/1996	75.34		35.28		40.06
WCW-2	11/20/1996	75.34		29.34		46.00
WCW-2	07/01/1997	75.34		29.82		45.52
WCW-2	12/31/1997	75.34		29.45		45.89
WCW-2	05/01/1998	75.34		26.80		48.54
WCW-2	02/02/1999	75.34		26.40		48.94
WCW-2	05/03/1999	75.34		26.94		48.40
WCW-2	08/09/1999	75.34		27.21		48.13
WCW-2	11/15/1999	75.34		27.47		47.87
WCW-2	02/28/2000	75.34		27.44		47.90
WCW-2	05/15/2000	75.34		27.42		47.92
WCW-2	08/28/2000	75.34		27.63		47.71
WCW-2	11/13/2000	75.34		28.87		46.47
WCW-2	02/05/2001	75.34		27.62		47.72
WCW-2	05/07/2001	75.34		27.06		48.28
WCW-2	09/18/2001	75.34		26.64		48.70
WCW-2	01/29/2002	75.34		26.76		48.58
	+	+		+ + + + + + + + + + + + + + + + + + + +		
WCW-2	04/08/2002 10/21/2002	75.34 75.34		27.10 27.47		48.24 47.87

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwate Elevation
14/014/0	0.4/07/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-2	04/07/2003	75.34		27.47		47.87
WCW-2	10/06/2003	75.34		27.40		47.94
WCW-2	04/19/2004	75.34		25.80		49.54
WCW-2	05/10/2004	75.34		27.80		47.54
WCW-2	11/01/2004	75.34		28.04		47.30
WCW-2	05/02/2005	75.34		25.69		49.65
WCW-2	05/01/2006	75.34		24.90		50.44
WCW-2	12/01/2006	75.34		25.52		49.82
WCW-2	04/30/2007	75.34		25.49		49.85
WCW-2	11/12/2007	75.34		26.15		49.19
WCW-2	04/14/2008	75.34		26.15		49.19
WCW-2	10/14/2008	75.34		26.88		48.46
WCW-2	04/20/2009	75.34		27.31		48.03
WCW-2	10/19/2009	75.34		27.90		47.44
WCW-2	01/12/2010	75.34		28.11		47.23
WCW-2	05/24/2010	75.34		28.00		47.34
WCW-2	05/28/2010	75.34		27.95		47.39
WCW-2	01/08/2011	75.34		28.36		46.98
WCW-2	04/11/2011	75.34		27.67		47.67
WCW-2	04/12/2011	75.34		27.74		47.60
WCW-2	07/07/2011	75.34		27.40		47.94
WCW-2	10/06/2011	75.34		27.54		47.80
WCW-2	04/16/2012	75.34		28.13		47.21
WCW-2	04/08/2013	75.34		29.11		46.23
WCW-2	10/07/2013	75.34		30.25		45.09
WCW-2	04/14/2014	75.34		31.71		43.63
WCW-2	10/27/2014	75.34		31.42		43.92
WCW-2	04/20/2015	75.34		32.84		42.50
WCW-2	10/19/2015	75.34		32.52		42.82
WCW-2	04/11/2016	75.34		33.05		42.29
WCW-2	10/3/2016	75.34		33.60		41.74
WCW-3	05/28/1996	76.16		30.40		45.76
WCW-3	11/20/1996	76.16		30.48		45.68
WCW-3	07/01/1997	76.16		31.00		45.16
WCW-3	12/31/1997	76.16		30.61		45.10
WCW-3	05/01/1998	76.16		29.00		47.16
WCW-3	02/02/1999	76.16		27.82		48.34
WCW-3	05/03/1999	76.16		28.33		47.83
		+		+		•
WCW-3	08/09/1999	76.16		28.56		47.60
WCW-3	11/15/1999 02/28/2000	76.16 76.16		28.83 28.58		47.33 47.58

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
\\(\C\\\\\ 2	05/45/2000		(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-3	05/15/2000	76.16		28.56		47.60
WCW-3	08/28/2000	76.16		28.72		47.44
WCW-3	11/13/2000	76.16		28.16		48.00
WCW-3	02/05/2001	76.16		28.70		47.46
WCW-3	05/07/2001	76.16		28.15		48.01
WCW-3	09/18/2001	76.16		27.78		48.38
WCW-3	01/29/2002	76.16		27.99		48.17
WCW-3	04/08/2002	76.16		28.25		47.91
WCW-3	07/29/2002	76.16		28.41		47.75
WCW-3	10/21/2002	76.16		28.50		47.66
WCW-3	01/27/2003	76.16		28.47		47.69
WCW-3	04/07/2003	76.16		28.49		47.67
WCW-3	07/30/2003	76.16		28.29		47.87
WCW-3	10/06/2003	76.16		28.44		47.72
WCW-3	01/27/2004	76.16		28.58		47.58
WCW-3	05/10/2004	76.16		28.34		47.82
WCW-3	07/19/2004	76.16		28.18		47.98
WCW-3	11/01/2004	76.16		29.04		47.12
WCW-3	02/01/2005	76.16		28.54		47.62
WCW-3	05/02/2005	76.16		26.58		49.58
WCW-3	02/27/2006	76.16		25.75		50.41
WCW-3	05/01/2006	76.16		25.95		50.21
WCW-3	09/18/2006	76.16		26.11		50.05
WCW-3	12/01/2006	76.16		26.56		49.60
WCW-3	03/12/2007	76.16		26.52		49.64
WCW-3	04/30/2007	76.16		26.45		49.71
WCW-3	08/28/2007	76.16		27.43		48.73
WCW-3	11/12/2007	76.16		27.21		48.95
WCW-3	02/19/2008	76.16		27.21		48.95
WCW-3	04/14/2008	76.16		27.14		49.02
WCW-3	08/11/2008	76.16		27.59		48.57
WCW-3	10/14/2008	76.16		27.99		48.17
WCW-3	04/20/2009	76.16		28.19		47.97
WCW-3	07/20/2009	76.16		28.48		47.68
WCW-3	10/19/2009	76.16		28.84		47.32
WCW-3	01/12/2010	76.16		30.40		45.76
WCW-3	03/15/2010	76.16		29.44		46.72
WCW-3	05/24/2010	76.16		29.44		46.72
WCW-3	05/28/2010	76.16		29.30		46.95
		+		+		
WCW-3	10/04/2010 01/08/2011	76.16 76.16		29.26 29.58		46.90 46.58

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	<u> </u>					1
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-3	01/10/2011	76.16		29.50		46.66
WCW-3	04/11/2011	76.16		28.84		47.32
WCW-3	04/12/2011	76.16		28.95		47.21
WCW-3	07/07/2011	76.16		28.75		47.41
WCW-3	07/11/2011	76.16		28.57		47.59
WCW-3	10/10/2011	76.16		28.64		47.52
WCW-3	01/09/2012	76.16		29.00		47.16
WCW-3	04/16/2012	76.16		29.35		46.81
WCW-3	07/09/2012	76.16		29.64		46.52
WCW-3	10/15/2012	76.16		29.98		46.18
WCW-3	01/14/2013	76.16		30.32		45.84
WCW-3	04/08/2013	76.16		30.24		45.92
WCW-3	10/07/2013	76.16		31.00		45.16
WCW-3	04/14/2014	76.16		31.81		44.35
WCW-3	10/27/2014	76.16		32.39		43.77
WCW-3	04/20/2015	76.16		32.40		43.76
WCW-3	10/19/2015	76.16		33.38		42.78
WCW-3	04/11/2016	76.16		33.83		42.33
WCW-3	10/3/2016	76.16		34.35		41.81
WCW-4	05/28/1996	78.05		32.63		45.42
WCW-4	11/20/1996	78.05		32.61		45.44
WCW-4	07/01/1997	78.05		32.95		45.10
WCW-4	12/31/1997	78.05		32.63		45.42
WCW-4	05/01/1998	78.05		31.10		46.95
WCW-4	05/03/1999	78.05		30.25		47.80
WCW-4	08/09/1999	78.05		30.45		47.60
WCW-4	11/15/1999	78.05		30.85		47.20
WCW-4	05/15/2000	78.05		34.00		44.05
WCW-4	11/13/2000	78.05		30.69		47.36
WCW-4	05/07/2001	78.05		31.16		46.89
WCW-4	04/08/2002	78.05		30.25		47.80
WCW-4	10/21/2002	78.05		30.46		47.59
WCW-4	04/07/2003	78.05		30.38		47.67
WCW-4	10/06/2003	78.05		30.36		47.74
WCW-4	05/10/2004			30.51		47.74
WCW-4		78.05 78.05		30.98		47.44
	11/01/2004					
WCW-4	05/02/2005	78.05		28.52		49.53
WCW-4	08/01/2005	78.05		27.84		50.21
WCW-4	05/01/2006	78.05		27.90		50.15
WCW-4	12/01/2006	78.05		28.54		49.51
WCW-4	04/30/2007	78.05		28.50		49.55

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
14/014/ 4	14400007	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-4	11/12/2007	78.05		29.23		48.82
WCW-4	04/14/2008	78.05		29.12		48.93
WCW-4	10/14/2008	78.05		29.96		48.09
WCW-4	04/20/2009	78.05		30.20		47.85
WCW-4	10/19/2009	78.05		30.83		47.22
WCW-4	01/12/2010	78.05		31.40		46.65
WCW-4	05/24/2010	78.05		31.26		46.79
WCW-4	05/28/2010	78.05		31.23		46.82
WCW-4	01/08/2011	78.05		31.57		46.48
WCW-4	04/08/2011	78.05		29.98		48.07
WCW-4	04/11/2011	78.05		30.88		47.17
WCW-4	07/07/2011	78.05		30.86		47.19
WCW-4	10/06/2011	78.05		30.96		47.09
WCW-4	04/16/2012	78.05		31.17		46.88
WCW-4	04/08/2013	78.05		32.12		45.93
WCW-4	10/07/2013	78.05		32.78		45.27
WCW-4	04/14/2014	78.05		33.54		44.51
WCW-4	10/27/2014	78.05		34.21		43.84
WCW-4	04/20/2015	78.05		34.52		43.53
WCW-4	10/19/2015	78.05		35.10		42.95
WCW-4	04/11/2016	78.05		35.60		42.45
WCW-4	10/3/2016	78.05		36.10		41.95
WCW-5	05/28/1996	73.49		26.63		46.86
WCW-5	11/20/1996	73.49		26.94		46.55
WCW-5	07/01/1997	73.49		27.65		45.84
WCW-5	12/31/1997	73.49		27.10		46.39
WCW-5	05/01/1998	73.49		25.28		48.21
WCW-5	05/04/1999	73.49		24.80		48.69
WCW-5	08/09/1999	73.49		25.11		48.38
WCW-5	11/15/1999	73.49		25.46		48.03
WCW-5	05/15/2000	73.49		25.14		48.35
WCW-5	11/13/2000	73.49		25.95		47.54
WCW-5	05/07/2001	73.49		24.82		48.67
WCW-5	04/08/2002	73.49		24.85		48.64
WCW-5	10/21/2002	73.49		29.34		44.15
WCW-5	04/07/2003	73.49		25.38		48.11
WCW-5	10/06/2003	73.49		25.27		48.22
WCW-5	05/10/2004	73.49		25.90		47.59
		+		+		
WCW-5	11/01/2004	73.49		26.09		47.40
WCW-5	05/02/2005 05/01/2006	73.49 73.49		23.44 22.85		50.05 50.64

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	40/04/0000	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-5	12/01/2006	73.49		23.80		49.69
WCW-5	04/30/2007	73.49		23.56		49.93
WCW-5	11/12/2007	73.49		24.15		49.34
WCW-5	04/14/2008	73.49		24.20		49.29
WCW-5	10/14/2008	73.49		24.82		48.67
WCW-5	04/20/2009	73.49		24.97		48.52
WCW-5	10/19/2009	73.49		25.71		47.78
WCW-5	01/12/2010	73.49		26.53		46.96
WCW-5	05/24/2010	73.49		25.70		47.79
WCW-5	05/28/2010	73.49		25.65		47.84
WCW-5	01/08/2011	73.49		26.15		47.34
WCW-5	04/08/2011	73.49		25.32		48.17
WCW-5	04/11/2011	73.49		25.23		48.26
WCW-5	07/07/2011	73.49		24.85		48.64
WCW-5	10/06/2011	73.49		25.18		48.31
WCW-5	04/16/2012	73.49		25.92		47.57
WCW-5	04/08/2013	73.49		27.17		46.32
WCW-5	10/07/2013	73.49		28.62		44.87
WCW-5	04/14/2014	73.49		28.76		44.73
WCW-5	10/27/2014	73.49		29.51		43.98
WCW-5	04/20/2015	73.49		29.93		43.56
WCW-5	10/19/2015	73.49		30.77		42.72
WCW-5	04/11/2016	73.49		31.48		42.01
WCW-5	10/3/2016	73.49		32.20		41.29
WCW-6	05/28/1996	75.52		28.91		46.61
WCW-6	11/20/1996	75.52		29.55		45.97
WCW-6	07/01/1997	75.52		30.17		45.35
WCW-6	12/31/1997	75.52		29.46		46.06
WCW-6	05/01/1998	75.52		27.67		47.85
WCW-6	05/04/1999	75.52		27.38		48.14
WCW-6	08/09/1999	75.52		27.82		47.70
WCW-6	11/15/1999	75.52		27.90		47.62
WCW-6	05/15/2000	75.52		27.68		47.84
WCW-6	11/13/2000	75.52		28.67		46.85
WCW-6	05/07/2001	75.52		27.21		48.31
WCW-6						48.00
	04/08/2002	75.52		27.52		
WCW-6	10/21/2002	75.52		27.72		47.80
WCW-6	04/07/2003	75.52		27.63		47.89
WCW-6	10/06/2003	75.52		27.75		47.77
WCW-6	05/10/2004 11/01/2004	75.52 75.52		28.35 28.51		47.17 47.01

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

	1	T T		1		T
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-6	05/02/2005	75.52		25.64		49.88
WCW-6	05/01/2006	75.52		25.10		50.42
WCW-6	12/01/2006	75.52		26.06		49.46
WCW-6	04/30/2007	75.52		25.79		49.73
WCW-6	11/12/2007	75.52		26.44		49.08
WCW-6	04/14/2008	75.52		26.41		49.11
WCW-6	10/14/2008	75.52		27.13		48.39
WCW-6	04/20/2009	75.52		27.40		48.12
WCW-6	10/19/2009	75.52		27.87		47.65
WCW-6	01/12/2010	75.52		28.24		47.28
WCW-6	05/24/2010	75.52		28.10		47.42
WCW-6	05/28/2010	75.52		28.02		47.50
WCW-6	01/08/2011	75.52		28.58		46.94
WCW-6	04/08/2011	75.52		27.55		47.97
WCW-6	04/11/2011	75.52		27.41		48.11
WCW-6	07/07/2011	75.52		27.19		48.33
WCW-6	10/06/2011	75.52		27.62		47.90
WCW-6	10/10/2011	75.52		27.33		48.19
WCW-6	04/16/2012	75.52		28.33		47.19
WCW-6	04/08/2013	75.52		29.59		45.93
WCW-6	10/07/2013	75.52		30.56		44.96
WCW-6	04/14/2014	75.52		31.12		44.40
WCW-6	10/27/2014	75.52		31.69		43.83
WCW-6	04/20/2015	75.52		32.08		43.44
WCW-6	10/19/2015	75.52		32.82		42.70
WCW-6	04/11/2016	75.52		33.53		41.99
WCW-6	10/3/2016	75.52		34.00		41.52
WCW-7	05/28/1996	76.44		28.91		47.53
WCW-7	11/20/1996	76.44		30.55		45.89
WCW-7	07/01/1997	76.44		31.50		44.94
WCW-7	12/31/1997	76.44		30.79		45.65
WCW-7	05/01/1998	76.44		28.81		47.63
WCW-7		76.44		29.26		47.18
WCW-7	05/04/1999 08/09/1999	76.44		29.26		46.69
WCW-7	11/15/1999	76.44		29.86		46.58
WCW-7	05/15/2000	76.44		29.02		47.42
WCW-7	11/13/2000	76.44		29.69		46.75
WCW-7	02/05/2001	76.44		29.10		47.34
WCW-7	05/07/2001	76.44		28.48		47.96
WCW-7	09/18/2001	76.44		28.18		48.26
WCW-7	01/29/2002	76.44		28.64		47.80

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
WCW-7	04/08/2002	76.44		29.03		47.41
WCW-7	07/29/2002	76.44		28.94		47.50
WCW-7	10/21/2002	76.44		28.93		47.51
WCW-7	01/27/2003	76.44		28.70		47.74
WCW-7	04/07/2003	76.44		28.72		47.72
WCW-7	07/31/2003	76.44		28.67		47.77
WCW-7	10/06/2003	76.44		29.03		47.41
WCW-7	01/27/2004	76.44		28.98		47.46
WCW-7	05/10/2004	76.44		29.46		46.98
WCW-7	07/19/2004	76.44		30.18		46.26
WCW-7	11/01/2004	76.44		29.56		46.88
WCW-7	02/01/2005	76.44		28.76		47.68
WCW-7	05/02/2005	76.44		26.51		49.93
WCW-7	08/01/2005	76.44		25.72		50.72
WCW-7	02/27/2006	76.44		25.09		51.35
WCW-7	05/01/2006	76.44		26.41		50.03
WCW-7	09/18/2006	76.44		26.72		49.72
WCW-7	12/01/2006	76.44		27.13		49.31
WCW-7	03/12/2007	76.44		27.28		49.16
WCW-7	04/30/2007	76.44		26.96		49.48
WCW-7	08/28/2007	76.44		26.70		49.74
WCW-7	11/12/2007	76.44		27.67		48.77
WCW-7	02/19/2008	76.44		27.69		48.75
WCW-7	04/14/2008	76.44		27.56		48.88
WCW-7	08/11/2008	76.44		28.00		48.44
WCW-7	10/16/2008	76.44		28.53		47.91
WCW-7	04/20/2009	76.44		28.72		47.72
WCW-7	07/20/2009	76.44		28.94		47.50
WCW-7	10/19/2009	76.44		29.29		47.15
WCW-7	01/12/2010	76.44		29.94		46.50
WCW-7	03/15/2010	76.44		30.00		46.44
WCW-7	05/24/2010	76.44		29.75		46.69
WCW-7	05/28/2010	76.44		29.65		46.79
WCW-7	10/04/2010	76.44		29.53		46.91
WCW-7	01/08/2011	76.44		30.23		46.21
WCW-7	01/10/2011	76.44		29.87		46.57
WCW-7	04/08/2011	76.44		29.04		47.40
WCW-7	04/11/2011	76.44		28.90		47.54
WCW-7	07/07/2011	76.44		28.96		47.48
WCW-7	07/11/2011	76.44		28.74		47.70
WCW-7	10/10/2011	76.44		28.93		47.51

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		T T		T 1		T
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-7	01/09/2012	76.44		29.35		47.09
WCW-7	04/16/2012	76.44		29.17		47.27
WCW-7	07/09/2012	76.44		28.34		48.10
WCW-7	10/15/2012	76.44		30.41		46.03
WCW-7	01/14/2013	76.44		30.88		45.56
WCW-7	04/08/2013	76.44		30.91		45.53
WCW-7	10/07/2013	76.44		32.25		44.19
WCW-7	04/14/2014	76.44		32.46		43.98
WCW-7	10/27/2014	76.44		32.88		43.56
WCW-7	04/20/2015	76.44		33.22		43.22
WCW-7	10/19/2015	76.44		34.05		42.39
WCW-7	04/11/2016	76.44		34.46		41.98
WCW-7	10/3/2016	76.44		34.22		42.22
WCW-8	05/28/1996	77.34		31.45		45.89
WCW-8	11/20/1996	77.34		31.59		45.75
WCW-8	07/01/1997	77.34		32.38		44.96
WCW-8	12/31/1997	77.34		31.81		45.53
WCW-8	05/01/1998	77.34		30.04		47.30
WCW-8	05/04/1999	77.34		30.21		47.13
WCW-8	08/09/1999	77.34		30.49		46.85
WCW-8	11/15/1999	77.34		30.81		46.53
WCW-8	05/15/2000	77.34		29.88		47.46
WCW-8	08/28/2000	77.34		30.23		47.11
WCW-8	11/13/2000	77.34		30.26		47.08
WCW-8	02/05/2001	77.34		30.01		47.33
WCW-8	05/07/2001	77.34		29.42		47.92
WCW-8	09/18/2001	77.34		29.11		48.23
WCW-8	01/29/2002	77.34		29.45		47.89
WCW-8	04/08/2002	77.34		29.77		47.57
WCW-8	10/21/2002	77.34		29.84		47.50
WCW-8	04/07/2003	77.34		29.71		47.63
WCW-8	10/06/2003	77.34		29.75		47.59
WCW-8	05/10/2004	77.34		29.79		47.35
WCW-8	11/01/2004	77.34		30.36		46.98
WCW-8	05/02/2005	77.34		27.42		49.92
WCW-8				27.18		50.16
	05/01/2006	77.34				
WCW-8	12/01/2006	77.34		27.91		49.43
WCW-8	04/30/2007	77.34		27.82		49.52
WCW-8	11/12/2007	77.34		28.62		48.72
WCW-8	04/14/2008	77.34		28.53		48.81
WCW-8	10/16/2008	77.34		29.52		47.82

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

<u> </u>	T	1 1		T		1
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-8	04/20/2009	77.34		29.40		47.94
WCW-8	10/19/2009	77.34		30.10		47.24
WCW-8	01/12/2010	77.34		31.30		46.04
WCW-8	05/24/2010	77.34		30.75		46.59
WCW-8	05/28/2010	77.34		30.74		46.60
WCW-8	01/08/2011	77.34		31.27		46.07
WCW-8	04/08/2011	77.34		30.15		47.19
WCW-8	04/11/2011	77.34		30.03		47.31
WCW-8	07/07/2011	77.34		30.07		47.27
WCW-8	10/06/2011	77.34		30.27		47.07
WCW-8	04/16/2012	77.34		30.76		46.58
WCW-8	04/08/2013	77.34		31.62		45.72
WCW-8	10/07/2013	77.34		32.42		44.92
WCW-8	04/14/2014	77.34		33.53		43.81
WCW-8	10/27/2014	77.34		33.75		43.59
WCW-8	04/20/2015	77.34		34.05		43.29
WCW-8	10/19/2015	77.34		34.78		42.56
WCW-8	04/11/2016	77.34		35.17		42.17
WCW-8	10/3/2016	77.34		35.70		41.64
WCW-9	05/28/1996	77.74		31.98		45.76
WCW-9	11/20/1996	77.74		32.13		45.61
WCW-9	07/01/1997	77.74		32.47		45.27
WCW-9	12/31/1997	77.74		32.22		45.52
WCW-9	05/01/1998	77.74		30.75		46.99
WCW-9	05/04/1999	77.74		30.16		47.58
WCW-9	08/09/1999	77.74		30.44		47.30
WCW-9	11/15/1999	77.74		30.79		46.95
WCW-9	05/15/2000	77.74		30.32		47.42
WCW-9	11/13/2000	77.74		30.59		47.15
WCW-9	05/07/2001	77.74		29.92		47.82
WCW-9	04/08/2002	77.74		30.07		47.67
WCW-9	10/21/2002	77.74		30.36		47.38
WCW-9	04/07/2003	77.74		30.23		47.51
WCW-9	10/06/2003	77.74		30.23		47.54
WCW-9	05/10/2004	77.74		30.35		47.39
WCW-9	11/01/2004	77.74		30.33		46.97
WCW-9		1		27.80		
	05/02/2005	77.74				49.94
WCW-9	05/01/2006	77.74		27.61		50.13
WCW-9	12/01/2006	77.74		28.54		49.20
WCW-9	04/30/2007	77.74		28.36		49.38
WCW-9	11/12/2007	77.74		29.24		48.50

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
WCW-9	04/14/2008	77.74		29.11		48.63
WCW-9	10/16/2008	77.74		29.98		47.76
WCW-9	04/20/2009	77.74		29.96		47.78
WCW-9	05/24/2010	77.74		31.02		46.72
WCW-9	05/28/2010	77.74		31.00		46.74
WCW-9	10/01/2010	77.74		31.00		46.74
WCW-9	01/08/2011	77.74		31.37		46.37
WCW-9	04/11/2011	77.74		30.68		47.06
WCW-9	04/12/2011	77.74		30.78		46.96
WCW-9	07/07/2011	77.74		30.66		47.08
WCW-9	10/06/2011	77.74		30.82		46.92
WCW-9	04/16/2012	77.74		31.15		46.59
WCW-9	04/08/2013	77.74		31.73		46.01
WCW-9	10/07/2013	77.74		33.04		44.70
WCW-9	04/14/2014	77.74		33.24		44.50
WCW-9	10/27/2014	77.74		34.10		43.64
WCW-9	04/20/2015	77.74		33.92		43.82
WCW-9	10/19/2015	77.74		34.91		42.83
WCW-9	04/11/2016	77.74		35.52		42.22
WCW-9	10/3/2016	77.74		35.29		42.45
WCW-10	05/28/1996	74.06		27.71		46.35
WCW-10	11/20/1996	74.06		27.61		46.45
WCW-10	07/01/1997	74.06		27.23		46.83
WCW-10	12/31/1997	74.06		27.21		46.85
WCW-10	05/01/1998	74.06		23.22		50.84
WCW-10	05/04/1999	74.06		24.52		49.54
WCW-10	08/09/1999	74.06		24.63		49.43
WCW-10	11/15/1999	74.06		24.89		49.17
WCW-10	05/15/2000	74.06		25.50		48.56
WCW-10	11/13/2000	74.06		25.18		48.88
WCW-10	05/07/2001	74.06		24.66		49.40
WCW-10	04/08/2002	74.06		24.71		49.35
WCW-10	10/21/2002	74.06		25.20		48.86
WCW-10	04/07/2003	74.06		25.23		48.83
WCW-10	05/10/2004	74.06		25.41		48.65
WCW-10	11/01/2004	74.06		25.66		48.40
WCW-10	05/02/2005	74.06		23.47		50.59
WCW-10	05/01/2006	74.06		23.17		50.89
WCW-10	04/30/2007	74.06		23.74		50.32
WCW-10	11/12/2007	74.06		24.41		49.65
WCW-10	10/14/2008	74.06		24.95		49.11

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

NA /11	Data	Top of Casing	Depth to	Depth to	Measured Product	Groundwater
Well	Date	Elevation (feet MSL)	Product (feet btc)	Groundwater (feet btc)	Thickness (feet)	Elevation (feet MSL)
WCW-10	04/20/2009	74.06	(leet bic)	24.90	(leet)	49.16
WCW-10		+		+		
	01/12/2010	74.06		26.40		47.66
WCW-10	05/24/2010	74.06		25.70		48.36
WCW-10	05/28/2010	74.06		25.67		48.39
WCW-10	10/01/2010	74.06		25.86		48.20
WCW-10	01/08/2011	74.06		25.92		48.14
WCW-10	04/08/2011	74.06		25.62		48.44
WCW-10	04/11/2011	74.06		25.55		48.51
WCW-10	07/07/2011	74.06		25.40		48.66
WCW-10	10/06/2011	74.06		25.41		48.65
WCW-10	04/16/2012	74.06		25.80		48.26
WCW-10	04/08/2013	74.06		26.73		47.33
WCW-10	10/07/2013	74.06		28.01		46.05
WCW-10	04/14/2014	74.06		28.00		46.06
WCW-10	10/27/2014	74.06		28.45		45.61
WCW-10	04/20/2015	74.06		29.17		44.89
WCW-10	10/19/2015	74.06		30.00		44.06
WCW-10	04/11/2016	74.06		30.79		43.27
WCW-10	10/3/2016	74.06		31.81		42.25
WCW-11	05/28/1996	75.29		29.30		45.99
WCW-11	11/20/1996	75.29		29.24		46.05
WCW-11	07/01/1997	75.29		28.91		46.38
WCW-11	12/31/1997	75.29		29.14		46.15
WCW-11	05/01/1998	75.29		26.04		49.25
WCW-11	05/04/1999	75.29		26.63		48.66
WCW-11	08/09/1999	75.29		26.30		48.99
WCW-11	11/15/1999	75.29		26.55		48.74
WCW-11	05/15/2000	75.29		26.91		48.38
WCW-11	11/13/2000	75.29		26.77		48.52
WCW-11	05/07/2001	75.29		26.65		48.64
WCW-11	04/08/2002	75.29		26.45		48.84
WCW-11	10/21/2002	75.29		26.72		48.57
WCW-11	04/07/2003	75.29		26.78		48.51
WCW-11	05/10/2004	75.29		26.89		48.40
WCW-11	11/01/2004	75.29		27.22		48.07
WCW-11	05/02/2005	75.29		25.23		50.06
WCW-11	05/02/2005	75.29		24.45		50.84
WCW-11	03/01/2000	75.29		25.18		50.84
		75.29		25.16		49.32
WCW-11	11/12/2007	+		+		
WCW-11 WCW-11	10/16/2008 04/20/2009	75.29 75.29		26.61 26.62		48.68 48.67

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

				1 1		<u> </u>
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-11	01/12/2010	75.29		27.83		47.46
WCW-11	05/24/2010	75.29		27.77		47.52
WCW-11	05/28/2010	75.29		27.46		47.83
WCW-11	10/01/2010	75.29		27.65		47.64
WCW-11	01/08/2011	75.29		27.67		47.62
WCW-11	04/08/2011	75.29		27.39		47.90
WCW-11	04/11/2011	75.29		27.43		47.86
WCW-11	07/07/2011	75.29	27.18	27.19	0.01	NC
WCW-11	10/06/2011	75.29		27.11		48.18
WCW-11	04/16/2012	75.29		27.56		47.73
WCW-11	04/08/2013	75.29		26.91		48.38
WCW-11	10/07/2013	75.29		29.54		45.75
WCW-11	04/14/2014	75.29		29.79		45.50
WCW-11	10/27/2014	75.29		30.61		44.68
WCW-11	04/20/2015	75.29		31.19		44.10
WCW-11	10/19/2015	75.29		32.02		43.27
WCW-11	04/11/2016	75.29		32.67		42.62
WCW-11	10/3/2016	75.29		33.31		41.98
WCW-12	05/28/1996	76.27		30.94		45.33
WCW-12	11/20/1996	76.27		30.89		45.38
WCW-12	07/01/1997	76.27		30.34		45.93
WCW-12	12/31/1997	76.27		30.59		45.68
WCW-12	05/01/1998	76.27		29.31		46.96
WCW-12	05/04/1999	76.27		27.63		48.64
WCW-12	08/09/1999	76.27		27.81		48.46
WCW-12	11/15/1999	76.27		28.20		48.07
WCW-12	05/15/2000	76.27		28.17		48.10
WCW-12	11/13/2000	76.27		28.21		48.06
WCW-12	05/07/2001	76.27		27.79		48.48
WCW-12	04/08/2002	76.27		27.70		48.57
WCW-12	10/21/2002	76.27		28.24		48.03
WCW-12	04/07/2003	76.27		28.23		48.04
WCW-12	05/10/2004	76.27		28.34		47.93
WCW-12	11/01/2004	76.27		28.74		47.53
WCW-12	05/02/2005	76.27		26.61		49.66
WCW-12	05/01/2006	76.27		25.95		50.32
WCW-12	12/01/2006	76.27		26.39		49.88
WCW-12	04/30/2007	76.27		26.39		49.88
WCW-12 WCW-12	11/12/2007	76.27		27.15		49.00
		+		1		
WCW-12	04/14/2008	76.27		27.14		49.13
WCW-12	10/16/2008	76.27		27.93		48.34

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

e (fee (fee (fee (fee (fee (fee (fee (f	f Casing vation t MSL) 6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27	Depth to Product (feet btc)	Depth to Groundwater (feet btc) 27.82 28.52 29.04 28.90 28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30 31.30	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL) 48.45 47.75 47.23 47.37 47.37 47.11 47.48 47.57 47.67 47.67 47.72 47.22 46.29 45.14
2009 70 2009 70 2009 70 2010 70 2010 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		27.82 28.52 29.04 28.90 28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		48.45 47.75 47.23 47.37 47.37 47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2009 70 2010 70 2010 70 2010 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.52 29.04 28.90 28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.75 47.23 47.37 47.37 47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2010 70 2010 70 2010 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		29.04 28.90 28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.23 47.37 47.37 47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2010 70 2010 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.90 28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.37 47.37 47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2010 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.90 29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.37 47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2011 70 2011 70 2011 70 2011 70 2011 70 2012 70 2012 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		29.16 28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.11 47.48 47.57 47.67 47.72 47.22 46.29 45.14
2011 70 2011 70 2011 70 2011 70 2012 70 2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.79 28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.48 47.57 47.67 47.72 47.22 46.29 45.14
2011 70 2011 70 2011 70 2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.70 28.60 28.55 29.05 29.98 31.13 31.30		47.57 47.67 47.72 47.22 46.29 45.14
2011 70 2011 70 2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27 6.27		28.60 28.55 29.05 29.98 31.13 31.30		47.67 47.72 47.22 46.29 45.14
2011 70 2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27 6.27		28.55 29.05 29.98 31.13 31.30	 	47.72 47.22 46.29 45.14
2012 70 2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27 6.27	 	29.05 29.98 31.13 31.30		47.22 46.29 45.14
2013 70 2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27 6.27		29.98 31.13 31.30		46.29 45.14
2013 70 2014 70 2014 70 2015 70	6.27 6.27 6.27		31.13 31.30		45.14
2014 70 2014 70 2015 70	6.27 6.27		31.30		
2014 70 2015 70	6.27				44.97
2015 70			31 30		
	6.27		01.00		44.97
i i			32.62		43.65
2015 70	6.27		33.32		42.95
2016 70	6.27		34.06		42.21
016 70	6.27		34.60		41.67
1996 7	7.70		32.61		45.09
1996 7	7.70		32.51		45.19
	7.70		32.44		45.26
	7.70		32.24		45.46
	7.70		30.90		46.80
	7.70		29.39		48.31
	7.70		30.82		46.88
	7.70		29.96		47.74
	7.70		29.83		47.87
	7.70		29.92		47.78
	7.70		29.96		47.74
					47.55
					47.90
			+		48.45
					48.30
					48.19
					47.99
2002 I 7					47.76
2002 7					47.70
2002 7 ⁻ 2003 7 ⁻	7 7N '		+		47.68
2002 7 2003 7 2003 7			29.80		47.90 47.69
	2001 7 2001 7 2002 7 2002 7 2002 7 2002 7 2002 7 2002 7 2003 7	2001 77.70 2001 77.70 2002 77.70 2002 77.70 2002 77.70 2002 77.70 2002 77.70	2001 77.70 2001 77.70 2002 77.70 2002 77.70 2002 77.70 2002 77.70 2002 77.70 2003 77.70 2003 77.70 2003 77.70	2001 77.70 29.80 2001 77.70 29.25 2002 77.70 29.40 2002 77.70 29.51 2002 77.70 29.71 2002 77.70 29.94 2003 77.70 30.00 2003 77.70 30.02 2003 77.70 29.80	2001 77.70 29.80 2001 77.70 29.25 2002 77.70 29.40 2002 77.70 29.51 2002 77.70 29.71 2002 77.70 29.94 2003 77.70 30.00 2003 77.70 30.02

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		<u> </u>		1 1		<u> </u>
Well	Date	Top of Casing Elevation	Depth to Product	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
		(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-13	05/10/2004	77.70		30.10		47.60
WCW-13	07/19/2004	77.70		29.22		48.48
WCW-13	11/01/2004	77.70		30.44		47.26
WCW-13	02/01/2005	77.70		30.15		47.55
WCW-13	05/02/2005	77.70		28.35		49.35
WCW-13	08/01/2005	77.70		27.66		50.04
WCW-13	02/27/2006	77.70		27.46		50.24
WCW-13	05/01/2006	77.70		27.57		50.13
WCW-13	09/18/2006	77.70		27.66		50.04
WCW-13	12/01/2006	77.70		28.10		49.60
WCW-13	03/12/2007	77.70		28.00		49.70
WCW-13	04/30/2007	77.70		28.06		49.64
WCW-13	08/28/2007	77.70		28.31		49.39
WCW-13	11/12/2007	77.70		28.79		48.91
WCW-13	02/19/2008	77.70		28.80		48.90
WCW-13	04/14/2008	77.70		28.78		48.92
WCW-13	08/11/2008	77.70		29.12		48.58
WCW-13	10/16/2008	77.70		29.62		48.08
WCW-13	04/20/2009	77.70		29.61		48.09
WCW-13	07/20/2009	77.70		30.20		47.50
WCW-13	10/19/2009	77.70		30.26		47.44
WCW-13	01/12/2010	77.70		31.56		46.14
WCW-13	03/15/2010	77.70		31.34		46.36
WCW-13	05/24/2010	77.70		30.65		47.05
WCW-13	05/28/2010	77.70		30.68		47.02
WCW-13	10/04/2010	77.70		30.61		47.09
WCW-13	01/08/2011	77.70		31.00		46.70
WCW-13	01/10/2011	77.70		30.96		46.74
WCW-13	04/08/2011	77.70		29.59		48.11
WCW-13	04/11/2011	77.70		30.52		47.18
WCW-13	07/07/2011	77.70		30.42		47.28
WCW-13	07/07/2011	77.70		30.24		47.46
		+		+		
WCW-13 WCW-13	10/10/2011	77.70		30.30 30.24		47.40 47.46
	01/09/2012	77.70				
WCW-13	04/16/2012	77.70		30.81		46.89
WCW-13	07/09/2012	77.70		31.05		46.65
WCW-13	10/15/2012	77.70		31.38		46.32
WCW-13	01/14/2013	77.70		31.54		46.16
WCW-13	04/08/2013	77.70		31.67		46.03
WCW-13	10/07/2013	77.70		32.66		45.04
WCW-13	04/14/2014	77.70		32.94		44.76

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

		<u> </u>		1 1		T .
Well	Date	Top of Casing Elevation	Depth to	Depth to Groundwater	Measured Product Thickness	Groundwater Elevation
14/014/40	40/07/0044	(feet MSL)	(feet btc)	(feet btc)	(feet)	(feet MSL)
WCW-13	10/27/2014	77.70		33.67		44.03
WCW-13	04/20/2015	77.70		34.10		43.60
WCW-13	10/19/2015	77.70		34.75		42.95
WCW-13	04/11/2016	77.70		35.32		42.38
WCW-13	10/3/2016	77.70		36.03		41.67
WCW-14	05/03/1999	78.81		30.67		48.14
WCW-14	08/09/1999	78.81		30.83		47.98
WCW-14	11/15/1999	78.81		31.19		47.62
WCW-14	05/15/2000	78.81		31.02		47.79
WCW-14	11/13/2000	78.81		31.26		47.55
WCW-14	05/07/2001	78.81		30.85		47.96
WCW-14	04/08/2002	78.81		30.71		48.10
WCW-14	10/21/2002	78.81		31.07		47.74
WCW-14	04/07/2003	78.81		31.11		47.70
WCW-14	05/10/2004	78.81		31.29		47.52
WCW-14	11/01/2004	78.81		31.59		47.22
WCW-14	05/02/2005	78.81		29.38		49.43
WCW-14	05/01/2006	78.81		28.59		50.22
WCW-14	12/01/2006	78.81		29.22		49.59
WCW-14	04/30/2007	78.81		29.16		49.65
WCW-14	11/12/2007	78.81		29.90		48.91
WCW-14	04/14/2008	78.81		29.85		48.96
WCW-14	10/16/2008	78.81		30.74		48.07
WCW-14	04/20/2009	78.81		30.83		47.98
WCW-14	10/19/2009	78.81		31.32		47.49
WCW-14	01/12/2010	78.81		32.24		46.57
WCW-14	05/24/2010	78.81		31.87		46.94
WCW-14	05/28/2010	78.81		31.84		46.97
WCW-14	01/08/2011	78.81		32.13		46.68
WCW-14	04/08/2011	78.81		31.57		47.24
WCW-14	04/11/2011	78.81		31.66		47.15
WCW-14	07/07/2011	78.81		31.60		47.13
WCW-14	10/06/2011	78.81		31.57		47.24
WCW-14 WCW-14	04/16/2012	78.81		31.97		46.84
WCW-14	04/08/2013	78.81		32.71		46.10
WCW-14	10/07/2013	78.81		33.41		45.40
WCW-14	04/14/2014	78.81		34.01		44.80
WCW-14	10/27/2014	78.81		34.67		44.14
WCW-14	04/20/2015	78.81		35.09		43.72
WCW-14	10/19/2015	78.81		35.71		43.10
WCW-14	04/11/2016	78.81		36.22		42.59

HISTORICAL GROUNDWATER ELEVATIONS, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

Well	Date	Top of Casing Elevation (feet MSL)	Depth to Product (feet btc)	Depth to Groundwater (feet btc)	Measured Product Thickness (feet)	Groundwater Elevation (feet MSL)
WCW-14	10/3/2016	78.81		36.70		42.11

Notes: feet MSL = feet above mean sea level, based on Los Angeles County Datum, 1980

feet btc = feet below top of casing
---- = not detected/not applicable

NC = not calculated due to presence of product in well

APPENDIX D HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX, 1,2-DCA, MTBE, TBA, DIPE, ETBE, AND TAME IN GROUNDWATER – NOVEMBER 1996 THROUGH OCTOBER 2016

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

							Ethyl-							
Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	benzene	Xylenes	1,2-DCA	MTBE	TBA	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
BW-1	05/24/97		<100	<50	< 0.30	<0.50	< 0.30	<0.60	100	<5				
BW-2	05/24/97		<100	<50	< 0.30	<0.50	< 0.30	1.4	85	<5				
BW-3	05/24/97		<100	300	< 0.30	<0.50	< 0.30	<0.60	490	74				
BW-4	05/28/97		960	560	160	2.4	200	9.2	20	850				
BW-5	05/28/97		150	310	<0.30	<0.30	5.0	<0.60	30	1,100				
BW-6	05/29/97		<100	690	3.5	<0.30	3.7	3.7	14	<5				
BW-7	05/29/97		200	510	0.99	<0.30	<0.30	<0.30	310	9.2				
BW-8	05/29/97		<100	450	<0.30	<0.30	<0.30	<0.30	39	<5				
BW-9	05/30/97		<100	230	<0.30	<0.30	<0.30	<0.60	1.4	<5				
EXP-1	11/27/96	GSI	82	<500	1.4	<0.50	<0.50	2.7	<0.50	<1				
EXP-1	03/14/97	GTI	<50	<47	<0.50	<0.50	<0.50	<0.50						
EXP-1	03/14/97	GTI	<50	<50	<0.50	<0.50	<0.50	<0.50						
EXP-1	03/14/97	GTI	<100	290	<2	<2	<2	<2						
EXP-1 EXP-1	07/10/97 01/09/98	GTI GTI	<50 <500	<100	<5 <0.50	<5 <0.50	<5 <0.50	<5 <1	<5 <0.50	<5 <0.50				
EXP-1	05/20/98	BBC	<300	<100	0.50	0.50	<0.50	<1	<0.50	<0.50				
EXP-1	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	05/26/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	08/10/99	Alton Geoscience	<500 <500	<1,000	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	09/23/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-1	10/12/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-1	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
EXP-1	11/19/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	12/21/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	01/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	03/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	04/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	05/17/00	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50				
EXP-1	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
EXP-1	06/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
EXP-1	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	11/29/00	IT Corporation	<300		0.50	<0.50	<0.50	0.70	<0.50	< 0.50				
EXP-1	02/06/01	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	04/10/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.98				
EXP-1	09/06/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	10/23/02	GTI	<300		<0.50	<1	<1	<0.30	<0.50	<5				
EXP-1	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1	04/10/03	GTI	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-1 EXP-1	07/30/03 10/08/03	Secor Blaine Tech for	<50 <100		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
EXP-1 EXP-1	10/08/03	Secor	<100 <50		<0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50				
EAF-1	10/00/03	Secol	\50		\0.50	\0.50	\0.50	\0.50	\0.50	\0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

SRF-1 01/29/04 Secon <	Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
EXP-1 04/2104 Blaint Tech for <100					(µg/L)							(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-1 04/2104 Sucor 450 40.50 -0.50 -0.50 -0.50 -0.50 -0.50															
EXP-1 07/1904 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50												<10	<2	<2	<2
EXP-1 07/21/04 Blaine Tech for 200 40.50 4															
EXP-1										<0.50					
EXP-1		****													
EXP-1												<10	<2	<2	<2
EXP-1															
EXP-1 11/02/05 Secor <50															
ERP-1															
ERP-1															
EXP-1															
EXP-1 091906 Secor < 50															
EXP-1 12/05/06 Blaine Tech for < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 <															<2
EXP-1 120508 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
EXP-1 05/13/07 Secor		12,00,00											=		<2
EXP-1 05/02/07 Secor <50 < < < < < < < < <-															
EXP-1 08/2907 Secor <50 <										0.00					
EXP-1 09/29/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50												-			<2
EXP-1															
EXP-1 11/13/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															 <2
EXP-1 04/16/08 Secor <50 0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50										0.00					
EXP-1 04/16/08 Blaine Fech for < <10.0 <-0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50<															
EXP-1 04/16/08 Secor <50															<2
EXP-1 08/14/08 Secor < 50															
EXP-1 10/15/08 Blaine Tech for <100															
EXP-1 10/17/08 Stantec <50															<2
EXP-1 02/24/09 Blaine Tech <50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>=</td><td></td><td></td></t<>													=		
EXP-1 04/20/09 Blaine Tech for <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
EXP-1 04/22/09 Blaine Tech for AMEC <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50<															<2
EXP-1 07/20/09 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<1
EXP-1 10/19/09 Blaine Tech for DESC <100 <-0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5		* 1,1,00													<1
EXP-1 10/19/09 Blaine Tech for <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<2
EXP-1 01/11/10 Blaine Tech for DESC <100															<1
EXP-1 03/15/10 Blaine Tech for <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0															<2
EXP-1 04/12/10 Blaine Tech for DESC													1		<1
EXP-1 05/25/10 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1															<2
EXP-1 07/12/10 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50													_	_	<1
EXP-1 10/04/10 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1															<1
EXP-1 10/04/10 Blaine Tech for <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<1
EXP-1 01/10/11 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1															
EXP-1 01/10/11 Blaine Tech for <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<1
EXP-1 04/11/11 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 EXP-1 04/11/11 Blaine Tech for <100															<2
EXP-1 04/11/11 Blaine Tech for <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<1
EXP-1 07/11/11 CH2M Hill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<2
EXP-1 07/11/11 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2 <2 EXP-1 10/10/11 CH2M Hill <50															<1
EXP-1 10/10/11 CH2M Hill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 EXP-1 10/10/11 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2 <2															<2
EXP-1 10/10/11 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2 <2														_	<1
															<2
		01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1		<u>-</u> <1
EXP-1 01/09/12 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.50 <2 <2			-												<2
EXP-1 04/16/12 CH2M Hill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.		0.7707.1-			<50								_		<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

ERP-1 07/16/12 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	ETBE TAME
EXP-1 07/09/12 Parsons <100 <	(µg/L) (µg/L)
EXP-1 07/09/12 Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0	<2 <2
EXP-1 10/15/12 ChHL	<1 <1
EXP-1	<2 <2
EXP+1 01/14/13 Parsons 100 110 0.50 0	<1 <1
EXP-1 04/04/13 Parsons <100 <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<2 <2
EXP-1 04098/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1 <1
EXP-1 0408/13 Parsons < 100 < 100 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0	<2 <2
EXP-1 1007/13 CPHIL 50 430 40.50	<1 <1
EXP-1	<2 <2
EXP-1	<1 <1
EXP-1 04/14/14 Parsons <100 <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<2 <2
EXP-1 10/28/14 SG <100 <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1 <1
EXP-1 10/28/14 BT for CHZMHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<2 <2
EXP-1 04/23/15 SGI <100 <100 <0.50 <0.50 <0.50 <2.0 <10 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	<2.0 <2.0
EXP-1 04/23/15 BT for CH2MHill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.1 <10 <1.0 < EXP-1 10/21/15 SGI <100	<1.0 <1.0
EXP-1 10/21/15 SGI <100 <100 <100 0.73 <0.50 <0.50 <0.50 <1.5 <0.50 <2.2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <10 <2.0 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <10 <2.0 <2 <2 <2 <10 <2.0 <2 <10 <2.0 <2 <10 <2.0 <2 <10 <2.0 <2 <10 <2 <10 <2.0 <2 <10 <2 <10 <2.0 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10 <2 <10	<2.0 <2.0
EXP-1	<1.0 <1.0
EXP-1 04/13/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<2.0 <2.0
EXP-1 04/13/16 SGI <100 <0.50 <0.50 <0.50 <1.5 <0.50 1.7 <10 <2.0 < EXP-1 10/07/16 SGI <100	<1.0 <1.0
EXP-1 10/07/16 SGI <100 <100 <0.50 <0.50 <0.50 <0.50 <1.5 <0.50 <1.5 <0.50 <1.7 <10 <2.0 < EXP-1 10/07/16 BT for CH2MHIII <50 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 < EXP-2 11/27/96 GSI <50 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 < EXP-2 03/14/97 GTI <50 75 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1.0 <1.0 <2.0 <2.0
EXP-1 10/07/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
EXP-2 11/27/96 GSI <50 <500 <0.50 <0.50 <0.50 <0.50 <1	<2.0 <2.0 <1.0 <1.0
EXP-2 03/14/97 GTI <50 75 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	
EXP-2 03/14/97 GTI 72 200 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	
EXP-2 03/14/97 GTI <100 <2 <2 <2 <2 <	
EXP-2 07/10/97 GTI <50 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	
EXP-2 01/09/98 GTI <500 <100 <0.50 <0.50 <0.50 <1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	
EXP-2 05/20/98 BBC <300 <0.50 0.60 <0.50 <1 <0.50 <0.50 <	
EXP-2 11/04/98 GTI <300 <0.50 1.5 1.0 10 <0.50 <0.50	
EXP-2 05/07/99 Alton Geoscience <500 <500 1.6 1.1 <0.50 1.9 <1 1.7 EXP-2 05/26/99 GTI <300	
EXP-2 05/26/99 GTI <300 <0.50 <0.50 <0.50 <0.50 <0.50 1.4	
EXP-2 07/21/99 Alton Geoscience <50 <0.50 <0.50 <0.50 <1 0.83	
EXP-2 08/10/99 Alton Geoscience <500	
EXP-2 09/23/99 Secor <300 <0.50 <1 <1 <0.50 <1	
EXP-2 10/12/99 Secor <300 <0.50 <1 <1 <0.50 <1	
EXP-2 11/18/99 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
EXP-2 11/19/99 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
EXP-2 12/21/99 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-2	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-2	01/30/02	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
EXP-2	04/10/02	IT Corporation	<300		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	04/11/02	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	07/30/02	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
EXP-2	10/23/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-2	10/24/02	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	01/28/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-2	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-2	04/11/03	GTI			<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	07/30/03	Secor	<50		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-2	10/10/03	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-2	01/29/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	04/21/04	Secor	<50		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
EXP-2	04/22/04	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
EXP-2	07/20/04	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	07/21/04	BT for Parsons	120		< 0.50	< 0.50	< 0.50	< 0.50		<0.50				
EXP-2	11/04/04	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	02/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	05/05/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	08/02/05	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	11/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	02/28/06	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	05/03/06	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	05/03/06	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	09/19/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	12/06/06	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	03/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	05/02/07	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	05/03/07	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	08/29/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-2	02/20/08	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	04/17/08	BT for Parsons	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	04/17/08	Secor	<100		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	08/14/08	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
EXP-2	10/16/08	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	10/17/08	Stantec	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-2	02/24/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10			
EXP-2	04/21/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	04/22/09	Blaine Tech for AMEC	<50		1.1	0.59	0.67	1.8	<0.50	<0.50	<10	<1	<1	<1
EXP-2	07/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	10/19/09	Blaine Tech for DESC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	6.1 J	<2	<2	<2
EXP-2	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	01/11/10	Blaine Tech for DESC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	03/15/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	04/12/10	Blaine Tech for DESC			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-2	07/12/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	10/04/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	10/04/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
EXP-2	01/10/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	01/10/11	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	04/11/11	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	07/11/11	Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	10/10/11	Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2 EXP-2	01/09/12	CH2M Hill	<50 <100		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <2	<1 <2	<1 <2
EXP-2 EXP-2	01/09/12	Parsons CH2M Hill	<100 <50	 <50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<10	<1	<2 <1	< <u>2</u>
EXP-2 EXP-2	04/16/12		<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2 EXP-2	04/16/12	Parsons	<100 <50	<100	<0.50	<0.50	<0.50		<0.50 <0.50		<10	<2 <1	<2 <1	<2 <1
EXP-2 EXP-2	07/09/12 07/09/12	CHHL	<100	<100	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<0.50 <0.50	11	<2	<2	<2
EXP-2	10/15/12	Parsons CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2 EXP-2	10/15/12	Parsons	<100	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	01/14/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	04/08/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	04/08/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	10/07/13	CHHL	<50	140	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-2	04/14/14	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-2	04/14/14	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	8.5 J	<2	<2	<2
EXP-2	10/28/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-2	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-2	04/23/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-2	04/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-2	10/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-2	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-2	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-2	04/12/16	SGI	<100	<100	< 0.50	<0.50	< 0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-2	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-2 (EXP-2)	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-2	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-3	11/27/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1	<0.50	<1				
EXP-3	03/14/97	GTI	<50	120	<0.50	<0.50	<0.50	<0.50						
EXP-3	03/14/97	GTI	<50	250	<0.50	<0.50	<0.50	<0.50						
EXP-3	03/14/97	GTI	<100		<2	<2	<2	<2						
EXP-3	07/10/97	GTI	<50	<50	<5	<5	<5	<5	<5	<5				
EXP-3	01/09/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
EXP-3	05/20/98	BBC	<300		<0.50	<0.50	<0.50	<1	<0.50	<0.50				
EXP-3	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	05/07/99	Alton Geoscience		<500	<0.50	<0.50	<0.50	<0.50	<1	0.89				
EXP-3	05/27/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	08/10/99	Alton Geoscience	<500	<1,000	4.0	6.2	<1	3.4	<0.50	<1				
EXP-3	09/23/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-3	10/12/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-3	11/18/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-q	TPH-d	Benzene	Toluene	Ethyl-	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
		, ,	(µg/L)	(ua/L)	(ua/L)	(ua/L)	benzene (ua/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)	(µg/L)	(µg/L)	(µg/L)
EXP-3	11/19/99	Secor	<300	(µq/L)	(μg/L) <0.50	(µq/L) <0.50	<0.50	(μg/L) <0.50	(μq/L) <0.50	<0.50	(µq/L)	(µq/L)	(µq/L)	(µq/L)
EXP-3	12/21/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	01/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	03/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	06/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	08/28/00	Secor	<300		<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50				
EXP-3	11/30/00	IT Corporation	<300		<0.50	0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	02/06/01	Secor	<300		<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50				
EXP-3	05/08/01	Secor	<300		<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50				
EXP-3	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50				
EXP-3	09/19/01	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
EXP-3	11/07/01	IT Corporation	<300		0.80	0.60	< 0.50	< 0.50	<0.50	<0.50				
EXP-3	11/07/01	IT Corporation	<300		<0.50	<0.60	<0.50	<0.50	<0.50	<0.50				
EXP-3	01/30/02	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
EXP-3	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/12/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	10/22/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<1				
EXP-3	10/23/02	GTI	<300		< 0.50	<1	<1	<1	< 0.50	<1				
EXP-3	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-3	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	10/10/03	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	01/29/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/22/04	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	07/19/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	07/21/04	BT for Parsons	120		<0.50	<0.50	<0.50	<0.50		<0.50				
EXP-3	11/03/04	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	02/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	08/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	11/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	02/27/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3 EXP-3	05/02/06	Secor PT for Paragra	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3 EXP-3	05/05/06 09/18/06	BT for Parsons	<100 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10	<2	<2	<2
EXP-3 EXP-3	12/05/06	Secor Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50				
EXP-3	12/05/06	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	03/13/07	Secor	<100 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10		<u> </u>	
EXP-3	05/04/07	BT for Parsons	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	05/04/07	Secor	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	08/30/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	11/16/07	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	02/07/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-3	02/20/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	04/16/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	04/16/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	08/14/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3 EXP-3	10/14/08	Stantec	<50 <100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-3	10/15/08 02/24/09	BT for Parsons Blaine Tech	<50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<2	<2	<2
EXP-3	02/24/09	BT for Parsons	<100		<0.50	<0.50 3.4	<0.50	<0.50	<0.50	<0.50	<10	 <2	 <2	 <2
EXP-3	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	07/20/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	07/20/09	Blaine Tech for AMEC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	10/19/09	Blaine Tech for DESC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	01/11/10	Blaine Tech for DESC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	03/15/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	04/12/10	Blaine Tech for DESC			0.31 J	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<10	<2	<2	<2
EXP-3	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
EXP-3	07/12/10	Blaine Tech	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
EXP-3	10/04/10	Blaine Tech	<50		<0.50	<0.50	<0.50	< 0.50	< 0.50	0.74	<10	<1	<1	<1
EXP-3	10/04/10	BT for Parsons			<0.50				<0.50	0.68	<10			
EXP-3	01/10/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	0.73	0.95	<10	<1	<1	<1
EXP-3	01/10/11	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	0.64	1.0	<10	<2	<2	<2
EXP-3	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.3	0.99	<10	<1	<1	<1
EXP-3	04/11/11	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	1.3	1.1	<10	<2	<2	<2
EXP-3	07/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	0.61	<0.50	<10	<1	<1	<1
EXP-3	07/12/11	Parsons	<100		<0.50	<0.50	<0.50	<0.50	0.62	0.45 J	<10	<2	<2	<2
EXP-3	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	10/10/11	Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	8.7 J	<2	<2	<2
EXP-3	01/09/12	CH2M Hill	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	0.66	<10	<1	<1	<1
EXP-3 EXP-3	01/09/12 04/16/12	Parsons CH2M Hill	<100 <50	 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	0.81 0.58	0.63 < 0.50	<10 <10	<2 <1	<2 <1	<2 <1
EXP-3	04/16/12	Parsons	<100	<50	<0.50	<0.50	<0.50	<0.50	0.58	₹0.50 0.48 J	<10	<2	<2	<2
EXP-3	07/09/12	CHHL	<50	190	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
EXP-3	07/09/12	Parsons	<100	190	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	9.5 J	<2	<2	<2
EXP-3	08/29/12	CHHL		<50							3.5 5			
EXP-3	10/15/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	10/15/12	Parsons	<100		<0.50	<0.50	<0.50	<0.50	0.45 J	<0.50	<10	<2	<2	<2
EXP-3	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.58	<10	<1	<1	<1
EXP-3	01/14/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	0.74	0.34 J	<10	<2	<2	<2
EXP-3	04/08/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	04/08/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	10/07/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	0.36 J	<0.50	<10	<2	<2	<2
EXP-3	04/14/14	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-3	04/14/14	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
EXP-3	10/28/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-3	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.52	<0.50	<10	<1.0	<1.0	<1.0
EXP-3	04/23/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-3	04/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-3	10/20/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
EXP-3	10/20/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-3	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-3	04/12/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-3	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	< 0.50	<1.0	<10	<2.0	<2.0	<2.0
EXP-3	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-4	02/03/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<1	<1	<0.50				
EXP-4	05/06/99	Alton Geoscience	<500	<500	1.3	4.1	<0.50	1.7	<1	<0.50				
EXP-4	07/21/99	Alton Geoscience	<50		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
EXP-4	08/10/99	Alton Geoscience	<500	<1,000	50	80	7.7	44	2.1	4.2				
EXP-4	09/23/99	Secor	<300		<0.50	<1	<1	<1	0.72	1.2				
EXP-4	09/23/99	Secor	<300		<0.50	<1	<1	<1	< 0.50	<1				
EXP-4	09/23/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-4 EXP-4	10/12/99 11/19/99	Secor	<300 <300		<0.50 <0.50	<1 <0.50	<1 <0.50	<1 <0.50	<0.50 <0.50	<1 0.60				
EXP-4 EXP-4	12/21/99	Secor Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	12/21/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	01/20/00	Secor	<300		<0.50	<0.50	<0.50	0.50	<0.50	<0.50				
EXP-4	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	03/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	04/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	06/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	02/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	09/18/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	01/30/02	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50				
EXP-4	04/11/02	Secor	<300		<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50				
EXP-4	10/24/02	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
EXP-4	10/07/03	Secor	<50		<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50				
EXP-4	05/05/05	Secor	<50		< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-4	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	09/20/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
EXP-4	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-4	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4	07/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4	05/24/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4	04/17/12	CH2M Hill	<50	<100	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
EXP-4	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4 EXP-4	10/08/13	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-4 EXP-4	04/15/14	CHHL PT for CH2MHill	<50 <50	<50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50	<10 <10	<1 <1.0	<1 <1.0	<1 <1.0
EXP-4 EXP-4	10/28/14 04/22/15	BT for CH2MHill BT for CH2MHill	<50 <50	63 HD <50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10	<1.0	<1.0 <1.0	<1.0 <1.0
EXP-4	10/21/15	BT for CH2MHill	<50 <50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-4 EXP-4	04/12/16	BT for CH2MHill	<50 <50	<100 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-4	10/04/16	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-4 EXP-5	11/11/98	Alton Geoscience	<300	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-5	02/03/99	Alton Geoscience	<500 <500	<500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/05/99	Alton Geoscience	<500 <500	<500	7.6	3.9	1.4	7.4	<1	140				
L/(I =0	00/00/03	, atom ocosoicile	-000	-000	7.0	0.0	17	7.7	- 1	170				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EXP-5	07/21/99	Alton Geoscience	<50		<0.50	<0.50	<0.50	<0.50	<1	11				
EXP-5	08/10/99	Alton Geoscience	<500	<1,000	21	37	4.3	22	< 0.50	2.4				
EXP-5	09/23/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-5	09/23/99	Secor	<300		< 0.50	<1	<1	<1	< 0.50	<1				
EXP-5	09/23/99	Secor	<300		<0.50	<1	<1	<1	< 0.50	<1				
EXP-5	10/12/99	Secor	<300		<0.50	<1	<1	<1	<0.50	<1				
EXP-5	11/19/99	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
EXP-5	12/21/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	01/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	03/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	04/20/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	06/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	11/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	01/28/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5 EXP-5	04/08/03	Secor	<50 <50		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
EXP-5	07/30/03	Secor			<0.50	<0.50	<0.50		<0.50					
EXP-5	10/07/03 01/29/04	Secor Secor	<50 <50		<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<0.50 <0.50				
EXP-5	04/21/04	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	07/20/04	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/03/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	08/03/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	11/01/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/28/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/05/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	09/19/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	12/07/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	03/13/07	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	08/28/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/20/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	08/14/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	10/15/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
EXP-5	02/23/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10			
EXP-5	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	07/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)
EXP-5	03/15/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	07/12/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	10/04/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	01/10/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	07/09/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	01/14/13	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
EXP-5	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
EXP-5	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
EXP-5	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
EXP-5 EXP-5	04/23/15	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
EXP-5	10/21/15 04/12/16	BT for CH2MHill	<50 <50	<50 <50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<10 <10	<1.0	<1.0	<1.0
		BT for CH2MHill BT for CH2MHill											<1.0	
EXP-5 GB-21	10/04/16 01/24/11		<50 <50	<50 	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<10 <10	<1.0 <1	<1.0 <1	<1.0 <1
GB-21	01/24/11	Blaine Tech Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50		<0.50	<10	<1	<1	<1
GB-21	01/24/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	140	<1	<1	<1
GB-21	01/24/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	<10	<1	<1	<1
GB-22	01/21/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	<10	<1	<1	<1
GB-22	01/21/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	110	<1	<1	<1
GB-23	01/21/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	<10	<1	<1	<1
GB-23	01/21/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50		<0.50	<10	<1	<1	<1
GB-23	01/21/11	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50		<0.50	2.400	<1	<1	<1
GMW-1	11/27/96	Terra Services			13.000	11.000	2.700	14.300	<50	<500				
GMW-1	07/17/97	Terra Services	68,000	6,900	10,000	5.500	2,500	11,500	<30	<300				
GMW-1	01/09/98	Terra Services	5.800	4.500	5.600	590	1,200	4.570	<30	<300				
GMW-1	05/27/98	Terra Services	19,600		4,360	466	930	2,279	<0.50	101				
GMW-1	11/17/98	Alton Geoscience	4,260		950	150	360	320	<50	<50				
GMW-1	05/05/99	Alton Geoscience	<500	<500	1.9	8.4	0.58	2.9	<1	<0.50				
GMW-1	11/17/99	Secor	23.000		4.700	440	1,100	4.040	<5	71				
GMW-1	05/16/00	Secor	14,000		3,100	40	720	2,300	<25	50				
GMW-1	11/30/00	Secor	14,000		2,700	80	1,000	1,780	<0.50	33				
GMW-1	05/09/01	Secor	1,000		1,900	<13	530	468	<13	<13				
GMW-1	11/06/01	Secor	11,000		2,900	35	1,300	280	<0.50	27				
GMW-1	04/10/02	Secor	7,600		2,000	26	740	295	<10	18				
GMW-1	10/23/02	Secor	830		1,300	<5	330	111	<5	17				
GMW-1	03/11/03	Geomatrix	340		130	<0.50	30	6.1	<0.50	0.68				
GMW-1	04/08/03	Secor	4,500		2,200	<10	240	142	<20	25				
GMW-1	08/01/03	Secor	4,000		1,600	11	360	172	<20	14				
GMW-1	10/06/03	Secor	7,400		2,200	12	520	196	<20	13				
GMW-1	01/27/04	Secor	4,400		1,500	5.7	180	200	<10	12				
GMW-1	04/22/04	Secor	9,100		3,200	<20	270	160	<40	<20				
GMW-1	07/19/04	Secor	6,000		2,100	<10	90	70	<20	20				
GMW-1	11/03/04	Secor	7,900		3,500	<10	88	35	<20	18				
GMW-1	02/02/05	Secor	2,100		1,100	<5	18	29	<10	12				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

							Ethyl-							
Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	benzene	Xylenes	1,2-DCA	MTBE	TBA	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-1	05/06/05	Secor	<200		1.2	<1	<1	<1	<2	<1				
GMW-1	08/01/05	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
GMW-1	11/02/05	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
GMW-1	02/27/06	Secor	<1000		<5	<5	<5	<5	<10	<5				
GMW-1	05/04/06	Secor	<500		4.0	<2.5	<2.5	<2.5	<5	<2.5				
GMW-1	09/18/06	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
GMW-1	12/06/06	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
GMW-1	03/13/07	Secor	<1000		<5	<5	<5	<5	<10	<5				
GMW-1	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-1	08/30/07	Secor	520		<1.5	<1.5	<1.5	<1.5	<3	<1.5				
GMW-1	11/14/07	Secor	140		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-1	02/20/08	Secor	<200		41	<1	4.9	4.8	<2	<1				
GMW-1	04/16/08	Secor	<200		14	<1	<1	<1	<2	<1				
GMW-1	10/17/08	Stantec	1,600		52	1.6	58	250	<2	<1				
GMW-1	04/20/09	Blaine Tech for AMEC	600		63	1.2	25	16	<2	<1	<20	<2	<2	<2
GMW-1	10/22/09	BT for Parsons	330		1.5	<1	<1	<1	<2	<1	<20	<2	<2	<2
GMW-1	05/27/10	Blaine Tech	900		55	4.9	46	<1	<2	<1	<20	<2	<2	<2
GMW-1	10/07/10	Blaine Tech	400		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
GMW-1	04/14/11	Blaine Tech	230		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
GMW-1	10/12/11	CH2M Hill	230		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
GMW-1	04/19/12	CH2M Hill	<200	850	<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
GMW-1	10/17/12	CHHL	<500	880	<2.5	<2.5	<2.5	<2.5	<5	<2.5	<50	<5	<5	<5
GMW-1 GMW-1	04/11/13	CHHL CHHL	<500 <200	470 270	2.8	<2.5 <1	<2.5 <1	<2.5	<5 <2	<2.5	<50 29	<5 <2	<5 <2	<5
	10/10/13		×200 89		<1		<0.50	<1		1.7 2.2			<1	<2
GMW-1 GMW-1	04/16/14 10/30/14	CHHL BT for CH2MHill	70	77 130	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	0.94	11 <10	<1 <1.0	<1.0	<1 <1.0
GMW-1	04/23/15	BT for CH2MHill	58	60	<0.50	<0.50	<0.50	<0.50	<0.50	1.5	16	<1.0	<1.0	<1.0
GMW-1	10/23/15	BT for CH2MHill	110	140 HD	<0.50	<0.50	<0.50	<0.50	<0.50	1.9	13	<1.0	<1.0	<1.0
GMW-1	04/14/16	BT for CH2MHill	55	70	<0.50	<0.50	<0.50	7.7	<0.50	2.9	22	<1.0	<1.0	<1.0
GMW-1	10/06/16	BT for CH2MHill	57	150	0.56	<0.50	<0.50	2.9	<0.50	2.0	13	<1.0	<1.0	<1.0
GMW-2	11/21/96	Terra Services		150	6,500	44	700	960	<30	4,800		~1.0		<1.0
GMW-2	07/15/97	Terra Services	350	<500	59	1.2	41	20	<0.50	-1,000 <5				
GMW-2	01/08/98	Terra Services	<100	<500	4.1	0.79	1.1	1.1	2.7	220				
GMW-2	05/27/98	Terra Services	<300		<0.50	58	0.80	0.50	<0.50	21				
GMW-2	11/17/98	Alton Geoscience	<300		0.88	2.1	0.90	4.8	<0.50	4.4				
GMW-2	05/07/99	Alton Geoscience	<500	<500	8.2	<0.50	<0.50	0.94	<1	42				
GMW-2	11/17/99	Secor	<300		0.70	<0.50	<0.50	<0.50	<0.50	66				
GMW-2	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	<0.50				
GMW-2	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.0	140				
GMW-2	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	51				
GMW-2	11/06/01	Secor	<300		7.8	<0.50	<0.50	0.70	1.2	140				
GMW-2	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	240				
GMW-2	10/23/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	260				
GMW-2	10/07/03	Secor	91		<0.50	<0.50	<0.50	<0.50	< 0.50	81				
GMW-2	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-2	05/09/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	4.2				
GMW-2	05/02/07	Secor	160		73	<0.50	<0.50	2.3	<1	5.8				
GMW-2	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-2	04/20/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-2	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	11/25/96	Terra Services			<5	<5	<0.50	<1.5	<5	<50				
GMW-3	07/11/97	Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1	< 0.50	<5				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-3	01/05/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	< 5				
GMW-3	05/26/98	Terra Services			<0.50	<0.50	<0.50	0.90	<0.50	<0.50				
GMW-3	11/11/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.7				
GMW-3	05/07/99	Alton Geoscience	<500	<500	1.1	4.4	< 0.50	1.9	<1	< 0.50				
GMW-3	11/17/99	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50				
GMW-3	05/17/00	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50				
GMW-3	11/29/00	Secor	<300		< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50				
GMW-3	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	11/06/01	Secor	<300		< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	10/22/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.1				
GMW-3	01/29/03	Secor	<300		< 0.50	< 0.50	<0.50	<0.50	<0.50	0.96				
GMW-3	04/08/03	Secor	<50		< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	10/06/03	Secor	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50				
GMW-3	01/27/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	07/19/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	11/02/04	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
GMW-3	05/04/05	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
GMW-3	11/03/05	Secor	120		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50				
GMW-3	02/27/06	Secor	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50				
GMW-3	05/02/06	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	12/05/06	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-3	11/14/07	Secor	<200		<1	<1	<1	<1	<2	<1				
GMW-3	04/16/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-3	04/16/08	Secor	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-3	10/14/08	Stantec	<50		< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-3	04/20/09	Blaine Tech for AMEC	<50		0.63	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	10/21/09	BT for Parsons	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	05/26/10	Blaine Tech	<50		< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	10/11/11	CH2M Hill	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-3	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-3	06/14/13	CHHL	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-3	04/16/14	CHHL	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	0.52	<10	<1	<1	<1
GMW-3	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-3	04/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-3	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-4	07/15/97	Terra Services	1,300	2,100	38	<0.50	35	45	<0.50	<5				
GMW-4	01/08/98	Terra Services	380	530	14	1.2	12	19	1.6	<5				
GMW-4	05/26/98	Terra Services	2,300		42	<0.30	69	87	<2.5	<2.5				
GMW-4	11/18/99	Secor	1,600		67	<0.50	51	24	<0.50	<0.50				
GMW-4	05/19/00	Secor	2,500		48	0.50	29	37	<0.50	<0.50				
GMW-4	04/10/03	Secor	500		8.0	<0.50	8.2	26	<0.50	<0.50				
GMW-4	05/04/07	Secor	2,000		110	<1	27	12	<2	<1				
GMW-4	04/16/08	BT for Parsons	16,000		270	<2.5	110	157	<2.5	<2.5	<50	<10	<10	<10
GMW-4	04/17/08	Secor	4,400		290	<5	89	102	<10	<5				
GMW-4	11/21/08	Stantec	4,900		260	<2.5	45	28	<5	<2.5				
GMW-4	04/23/09	Blaine Tech for AMEC	2,500		120	<0.50	12	8.6	<1	3.9	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-4	05/27/10	Blaine Tech	2,200		170	1.1	6.3	10	<2	<1	<20	<2	<2	<2
GMW-4	10/05/10	Blaine Tech	1,300		8.2	<1	2.8	2.2	<2	3.2	22	<2	<2	<2
GMW-4	04/14/11	Blaine Tech	2,800		130	<1	2.0	3.4	<2	<1	<20	<2	<2	<2
GMW-4	10/12/11	CH2M Hill	1,200		62	<1	1.4	<1	<2	3.8	<20	<2	<2	<2
GMW-4	04/20/12	CH2M Hill	4,600	25,000	170	<10	<10	<10	<20	<10	<200	<20	<20	<20
GMW-4	10/19/12	CHHL	1,300	8,100	36	<2.5	<2.5	<2.5	<5	<2.5	<50	<5	<5	<5
GMW-4	04/12/13	CHHL	2,100	8,000	56	<4	<4	<4	<8	<4	<80	<8	<8	<8
GMW-4	10/11/13	CHHL	1,800	2,400	24	<0.50	1.1	1.7	<1	2.2	<10	<1	<1	<1
GMW-5	11/27/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1						
GMW-5	07/11/97	GTI	<50	<50	<0.50	<1	<1	<2						
GMW-5	01/06/98	GTI	<500	<100	<0.30	<0.30	<0.30	<0.60						
GMW-5	05/18/98	BBC			<0.30	<0.30	<0.30	<0.60						
GMW-5	11/04/98	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-5	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-5	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-5	05/16/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-5	11/29/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-5	05/09/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-5	11/07/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-5	04/10/02	IT Corporation	<300	400 HD	<0.30	<0.30	<0.30	<0.60		<5				
GMW-5	10/08/13	Parsons	<100	120 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-5	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-5	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-5 GMW-6	04/21/15	SGI	<100	<100 <500	<0.50 330	<0.50 <12	<0.50 320	<1.5 300	<0.50	<2.0	<10	<2.0	<2.0	<2.0
	11/27/96	GSI GTI	5,300	<500 <50		<12			 <5					
GMW-6 GMW-6	07/09/97 01/07/98	GTI	<50 <500	<100	2.7 <0.30	<0.30	1.4 <0.30	<2 <0.60	<5 					
GMW-6	05/21/98	BBC	<300	<100	<0.50	<0.30	<0.50	<1	<0.50	<0.50				
GMW-6	11/05/98	GTI	<300		<0.30	<0.30	<0.30	<0.60	<0.50 	~0.50 				
GMW-6	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-6	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-6	05/16/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-6	11/29/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-6	05/09/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-6	11/07/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		< 5				
GMW-6	04/10/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-6	10/23/02	GTI	<300		<0.30	<0.30	<0.30	<0.30		<5				
GMW-6	04/10/03	GTI			<0.30	<0.30	<0.30	<2		<3				
GMW-6	10/08/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30						
GMW-6	04/22/04	BT for Parsons			0.41	<0.30	<0.30	<0.30						
GMW-6	11/06/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		< 5				
GMW-6	05/06/05	BT for Parsons			<0.30	0.46	<0.30	<0.30		-5				
GMW-6	11/08/05	BT for Parsons			<0.30	<0.30	<0.30	<0.30		-5				
GMW-6	05/03/06	BT for Parsons			<0.30	<0.30	<0.30	<0.30		< 5				
GMW-6	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	1.3		-5				
GMW-6	05/02/07	BT for Parsons			0.58	0.54	<0.50	<1		<5				
GMW-6	08/31/07	BT for Parsons	3,400		400	96	45	188	<0.50	<0.50	<10	<2	<2	<2
GMW-6	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-6	11/15/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-6	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-6	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<10	<2	<2	<2
GMW-6	04/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50		43				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GMW-6 07/21 GMW-6 10/20 GMW-6 04/12 GMW-6 10/05 GMW-6 02/24 GMW-6 04/13 GMW-6 10/10 GMW-6 10/10 GMW-6 04/19 GMW-6 10/10 GMW-6 10/10 GMW-6 10/10 GMW-6 10/06 GMW-6 04/10	0/09 Blaine Tech for DESC 2/10 Blaine Tech for DESC 5/10 BT for Parsons 4/11 Blaine Tech 3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	(µa/L) <100 <50 <100 <50	(µq/L)	(μq/L) <0.50 1.5 <0.50 0.35 J 0.53	(µq/L) <0.50 <0.50 <0.50	(µg/L) <0.50 <0.50	(µg/L) <0.50 <0.50	(µg/L) <0.50	(μg/L) <0.50	(µg/L) <10	(µg/L)	(µg/L)	(µg/L)
GMW-6 10/20 GMW-6 04/12 GMW-6 10/05 GMW-6 02/24 GMW-6 04/13 GMW-6 10/10 GMW-6 04/19 GMW-6 10/16 GMW-6 04/10 GMW-6 04/10 GMW-6 10/15	0/09 Blaine Tech for DESC 2/10 Blaine Tech for DESC 5/10 BT for Parsons 4/11 Blaine Tech 3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	<pre> < <50 <100</pre>		1.5 <0.50 0.35 J 0.53	<0.50 <0.50	<0.50		<0.50	< 0.50	<10			
GMW-6 04/12 GMW-6 10/05 GMW-6 02/24 GMW-6 04/13 GMW-6 10/10 GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 04/10 GMW-6 04/10	2/10 Blaine Tech for DESC 5/10 BT for Parsons 4/11 Blaine Tech 3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	<50 <100		<0.50 0.35 J 0.53	<0.50		<0.50				<2	<2	<2
GMW-6 10/05 GMW-6 02/24 GMW-6 04/13 GMW-6 10/10 GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 04/10 GMW-6 10/08	5/10 BT for Parsons 4/11 Blaine Tech 3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	<50 <100		0.35 J 0.53				<0.50	350	<10	<2	<2	0.51 J
GMW-6 02/24 GMW-6 04/13 GMW-6 10/10 GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 10/08	4/11 Blaine Tech 3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	<50 <100 		0.53		<0.50	<0.50		7.2	<10	<2	<2	<2
GMW-6 04/13 GMW-6 10/10 GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 10/08	3/11 BT for Parsons 0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons	<100 						<0.50	130	210			
GMW-6 10/10 GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 10/08	0/11 Parsons 9/12 Parsons 5/12 Parsons 0/13 Parsons				<0.50	<0.50	<0.50	<0.50	9.6	120	<1	<1	<1
GMW-6 04/19 GMW-6 10/15 GMW-6 04/10 GMW-6 10/08	9/12 Parsons 5/12 Parsons 0/13 Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-6 10/15 GMW-6 04/10 GMW-6 10/08	5/12 Parsons 0/13 Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.8	220	<2	<2	<2
GMW-6 04/10 GMW-6 10/08	0/13 Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.34 J	<10 <10	<2	<2	<2
GMW-6 10/08			110 b	<0.50 <0.50	<0.50 <0.50	0.17 J <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.44 J	<10	<2 <2	<2 <2	<2 <2
	0/12 Doroone	<100	250 HD	<0.50	<0.50	<0.50	<0.50	<0.50	1.2	57	<2	<2	<2
		<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<2	<2	<2
GMW-6 10/27		<100	140	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-6 10/27		<100	<100	1.2	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-6 04/28		<100	<100	0.89	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-6 10/22		<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-6 04/12		<100	<100	0.89	<0.50	2.3	7.6	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-2 (GMW-6) 04/12		<100	<100	0.92	<0.50	2.2	7.2	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-6 10/07		<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-7 05/21				< 0.50	< 0.50	< 0.50	<1	<0.50	<0.50		-2.0		
GMW-7 12/01		520.000		4,800	970	620	12,000		<2500				
GMW-7 04/30		610	28,000	8.1	<0.50	<0.50	<1.5	<0.50	<2.0	15	<2.0	<2.0	<2.0
GMW-7 10/11		560	2.000	7.5	< 0.50	< 0.50	<1.5	< 0.50	1.4	47	<2.0	<2.0	<2.0
GMW-8 11/21	1/96 Terra Services			<0.50	<0.50	<0.50	<1.5	12	<5				
GMW-8 07/11	1/97 Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1	1.7	<5				
GMW-8 01/02	2/98 Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	5.0	<5				
GMW-8 05/26	6/98 Terra Services			< 0.30	< 0.30	< 0.50	<1	<0.50	<0.50				
GMW-8 11/06	6/98 Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	8.6	0.90				
GMW-8 05/05		<500	<500	2.0	7.2	0.57	3.0	<1	<0.50				
GMW-8 05/07		<500	<500	<0.50	1.7	<0.50	0.51	4.4	<0.50				
GMW-8 11/16		<300		<0.50	<0.50	<0.50	<0.50	4.6	<0.50				
GMW-8 05/19		<300		<0.50	<0.50	<0.50	<0.50	15	<0.50				
GMW-8 11/29		<300		1.0	0.90	<0.50	1.5	10	2.9				
GMW-8 05/09		<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 11/07		<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 04/11		<300		<0.50	<0.50	<0.50	<0.50	2.5	2.4				
GMW-8 10/24 GMW-8 04/10		<300		<0.50 <0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50 0.62				
GMW-8 04/10 GMW-8 10/08		<50 <50		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.52	< 0.50				
GMW-8 10/08 GMW-8 04/21		<50 <50		<0.50	<0.50	<0.50	<0.50	0.52 <0.50	<0.50				
GMV-8 04/21 GMW-8 11/05		<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 05/05		<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 03/03		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 05/03		<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.78				
GMW-8 12/07		<50		<0.50	<0.50	<0.50	<0.50	<0.50	7.6				
GMW-8 05/05		<50		<0.50	<0.50	<0.50	<0.50	<0.50	6.5				
GMW-8 11/14		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 04/17		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 10/21		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-8 04/22		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-8 10/19		<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<1	<1	<1
GMW-8 05/26		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

							Ethyl-							
Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	benzene	Xylenes	1,2-DCA	MTBE	TBA	DIPE	ETBE	TAME
			(µg/L)	(ua/L)	(µg/L)	(µa/L)	(µa/L)	(µg/L)	(ua/L)	(µa/L)	(ua/L)	(ua/L)	(µg/L)	(µg/L)
GMW-8	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-8	06/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.4	0.59	<10	<1	<1	<1
GMW-8	04/15/14	CHHL	<100	93	<0.50	<0.50	< 0.50	< 0.50	3.5	0.80	<10	<1	<1	<1
GMW-8	10/29/14	BT for CH2MHill	<100	65 HD	<0.50	<0.50	<0.50	< 0.50	3.3	1.1	<10	<1.0	<1.0	<1.0
GMW-8	04/22/15	BT for CH2MHill	<50	60	<0.50	<0.50	< 0.50	< 0.50	3.3	1.7	<10	<1.0	<1.0	<1.0
GMW-8	10/22/15	BT for CH2MHill	<100	110 HD	< 0.50	< 0.50	< 0.50	< 0.50	4.6	1.5	<10	<1.0	<1.0	<1.0
GMW-8	04/15/16	BT for CH2MHill	<50	230	<0.50	<0.50	<0.50	< 0.50	4.3	1.4	<10	<1.0	<1.0	<1.0
GMW-8	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	1.9	0.55	<10	<1.0	<1.0	<1.0
GMW-9	10/07/10	Blaine Tech	6,800		890	62	120	650	<10	56	1,600	44	<10	<10
GMW-9	04/13/11	Blaine Tech	54,000		20,000	290	970	3,800	<200	3,600	<2,000	<200	<200	<200
GMW-9	10/13/11	CH2M Hill	61,000		18,000	6,500	760	3,400	<200	2,100	<2,000	<200	<200	<200
GMW-9	10/06/16	BT for CH2MHill	67	140	4.6	<0.50	<0.50	<0.50	0.64	0.84	110	13	<1.0	<1.0
GMW-10	10/08/10	Blaine Tech	4,800		360	<2.5	87	14	<5	<2.5	120	<5	<5	<5
GMW-10	04/14/11	Blaine Tech	5,700		370	2.0	93	7.9	<3	<1.5	100	<3	<3	<3
GMW-10	10/14/11	CH2M Hill	3,700		580	3.3	75	7.8	<5	<2.5	590	<5	<5	<5
GMW-10	04/27/12	CH2M Hill	3,000	3,100	360	<2	15	3.2	<4	<2	79	<4	<4	<4
GMW-10	10/19/12	CHHL	10,000	7,500	1,300	380	270	1,400	<10	<5	<100	<10	<10	<10
GMW-10	04/12/13	CHHL	14,000	100,000	210	65	48	310	<20	<10	<200	<20	<20	<20
GMW-10	10/11/13	CHHL	13,000	9,500	1,100	800	350	1,900	<20	<10	<200	<20	<20	<20
GMW-10	10/28/15	BT for CH2MHill	27,000	41,000 HD	1,100	2,400	730	3,800	<20	<10	<200	<20	<20	<20
GMW-11	11/21/96	Terra Services			<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-11	07/10/97	Terra Services	220	2,500	<0.50	4.0	0.90	<0.50	<0.50	<5				
GMW-11	01/07/98	Terra Services	4,000	220,000	<0.50	<0.50	<0.50	1.6	<0.50	<5				
GMW-11	05/20/98	Terra Services	42,400		<0.30	<0.30	<25	<50	<2.5	<0.50				
GMW-11	11/17/98	Alton Geoscience	6,230		<5	6.0	<5	11	<5	24				
GMW-11	05/07/99	Alton Geoscience	1,900	1,900	0.61	2.1	<0.50	0.62	<1	<0.50				
GMW-11	11/16/99	Secor	1,200		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	05/19/00	Secor	790		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	11/30/00	Secor	1,600		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-11	04/15/16	SGI	<100	440	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-8 (GMW-11)	04/15/16	SGI	<100	480	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-12	11/27/96	GSI	99	<500	<0.50	<0.50	<0.50	<1	<0.50	<1				
GMW-12	07/10/97	GTI	110	8,600	<5	<5	<5	<5	<5	<5				
GMW-12	01/06/98	GTI	<500	1,000	< 0.50	1.6	<0.50	<1	<0.50	<0.50				
GMW-12	05/21/98	BBC	<300		<0.30	<0.30	<0.50	<1	<0.50	<0.50				
GMW-12	11/05/98	GTI	<300		4.5	<0.50	3.0	1.7	<0.50	<0.50				
GMW-12	05/27/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-12	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
GMW-12	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-12	11/30/00	IT Corporation	<300		<0.50	<0.50 <0.50	<0.50	<0.50	<0.50	<0.50				
GMW-12	05/09/01	IT Corporation	<300		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50	<0.50				
GMW-12	11/07/01	IT Corporation	<300		<0.50			<0.50	<0.50	<0.50				
GMW-12	04/11/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-12	10/23/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
GMW-12	04/10/03	Secor GTI	<50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50				
GMW-12	04/14/03							<0.50						
GMW-12	10/10/03	BT for Parsons	<100		<0.50	<0.50	0.56	<0.50	<0.50	<0.50				
GMW-12	04/21/04	BT for Parsons	<100		<0.50	<0.50	<0.50	0.62	<0.50	<0.50	<10	<2	<2	<2
GMW-12	11/04/04	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-12	05/06/05	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	11/08/05	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	05/04/06	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	12/08/06	BT for Parsons	<100		< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	05/04/07	BT for Parsons	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	11/16/07	BT for Parsons			<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	04/18/08	BT for Parsons	<100		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-12	10/16/08	BT for Parsons	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	04/23/09	BT for Parsons	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	10/20/09	Blaine Tech for DESC	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	0.49 J	<10	<2	<2	<2
GMW-12	04/15/10	Blaine Tech for DESC			< 0.50	<0.50	<0.50	< 0.50		<0.50	<10	<2	<2	<2
GMW-12	10/08/10	BT for Parsons			<0.50				<0.50	<0.50	3.6 J			
GMW-12	04/11/11	BT for Parsons			<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	10/10/11	Parsons			<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	04/16/12	Parsons			< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	10/15/12	Parsons			< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	04/09/13	Parsons		650 b	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	10/08/13	Parsons	<100	700 HD	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	04/16/14	Parsons	<100	1,200 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-12	10/29/14	SGI	<100	1,100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-12	04/28/15	SGI	<100	960	< 0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-12	04/28/15	SGI	<100	930	<0.50	< 0.50	< 0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-12	10/10/16	SGI	<100	1.400	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-13	11/21/96	Terra Services			3.2	<0.50	0.73	1.2	<0.50	<5				
GMW-13	07/10/97	Terra Services	1,300	5,600	1.6	3.5	0.93	2.4	<0.50	<5				
GMW-13	01/08/98	Terra Services	<100	<500	1.9	1.6	<0.50	<1.5	<0.50	<5				
GMW-13	05/20/98	Terra Services	<300		< 0.30	<0.30	<25	0.80	<2.5	<0.50				
GMW-13	11/12/98	Alton Geoscience	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	05/07/99	Alton Geoscience	<500	<500	< 0.50	<0.50	<0.50	< 0.50	<1	<0.50				
GMW-13	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	05/17/00	Secor	<300		< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-13	11/30/00	Secor	<300		< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-13	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	2.6				
GMW-13	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	02/01/02	Secor			< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-13	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	10/22/02	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	<1				
GMW-13	04/09/03	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	3.1				
GMW-13	10/06/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	11/02/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	05/02/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	04/16/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	10/17/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-13	04/23/09	Blaine Tech for AMEC	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	10/23/09	Blaine Tech for DESC	<100		<0.50	<0.50	<0.50	<0.50	23	9.5	<10	3.8	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-13	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	04/13/11	BT for Parsons												
GMW-13	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-13	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-13	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-13	04/09/13	CHHL	<50 <50	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1	<1 <1	<1 <1
GMW-13 GMW-13	10/09/13 04/15/14	CHHL CHHL	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50	<10	<1 <1	<1	<1
GMW-13	10/29/14	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-13	04/21/15	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-13	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-13	04/13/16	BT for CH2MHill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-13	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-13	05/07/99	Alton Geoscience	<500 <500	<500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		×1.0		
GMW-14	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
GMW-14	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	04/22/04	Secor	59		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	11/02/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	05/06/05	Secor	<50		< 0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50				
GMW-14	11/01/05	Secor	<50		<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-14	03/08/06	BT for Parsons	520		2.6	<0.50	<0.50	<0.50	0.64	4.0	21	<2	<2	<2
GMW-14	05/02/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-14	11/14/07	Secor	1,500		<2.5	<2.5	34	3.0	<5	<2.5				
GMW-14	04/16/08	Secor	440		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-14	07/29/08	BT for Parsons	210		<0.50	<0.50	<0.50	<0.50	<0.50	2.2	18	<2	<2	<2
GMW-14	10/17/08	Stantec	210		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-14	04/23/09	Blaine Tech for AMEC	120		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-14	10/22/09	BT for Parsons	130		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	10	<1	<1	<1
GMW-14	04/16/10	BT for Parsons			160	<0.50	2.6	3.0	<0.50	13	15	<2	<2	0.79 J
GMW-14	10/07/10	Blaine Tech	160		<0.50	<0.50	<0.50	<0.50	<1	<0.50	<10	<1	<1	<1
GMW-14	04/13/11	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<1	< 0.50	<10	<1	<1	<1
GMW-14	10/12/11	CH2M Hill	58	420	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-14 GMW-14	04/19/12 10/17/12	CH2M Hill	<50 <50	130 150	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1
GMW-14 GMW-14	04/11/13	CHHL CHHL	<50 <50	150	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<10	<1 <1	<1	<1 <1
GMW-14 GMW-14	10/10/13	CHHL	<50 <50	110	<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<10	<1	<1	<1
GMW-14 GMW-14	04/16/14	CHHL	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.64	16	<1	<1	<1
GMW-14	10/30/14	BT for CH2MHill	<100	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	0.83	17	<1.0	<1.0	<1.0
GMW-14 GMW-15	05/20/98	BBC	1.300		3.9	<0.30	7.4	6.4	~0.50 	0.63		~1.0	×1.0	~1.0
GMW-15	11/05/98	GTI	512		1.8	<0.30	3.7	1.0						
GMW-15	05/27/99	GTI	634		2.5	<0.30	5.3	2.0						
GMW-15	11/18/99	IT Corporation	<300		<0.30	<0.30	< 0.30	<0.60						
GMW-15	05/16/00	IT Corporation	610		<0.30	<0.30	<0.30	<0.60						
011111 10	30/10/00	. i corporation	0.0		-0.00	.0.00	-0.00	-0.00	1		1	1	1	l II

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-15	12/01/00	IT Corporation	450		< 0.30	< 0.30	< 0.30	< 0.60		<5				
GMW-15	05/10/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	< 0.60		<5				
GMW-15	11/07/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
GMW-15	04/10/02	IT Corporation	1,900		1.2	< 0.30	1.6	3.8		<5				
GMW-15	10/23/02	GTI	840		0.58	< 0.30	0.72	1.5		<5				
GMW-15	04/10/03	GTI			<1	<1	<1	<2		<3				
GMW-15	10/08/03	BT for Parsons			< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-15	04/22/04	BT for Parsons			0.70	< 0.30	< 0.30	0.47		<5				
GMW-15	11/06/04	BT for Parsons			< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-15	05/06/05	BT for Parsons			< 0.30	0.47	< 0.30	< 0.30		<5				
GMW-15	11/08/05	BT for Parsons			< 0.30	0.31	< 0.30	< 0.30		<5				
GMW-15	05/03/06	BT for Parsons			< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-15	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-15	05/02/07	BT for Parsons			<0.50	<0.50	<0.50	1.2		<5				
GMW-15	05/02/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-15	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-15	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-15	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	04/21/09	BT for Parsons	180		<0.50	<0.50	<0.50	<0.50		5.4				
GMW-15	10/20/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.1	4.5 J	<2	<2	<2
GMW-15	04/15/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		5.7	<10	<2	<2	<2
GMW-15	10/05/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
GMW-15	04/14/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	10/10/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	04/19/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	10/15/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	12	<10	<2	<2	<2
GMW-15	04/10/13	Parsons		6200 b	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<10	<2	<2	<2
GMW-15	10/08/13	Parsons	350 HD	4,600 HD	<0.50	<0.50	0.19 J	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	04/16/14	Parsons	250 HD	2,700 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-15	10/30/14	SGI	<100	1,900	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-15	04/28/15	SGI	<100	1,500	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-15	10/23/15	SGI	<100	1,300	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-15	04/14/16	SGI	<100	3,700	0.56	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-15	10/10/16	SGI	<100	2,400	< 0.50	< 0.50	<0.50	<1.5	< 0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-16	11/21/96	GSI	<38	<500	<0.50	<0.50	0.80	<1.5	<0.50					
GMW-16 GMW-16	07/09/97	GTI GTI	<50 <500	110	5.7 <0.50	<5 <0.50	9.2 <0.50	7.5 <1	<5 <0.50	<5 <0.50				
	01/06/98			<100					<0.50					
GMW-16 GMW-16	05/20/98 11/04/98	BBC GTI	<300 <300		<0.30 <0.30	<0.30 <0.30	<0.30 <0.30	<0.60 <0.60						
GMW-16	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-16	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-16	05/16/00		<300		<0.30	<0.30	<0.30	<0.60						
GMW-16	11/29/00	IT Corporation	<300		0.64	1.2	0.85	3.2		<5				
GMW-16	05/10/01	IT Corporation IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5 <5				
GMW-16	11/07/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		9.1				
GMW-16	04/10/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		9.1 <5				
GMW-16	10/23/02	GTI	<300		<0.30	<0.30	<0.30	<0.30		<5				
GMW-16	04/11/03	GTI			<0.30	<0.30	<0.30	<2		<3				
GMW-16	10/08/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-16	04/22/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-16	11/06/04	BT for Parsons			<0.30	<0.30	<0.30	0.59		<5 <5				
GMW-16	05/06/05	BT for Parsons			<0.30	0.58	<0.30	< 0.30		<5				
GIVIVV-10	33/00/03	בו וטו ו מוסטווא			₹0.00	0.50	~0.00	~0.00		, ,				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-16	11/08/05	BT for Parsons			<0.30	0.48	< 0.30	< 0.30		<5				
GMW-16	05/03/06	BT for Parsons			<0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-16	12/06/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-16	05/02/07	BT for Parsons			< 0.50	<0.50	< 0.50	<1		<5				
GMW-16	11/14/07	BT for Parsons			<0.50	<0.50	< 0.50	<1		<5				
GMW-16	04/16/08	BT for Parsons			<0.50	<0.50	< 0.50	<1		<5				
GMW-16	10/15/08	BT for Parsons			< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-16	04/21/09	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50		<0.50				
GMW-16	10/20/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-16	04/12/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50	<10	<2	<2	<2
GMW-16	10/05/10	BT for Parsons			< 0.50				< 0.50	<0.50	<10			
GMW-16	10/10/11	Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-16	04/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-16	10/15/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-16	04/10/13	Parsons		190 b	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-16	10/08/13	Parsons	<100	250 HD	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-16	04/14/14	Parsons	<100	<100	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-16	10/27/14	SGI	<100	190	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-16	04/24/15	SGI	<100	180	< 0.50	<0.50	< 0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-17	05/10/01	IT Corporation	6,800		52	25	<15	330		<250				
GMW-17	10/24/02	GTI	49,000		91	<30	<30	160		<500				
GMW-17	04/14/03	GTI			572	5.6	75	367		<15				
GMW-17	10/10/03	BT for Parsons			240	1.5	9.5	41		<10				
GMW-17	04/22/04	BT for Parsons			540	4.6	24	190		63				
GMW-17	11/06/04	BT for Parsons			110	< 0.30	2.1	6.1		19				
GMW-17	05/10/05	BT for Parsons			7.9	3.6	<1.5	2.6		<25				
GMW-17	11/08/05	BT for Parsons			3.7	<0.30	0.37	1.9		7.0				
GMW-17	05/05/06	BT for Parsons			3.7	2.2	1.6	4.5		<5				
GMW-17	12/08/06	BT for Parsons			34	<0.50	1.9	30		<5				
GMW-17	05/03/07	BT for Parsons			9.1	<0.50	0.92	9.0		7.7				
GMW-17	11/14/07	BT for Parsons			4.8	<0.50	<0.50	<1		<5				
GMW-17	04/18/08	BT for Parsons			5.3	<0.50	0.62	1.4		<5				
GMW-17	10/17/08	BT for Parsons			2.6	<0.50	0.57	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-17	04/22/09	BT for Parsons	450		27	<0.50	2.4	<0.50		<0.50		<0.50	<0.50	<0.50
GMW-17	10/20/09	BT for Parsons			0.42 J	<0.50	<0.50	<0.50	<0.50	<0.50	9.5 J	<2	<2	<2
GMW-17	04/14/10	BT for Parsons	1,200		59	0.34 J	5.5	2.0		<0.50	<10	<2	<2	<2
GMW-17	10/05/10	BT for Parsons	1,200		79				<0.50	<0.50	5.2 J			
GMW-17	04/15/11	BT for Parsons	750		13	0.55	4.6	0.82	<0.50	<0.50	<10	<2	<2	<2
GMW-17	10/10/11	Parsons	<1,100		50	<0.77	28	6.5	<0.50	<0.50	<10	<2	<2	<2
GMW-17	04/20/12	Parsons	610		1.2	<0.50	0.18 J	0.71 J	<0.50	<0.50	29	<2	<2	<2
GMW-17	04/12/13	Parsons	1,000 b	6,700	55	1.1	1.2	14	<0.50	<0.50	31	<2	<2	<2
GMW-17	10/09/13	Parsons	680 HD	4,200 HD	16	1.2	1.7	12	<0.50	0.48 J	30	<2	<2	<2
GMW-17	04/18/14	Parsons	1,400 HD	5,700 HD	38	1.9	2.3	21	<0.50	0.42 J	48	<2	<2	<2
GMW-17	10/31/14	SGI	510	2,300	10	1.5	<0.50	2.7	<0.50	<2.0	30	<2.0	<2.0	<2.0
GMW-17	10/31/14	SGI	460	2,200	11	1.5	<0.50	2.7	<0.50	<2.0	17	<2.0	<2.0	<2.0
GMW-18	04/14/03	GTI			3,410	3,510	3,070	17,800		<150				
GMW-18	10/08/03	BT for Parsons			2,600	120	360	3,100		<1,000				
GMW-18	04/21/04	BT for Parsons			2,700	<50	380	4,288		<50				
GMW-18	11/04/04	BT for Parsons			1,300	<3	220	2,400		<50				
GMW-18	05/06/05	BT for Parsons			1,100	22	140	1,200		<50				
GMW-18	11/08/05	BT for Parsons			650	11	17	470		<100				
GMW-18	05/04/06	BT for Parsons			200	1.9	15	100		6.9				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	ТРН-д	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-18	12/08/06	BT for Parsons			320	<0.50	25	190		11				
GMW-18	05/03/07	BT for Parsons			200	<2.5	13	56		<25				
GMW-18	11/15/07	BT for Parsons			160	<0.50	4.1	26		5.5				
GMW-18	04/17/08	BT for Parsons			180	0.87	13	100		6.7				
GMW-18	10/16/08	BT for Parsons			33	<0.50	2.2	11	<0.50	4.7	12	<2	<2	<2
GMW-18	04/23/09	BT for Parsons	880		60	<0.50	1.4	5.0	<0.50	3.0	13	<2	<2	<2
GMW-18	10/20/09	BT for Parsons			15	<0.50	0.55	5.6	<0.50	7.0	13	<2	<2	<2
GMW-18	04/16/10	BT for Parsons	1,500		80	0.84	0.49 J	1.6	4.7	7.3	43	<2	<2	<2
GMW-18	04/20/12	Parsons	2,100		67	0.4 J	1.1	5.9	1.7	3.5	57	<2	<2	<2
GMW-18 GMW-18	07/10/12 11/03/14	Parsons SGI	15.000	230.000	94 110	0.42 J 0.93	0.94 120	3.9 338	<0.50 <0.50	3.9 4.2	27 <10	<2 <2.0	<2 <2.0	<2 <2.0
GMW-18	11/03/14	SGI	37.000	220.000	220	0.93 <50	120	440	<0.50 <50	<200	<1.000	<200	<2.0	<2.0
GMW-18	04/21/15	SGI	4.300	300.000	290	<5.0	75	270	<5.0	<200	<100	<200	<20	<200
GMW-10 GMW-19	11/27/96	GSI	3,000	<500	85	<2.5	23	<5						
GMW-19	07/10/97	GTI	<50	<50	2.5	<1	<1	<2						
GMW-19	01/07/98	GTI	<500	<100	<0.30	<0.30	<0.30	<0.60						
GMW-19	05/21/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
GMW-19	11/06/98	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-19	05/27/99	GTI	<300		< 0.30	<0.30	< 0.30	<0.60						
GMW-19	11/18/99	IT Corporation	<300		< 0.30	< 0.30	< 0.30	< 0.60						
GMW-19	05/17/00	IT Corporation	<300		0.47	0.45	< 0.30	0.95						
GMW-19	12/01/00	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
GMW-19	05/09/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
GMW-19	11/08/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-19	04/11/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-19	10/23/02	GTI	<300		<0.30	<0.30	<0.30	<0.30		<5				
GMW-19	04/14/03	GTI			<1	<1	<1	<2		<3				
GMW-19	10/10/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		15				
GMW-19	04/21/04	BT for Parsons			<0.50	<1 <0.30	<1 <0.30	<1		28 <5				
GMW-19 GMW-19	11/04/04 05/06/05	BT for Parsons BT for Parsons			<0.30 <0.30	<0.30	<0.30	<0.30 0.69		<5 <5				
GMW-19	11/08/05	BT for Parsons			0.52	0.71	0.40	2.0		<5				
GMW-19	05/04/06	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-19	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-19	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-19	11/15/07	BT for Parsons			0.50	<0.50	<0.50	<1		<5				
GMW-19	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-19	10/16/08	BT for Parsons			0.60	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-19	04/23/09	BT for Parsons			0.70	<0.50	<0.50	<0.50		0.67		<0.50	<0.50	<0.50
GMW-19	10/20/09	BT for Parsons			3.8	<0.50	<0.50	<0.50	<0.50	1.5	<10	<2	<2	<2
GMW-19	04/16/10	BT for Parsons			130	<0.50	0.66	<0.50		21	12	<2	<2	0.52 J
GMW-19	10/08/10	BT for Parsons			2.4				<0.50	2.7	<10			
GMW-19	10/10/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-19	04/18/12	Parsons			3.8	<0.50	<0.50	<0.50	<0.50	0.88	<10	<2	<2	<2
GMW-19	10/15/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<10	<2	<2	<2
GMW-19 GMW-19	04/10/13 10/07/13	Parsons	<100	1200 b <100	35 0.81	0.38 J <0.50	<0.50 <0.50	0.35 J <0.50	<0.50 <0.50	58 2.3	22 <10	<2 <2	<2 <2	<2 <2
GMW-19 GMW-19	10/07/13 04/14/14	Parsons Parsons	<100 <100	<100 <100	0.81 2.8	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	0.83	<10 <10	<2 <2	<2 <2	<2 <2
GMW-19 GMW-19	10/28/14	SGI	<100	130	2.8 <0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-19	10/28/14	SGI	<100	120	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-19	04/28/15	SGI	490	1,000	90	<0.50	0.50	0.55	<0.50	20	12	<2.0	<2.0	<2.0
GMW-19	10/23/15	SGI	<100	390	9.2	<0.50	<0.50	<1.5	<0.50	17	<10	<2.0	<2.0	<2.0
J	.0,20,.0				ı	0.00	0.00		0.00	• •				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-20	11/27/96	GSI	1,100	<500	<2.5	<2.5	<2.5	< 5	<2.5					
GMW-20	07/10/97	GTI	160	1,400	<5	<5	<5	<5	<5	<5				
GMW-20	01/06/98	GTI	<500	1,100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
GMW-20	05/21/98	BBC	400		< 0.30	< 0.50	< 0.50	<0.10	< 0.50	< 0.50				
GMW-20	11/05/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	05/27/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	11/18/99	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
GMW-20	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.50				
GMW-20	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	04/11/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-20	04/24/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-20	10/20/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-20	10/05/16	SGI	<100	<100	< 0.50	< 0.50	< 0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-21	11/03/14	SGI	1,500	2,500	11	1.6	31	165	<0.50	3.8	24	<2.0	<2.0	<2.0
GMW-21	04/29/15	SGI	300	2,200	1.1	<0.50	<0.50	<1.5	<0.50	2.7	24	<2.0	<2.0	<2.0
GMW-21	04/29/15	SGI	300	2,100	1.1	<0.50	<0.50	<1.5	<0.50	3.1	29	<2.0	<2.0	<2.0
GMW-21	04/14/16	SGI	170	1,300	<0.50	<0.50	<0.50	<1.5	<0.50	2.8	<10	<2.0	<2.0	<2.0
GMW-21	10/10/16	SGI	130	2,500	<0.50	<0.50	<0.50	<1.5	<0.50	1.5	<10	<2.0	<2.0	<2.0
GMW-22	10/04/10	Blaine Tech	4,100		1,900	<10	55	38	<20	47	1,300	50	<20	<20
GMW-22	10/14/11	CH2M Hill	28,000		13,000	<100	470	200	<200	130	<2,000	<200	<200	<200
GMW-22	04/20/12	CH2M Hill	46,000	1,300	20,000	<100	650	130	<200	140	<2,000	<200	<200	<200
GMW-22	10/18/12	CHHL	32,000	1,300	16,000	120	420 <0.30	140	<200	180	<2,000	<200	<200	<200
GMW-23	11/08/05	BT for Parsons BT for CH2MHill	24.000	 F2 000	<0.30	0.40 690	<0.30 260	< 0.30	<100	<5 <50	<1.000	<100	<100	<100
GMW-23 GMW-23	10/31/14 04/23/15	BT for CH2MHill	34,000 37.000	53,000 240.000	11,000 2,100	870	490	2,100 5,600	<30	<15	<1,000 360	46	<30	<30
GMW-23	10/06/16	BT for CH2MHill	130	6,100	2,100	<0.50	<0.50	< 0.50	<0.50	<0.50	14	4.8	<1.0	<1.0
GMW-24	04/29/11	Blaine Tech	70.000		19.000	830	1.700	4.200	<200	530	<2.000	<200	<200	<200
GMW-24	10/13/11	CH2M Hill	58.000		23.000	2.400	890	2.600	<200	490	<2,000	<200	<200	<200
GMW-25	10/13/11	Blaine Tech	15.000		6.900	2,400	70	< 50	<100	92	<1.000	<100	<100	<100
GMW-25	04/14/11	Blaine Tech	12,000		6,800	<25	<25	<25	<50	36	<500	<50	<50	<50
GMW-25	10/13/11	CH2M Hill	<20.000		9.700	<100	220	<100	<200	<100	<2.000	<200	<200	<200
GMW-25	10/06/16	BT for CH2MHill	70	780	<0.50	<0.50	<0.50	1.1	0.88	0.50	18	1.2	<1.0	<1.0
GMW-26	11/27/96	Terra Services			46	2.7	18	8.8	110	950		1.2		×1.0
GMW-26	07/10/97	Terra Services	430	<500	100	2.1	6.9	5.9	67	760				
GMW-26	01/08/98	Terra Services	200	<500	23	11	5.0	<15	64	1,200				
GMW-26	05/22/98	Terra Services	500		<0.30	<0.50	<0.50	<0.10	260	460				
GMW-26	11/17/98	Alton Geoscience	1.810		310	<5	8.0	<5	<5	3,460				
GMW-26	05/07/99	Alton Geoscience	2,300	<500	490	26	70	140	<5	6,100				
GMW-26	11/19/99	Secor	6,700		3,700	160	42	530	<25	8,500				
GMW-26	05/16/00	Secor	2,000		1.9	<0.50	<0.50	<0.50	0.80	82				
GMW-26	11/30/00	Secor	780		<0.50	<0.50	<0.50	<0.50	3.1	17				
GMW-26	05/08/01	Secor	300		<0.50	<0.50	<0.50	<0.50	13	390				
GMW-26	11/06/01	Secor	<300		0.70	<0.50	<0.50	<0.50	75	130				
GMW-26	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	57	130				
GMW-26	07/07/03	Geomatrix			<0.50	<1	<1	<1	1.2	61				
GMW-26	04/27/04	Geomatrix	63		<0.50	<0.50	<0.50	<0.50	16	59				
GMW-26	07/08/04	Geomatrix	62		<0.50	<0.50	<0.50	<0.50	17	27				
GMW-26	04/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<10	1.3	<1.0	<1.0
GMW-26	10/26/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.80	<0.50	<10	<1.0	<1.0	<1.0
GMW-26	04/14/16	BT for CH2MHill	<50	76	<0.50	<0.50	<0.50	<0.50	1.1	0.72	<10	1.4	<1.0	<1.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-26	10/06/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	2.3	0.64	<10	2.0	<1.0	<1.0
GMW-27	05/27/98	Terra Services	2,800		940	6.0	4.0	11	76	1,570				
GMW-27	11/17/98	Alton Geoscience	4,220		3,200	<50	<50	<50	<50	530				
GMW-27	05/07/99	Alton Geoscience	6,300	<500	3,600	16	11	<10	<25	720				
GMW-27	11/18/99	Secor	3,300		1,100	<25	<25	<25	<25	1,000				
GMW-27	05/16/00	Secor	5,500		2,600	<25	25	34	<25	1,800				
GMW-27	11/30/00	Secor	4,900		2,100	<25	<25	<25	<25	1,600				
GMW-27	05/08/01	Secor	5,300		2,600	<25	<25	<25	<25	2,200				
GMW-27	11/06/01	Secor	4,100		1,600	6.4	6.7	28	<0.50	1,900				
GMW-27	04/09/02	Secor	4,900		2,300	<10	15	<10	<10	1,800				
GMW-27	10/23/02	Secor	590		1,800	13	<10	13	<10	1,400				
GMW-27	04/08/03	Secor	4,600		2,700	<15	<15	17	<30	2,000				
GMW-27	10/07/03	Secor	10,000		4,400	<20	47	120	<40	1,800				
GMW-27	01/27/04	Secor	8,100		3,600	19	29	115	<30	1,500				
GMW-27	04/21/04	Secor	13,000		6,200	<25	51	<25	<50	2,500				
GMW-27	07/08/04	Geomatrix	1,900		260	<2.5	<2.5	<2.5	<5	790				
GMW-27	11/03/04	Secor	21,000		8,800	<50	53	170	<100	700				
GMW-27	05/06/05	Secor	1,100		440	<2.5	<2.5	4.3	<5	42				
GMW-27	11/03/05	Secor	4,100		2,000	<10	<10	17	<20	250				
GMW-27	05/09/06	Secor	5,500		2,800	<15	22	<15	<30	180				
GMW-27	12/06/06	Secor	12,000		6,400	<50	120	<50	<100	210				
GMW-27	05/02/07	Secor	13,000		7,400	<50	<50	<50	<100	230				
GMW-27	11/13/07	Secor	11,000		6,000	<25	<25	<25	<50	57				
GMW-27	04/18/08	Secor	380		130	<1.5	<1.5	<1.5	<3	21				
GMW-27	08/14/08	Secor	1,000		280	<1.5	1.5	1.6	<3	17				
GMW-27	11/21/08	Stantec	3,100		1,100	<10	<10	<10	<20	26				
GMW-27	04/20/09	Blaine Tech for AMEC	100		1.8	<0.50	<0.50	<0.50	<0.50	4.2	450	10	<1	<1
GMW-27	10/22/09	BT for Parsons	130		<0.50	<0.50	<0.50	<0.50	<0.50	5.7	830	17	<1	<1
GMW-27	05/27/10	Blaine Tech	95		<0.50	<0.50	<0.50	<0.50	<0.50	2.6	<10	10	<1	<1
GMW-27 GMW-27	10/07/10 04/13/11	Blaine Tech	130 <100		1.9	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50	6.2 0.91	900 480	17 12	<1	<1
· - · - ·		Blaine Tech			<0.50			<0.50	<1				<1	<1
GMW-27	10/12/11	CH2M Hill	<50		<0.50	< 0.50	<0.50	< 0.50	<0.50	0.99	300 380	6.0	<1	<1
GMW-27	04/19/12	CH2M Hill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.54		6.8	<1 <1	<1
GMW-27 GMW-27	10/18/12 04/11/13	CHHL CHHL	<50 <100	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <1	<0.50 0.57	300 380	5.0 7.8	<1	<1 <1
GMW-27	10/10/13		<50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	570	9.3	<1	<1
GMW-27	04/16/14	CHHL CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	460	6.9	<1	<1
GMW-27	10/30/14	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	260	6.7	<1.0	<1.0
GMW-27	10/30/14	BT for CH2MHill	<100	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	340	6.4	<1.0	<1.0
GMW-28	05/07/99	Alton Geoscience	43.000	<500	22.000	780	1.400	3,000	<130	1,900	340		~1.0	
GMW-28	05/07/99	Secor	19.000		9.600	<50	370	160	<50	1,300				
GMW-28	11/28/00	Secor	26,000		13,000	53	650	1,139	<0.50	1,600				
GMW-28	05/08/01	Secor	30.000		15,000	190	660	310	<0.50	4.000				
GMW-28	11/06/01	Secor	20.000		14,000	51	460	241	<0.50	3,200				
GMW-28	04/09/02	Secor	24,000		9,100	79	320	110	<50 <50	1,200				
GMW-28	07/07/03	Geomatrix			18.000	140	800	450	<50	530				
GMW-28	04/28/04	Geomatrix	40,000		22.000	180	1,200	570	<200	280				
GMW-28	07/08/04	Geomatrix	46,000		20,000	120	1,000	560	<200	280				
GMW-28	10/31/14	BT for CH2MHill	330	170	23	<0.50	<0.50	<0.50	<0.50	82	38	26	<1.0	<1.0
GMW-28	04/21/15	BT for CH2MHill	1.200	120	670	<5.0	<5.0	<5.0	<10	100	<100	25	<1.0	<1.0
GMW-28	10/26/15	BT for CH2MHill	280	360	3.3	<0.50	<0.50	2.7	<0.50	73	20	18	<1.0	<1.0
GMW-28	04/15/16	BT for CH2MHill	600	89	370	<2	4.5	2.7 <2	<4	25	<40	8.6	<4	<4
O1V1VV-20	07/10/10	DI IOI OI IZIVII IIII	550	0.9	570	٠٧.	7.0	-2			- -1 0	0.0		-4

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GMW-28 GMW-29	40/00/40			TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	TBA	DIPE	ETBE	TAME
GMW-29	40/00/40		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	10/06/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.6	46	19	<1.0	<1.0
	11/28/00	Secor	1,600		170	97	8.0	300	<0.50	54				
GMW-29	05/08/01	Secor	2,200		1,300	59	21	30	<0.50	<0.50				
GMW-29	04/09/02	Secor	13,000		5,400	4,500	240	1,120	<1	34				
GMW-29	07/08/03	Geomatrix			4,100	670	410	880	<25	<50				
GMW-29	04/28/04	Geomatrix	40,000		8,700	6,000	910	2,800	<200	<100				
GMW-29	07/08/04	Geomatrix	45,000		8,900	6,500	900	4,000	<100	<50				
GMW-30	04/15/16	BT for CH2MHill	14,000	2,400	3,600	16	85	860	<30	<15	<300	<30	<30	<30
GMW-30	10/07/16	BT for CH2MHill	360	3,600	24	0.60	2.6	3.0	1.2	2.3	27	6.0	<1.0	<1.0
GMW-31	11/27/96	GSI	1,100	<500	<2.5	<2.5	<2.5	<5						
GMW-31	07/10/97	GTI	55	550	2.0	<1	<1	<2						
GMW-31	01/07/98	GTI	<500	<100	1.6	<0.30	<0.30	<0.60						
GMW-31	05/21/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
GMW-31	11/06/98	GTI	<300		4.8	<0.30	3.5	<0.60						
GMW-31	05/27/99	GTI	<300		<0.30	<0.30	0.52	<0.60						
GMW-31	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-31	05/17/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-31	12/01/00	IT Corporation	530		<0.30	<0.30	<0.30	<0.60		<5				
GMW-31	05/10/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-31	11/07/01	IT Corporation	<300		0.80	0.49	<0.30	<0.60		9.9				
GMW-31	04/10/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-31	10/24/02	GTI	<300		<0.30	0.49	<0.30	<0.30		<5				
GMW-31	04/14/03	GTI			<1	<1	<1 <0.30	<2		<3				
GMW-31 GMW-31	10/10/03	BT for Parsons			0.39 <0.30	<0.30 <0.30	<0.30	<0.30		<5				
	04/22/04	BT for Parsons				<0.30	<0.30	<0.30		<5 -5				
GMW-31 GMW-31	11/06/04 05/07/05	BT for Parsons			<0.30 <0.30	<0.30 0.64	<0.30	<0.30 <0.30		<5 <5				
GMW-31	11/08/05	BT for Parsons BT for Parsons			<0.30	< 0.30	<0.30	<0.30		<5 <5				
GMW-31	05/05/06	BT for Parsons			<0.30	0.79	0.50	2.4		<5 <5				
GMW-31	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	2.4 <1		<5 <5				
GMW-31	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5 <5				
GMW-31	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-31	04/18/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5 <5				
GMW-31	10/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	04/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50		<0.50	<0.50	<0.50
GMW-31	10/20/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<10	<2	<2	<2
GMW-31	04/14/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	~0.50 	< 0.50	4.6 J	<2	<2	<2
GMW-31	10/08/10	BT for Parsons			<0.50	70.50	~0.50 	~0.50 	<0.50	<0.50	6.5 J			
GMW-31	04/11/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	10/10/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	04/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	04/08/13	Parsons		120 b	<0.50	<0.50	<0.50	<0.50	<0.50	0.67	<10	<2	<2	<2
GMW-31	10/07/13	Parsons	<100	210 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	04/14/14	Parsons	<100	170 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-31	10/29/14	SGI	<100	160	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-31	04/28/15	SGI	<100	340	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-32	11/27/96	GSI	430	<500	13	<0.50	25	<1						
GMW-32	07/10/97	GTI	63	1.800	1.7	<1	<1	<2						
GMW-32	01/06/98	GTI	<500	<100	0.40	<0.30	0.70	<0.60						
GMW-32	05/21/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
GMW-32	11/05/98	GTI	<300		<0.30	<0.30	0.62	<0.60						

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-32	11/06/98	GTI												
GMW-32	05/27/99	GTI	<300		3.1	<0.30	5.0	1.4						
GMW-32	11/18/99	IT Corporation	<300		4.3	<0.30	6.9	1.2						
GMW-32	05/17/00	IT Corporation	500		8.0	3.4	16	14						
GMW-32	11/30/00	IT Corporation	330		<0.30	<0.30	4.2	<0.60		<5				
GMW-32	05/09/01	IT Corporation	1,000		4.7	<0.30	1.2	2.8		<5				
GMW-32	11/07/01	IT Corporation	660		4.2	0.63	5.7	2.0		<5				
GMW-32	02/01/02	Secor	<300		0.89	<0.50 <0.30	0.53	0.69	<0.50	0.77				
GMW-32 GMW-32	04/11/02 10/23/02	IT Corporation GTI	<300		1.5 <0.30	<0.30	7.2 <0.30	<0.60 <0.30		<5 <5				
GMW-32	04/09/03	GTI			<0.30	1.2	<1	<2		<3				
GMW-32	10/10/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-32	04/21/04	BT for Parsons			0.52	<0.30	<1	<0.30		<1				
GMW-32	11/04/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-32	05/06/05	BT for Parsons			0.31	0.64	<0.30	0.76		<5				
GMW-32	11/08/05	BT for Parsons			<0.30	0.41	<0.30	0.70		<5				
GMW-32	05/04/06	BT for Parsons			0.46	0.39	0.62	1.4		<5				
GMW-32	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-32	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-32	11/16/07	BT for Parsons			< 0.50	<0.50	< 0.50	<1		<5				
GMW-32	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-32	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-32	04/24/09	BT for Parsons			< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-32	10/20/09	BT for Parsons			< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-32	04/16/10	BT for Parsons			< 0.50	< 0.50	0.41 J	< 0.50		< 0.50	<10	<2	<2	<2
GMW-32	10/07/10	BT for Parsons			< 0.50				<0.50	<0.50	<10			
GMW-32	04/14/11	BT for Parsons			<0.50	<0.50	0.25 J	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-32	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-32	04/19/12	Parsons			<0.50	<0.50	<0.50	0.26 J	< 0.50	<0.50	<10	<2	<2	<2
GMW-32	10/19/12	Parsons			0.2 J	<0.50	0.14 J	0.32	< 0.50	<0.50	<10	<2	<2	<2
GMW-32	04/10/13	Parsons		1,300 b	<0.50	<0.50	<0.50	0.3 J	<0.50	<0.50	<10	<2	<2	<2
GMW-32	10/08/13	Parsons	<100	1,200 HD	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	7.3 J	<2	<2	<2
GMW-32	04/16/14	Parsons	440 HD	1,500 HD	<0.50	<0.50	0.41 J	0.80	<0.50	0.67	17	<2	<2	<2
GMW-32	10/30/14	SGI	290	1,500	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	13	<2.0	<2.0	<2.0
GMW-33	11/21/96	GSI	<38	<500	<0.50	<0.50	<0.50	<1.5	<0.50					
GMW-33	07/10/97	GTI	<50	700	<5	<5	<5	<5	<5	<5				
GMW-33 GMW-33	01/06/98 05/20/98	GTI BBC	<500 <300	<100	<0.50 <0.30	<0.50	<0.50 <0.50	<1	<0.50 <0.50	<0.50 <0.50				
GMW-33 GMW-33	11/05/98	GTI	<300 <300		<0.30	<0.50 <0.50	<0.50 <0.50	<1 <0.50	<0.50 <0.50	<0.50 <0.50				
GMW-33 GMW-33	05/27/99 11/18/99	GTI IT Corporation	<300 <300		<0.50 <0.50	<0.50 <1	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
GMW-33	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-33	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-33	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-33	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-33	02/01/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-33	04/11/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
GMW-34	11/18/99	IT Corporation	9.500		30	3.5	8.3	81	<0.50	24				
GMW-34	05/17/00	IT Corporation	740		<0.50	<0.50	1.5	11	<0.50	30				
GMW-34	12/01/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	10				
GMW-34	05/10/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	7.3				
GMW-34	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.2				
		triporduon		1	00		00	2.00			I	1	1	ıl

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well Date Sampled By TPH-g TPH-d Benzene Toluc (μq/L) (μq/L)	benzene (μq/L) (μq/L) .4 33 .11 580 .31 109 .15 120 .1 45 .3 13	Xylenes (μq/L) 81 4,100 159 650 7.3	1,2-DCA (μg/L) <0.50 <10	(µg/L) 2.5 <10 <3	ΤΒΑ (μα/L)	(µq/L)	(µg/L)	(µq/L)
GMW-34 04/12/02 IT Corporation 960 240 1.4 GMW-35 05/09/01 IT Corporation 20,000 1,300 11 GMW-35 04/10/03 GTI 65 31 GMW-35 10/10/03 BT for Parsons 100 <1: GMW-35 04/21/04 BT for Parsons 110 <1 GMW-35 11/04/04 BT for Parsons 62 <3 GMW-35 05/05/05 BT for Parsons 10 1.4	.4 33 11 580 31 109 15 120 <1 45 <3 13	81 4,100 159 650	<0.50 <10	2.5 <10				
GMW-34 04/12/02 IT Corporation 960 240 1.4 GMW-35 05/09/01 IT Corporation 20,000 1,300 11 GMW-35 04/10/03 GTI 65 31 GMW-35 10/10/03 BT for Parsons 100 <1:	11 580 31 109 15 120 <1 45 <3 13	81 4,100 159 650	<10 	<10				
GMW-35 04/10/03 GTI 65 31 GMW-35 10/10/03 BT for Parsons 100 <1:	31 109 15 120 <1 45 <3 13	159 650						
GMW-35 10/10/03 BT for Parsons 100 <1: GMW-35 04/21/04 BT for Parsons 110 <1	15 120 <1 45 <3 13	650		<3				
GMW-35 04/21/04 BT for Parsons 110 <1 GMW-35 11/04/04 BT for Parsons 62 <3	<1 45 <3 13			-0				
GMW-35 11/04/04 BT for Parsons 62 <3 GMW-35 05/05/05 BT for Parsons 10 1.4	<3 13	7 2		<250				
GMW-35 05/05/05 BT for Parsons 10 1.4		1.3		1.5				
	4	28		<50				
0101105	.4 33	22		<10				
GMW-35 11/05/05 BT for Parsons 9.1 2.2	2.2 31	17		<25				
GMW-35 05/03/06 BT for Parsons 7.9 2.9		12		<5				
GMW-35 12/08/06 BT for Parsons 14 <0.5		6.9		<5				
GMW-35 05/04/07 BT for Parsons 21 0.8		5.3		6.1				
GMW-35 11/15/07 BT for Parsons 26 <0.5		<1		7.7				
GMW-35 04/17/08 BT for Parsons 18 <0.5		2.5		<5				
GMW-35 04/24/09 BT for Parsons 63 <5		<5		210		<5	<5	<5
GMW-35 04/16/10 BT for Parsons 180 0.88		0.70		13	2,200	<4	<4	<4
GMW-36 07/10/97 Terra Services 430 <500								
GMW-36 01/09/98 Terra Services 4,000 4,300 22 21		100	<5	7,700				
GMW-36 05/20/98 Terra Services 1,400 <0.30 <0.3		<20	<0.50	19,600				
GMW-36 11/17/98 Alton Geoscience 7,900 2,100 1,3 7		650	<50	34,800				
GMW-36 05/07/99 Alton Geoscience 2,800 <500 <10 <10		<10	<25	14,000				
GMW-36 11/18/99 Secor 51,000 8,100 5,60		1,770	<250	47,000				
GMW-36 05/17/00 Secor 59,000 14,000 6,7 0		4,100	<130	45,000				
GMW-36 11/30/00 Secor 110,000 20,000 19,0	,	8,100	<0.50	13,000				
GMW-36 02/06/01 Secor 75,000 18,000 13,0	,	6,100	<50	9,100				
GMW-36 05/10/01 Secor 12,000 3,700 2,50		1,730	<0.50	1,600				
GMW-36 09/19/01 Secor 21,000 5,800 3,60		2,080	<13	1,000				
GMW-36 11/06/01 Secor 63,000 16,000 13,0		7,700	<25	3,200				
GMW-36 01/30/02 Secor 130,000 21,000 20,0	,	9,000	<125	42,000				
GMW-36 04/10/02 Secor 150,000 25,000 22,0	,	10,000	<50	67,000				
GMW-36 07/30/02 IT Corporation 81,000 28,000 29,0		11,800	<50	37,000				
GMW-36 12/06/06 Secor 32,000 5,300 4,30		4,300	<50	1,600				
GMW-36 03/13/07 Secor 54,000 9,400 12,0 GMW-36 05/05/07 Secor 69,000 9,800 11.0	,	8,200	<200 <200	3,800				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	8,000	120	3,900 890				
7.1		4,500 4,600	<50	43				
		6,200	<200	43				
GMW-36 04/16/08 Secor 42,000 5,200 8,30 GMW-36 10/16/08 Stantec 17,000 2,100 2,00		2,300	<200	26				
GMW-36 07/22/09 BT for Parsons 24.000 3.800 5.40		3,380	<50	28	<500	<50	<50	<50
GMW-36 03/16/10 BT for Parsons 8,000 830 1,10		700	<10	16	690	<10	<10	<10
GMW-36 04/16/10 BT for Parsons 4,200 850 15		200	<5	11	3,700	<5	<5	<5
GMW-36 07/13/10 BT for Parsons 500 49 51		43	<0.50	0.91	340	<1	<1	<1
GMW-36 08/12/10 BT for Parsons 9,200 1,400 1,10		980	<10	18	1,600	<10	<10	<10
GMW-36 09/20/10 BT for Parsons 3,300 130 18		120	<1	130	13.000	<1	<1	1.6
GMW-36 10/05/10 BT for Parsons 15,000 2,500 1,30		1,200	<20	30	1,300	<20	<20	<20
GMW-36 11/23/10 BT for Parsons 31,000 5,100 3,40		2,600	<40	51	470	<40	<40	<40
GMW-36 12/22/10 BT for Parsons 63,000 6,700 9,60		5,600	<50	28	<500	<50	<50	<50
GMW-36 01/12/11 BT for Parsons 320,000 4,600 2,90	,	9,200	<200	<100	<2,000	<200	<200	<200
GMW-36 02/24/11 BT for Parsons 1.600 110 77		130	<1	2.5	2,200	<1	<1	<1
GMW-36 03/23/11 BT for Parsons 3,200 360 344		240	<3	7.6	2,400	<3	<3	<3
GMW-36 04/29/11 BT for Parsons 1,500 75 67		113	<0.50	3.3	1,700	<1	<1	<1
GMW-36 05/13/11 BT for Parsons 13,000 2,300 2,10		1,640	<20	43	<200	<20	<20	<20
GMW-36 06/22/11 BT for Parsons 420 24 12		29	<0.50	110	5.900	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-36	07/29/11	CH2M Hill	7,300		560	570	61	990	<10	350	4,600	<10	<10	<10
GMW-36	08/19/11	CH2M Hill	13,000		570	1,100	250	1,900	<20	260	9,000	<20	<20	<20
GMW-36	09/22/11	CH2M Hill	5,200		490	240	52	470	<5	660	7,400	<5	<5	17
GMW-36	10/13/11	CH2M Hill	22,000		610	490	430	2,200	<20	250	3,700	<20	<20	43
GMW-36	11/23/11	CH2M Hill	630		17	<2.5	<2.5	14	<5	110	6,000	<5	<5	<5
GMW-36	12/21/11	CH2M Hill	700 380		59 78	55	14 5.1	65	<0.50	2.1	340	<1	<1 <1	<1
GMW-36 GMW-36	01/10/12 02/23/12	CH2M Hill CH2M HILL	45.000		78 5.600	1.6 8.900	1,700	13 6.600	<0.50 <200	94 <100	4,900 <2.000	<1 <200	<200	1.3 <200
GMV-36	03/28/12	CH2M HILL CH2M HILL	45,000 220	400	3.5	8,900 4.1	1,700	6.3	<0.50	1.5	<2,000 130	<200	<200 <1	<200 <1
GMW-36	04/27/12	CH2M Hill	1.300	710	43	<0.50	2.5	35	<0.50	64	4.200	<1	<1	1.2
GMW-36	05/25/12	CH2M HILL	280	440	<0.50	<0.50	<0.50	1.5	<1	14	6.200	<1	<1	<1
GMW-36	06/15/12	CH2M HILL	460	380	17	4.1	5.5	50	<1	12	780	<1	<1	<1
GMW-36	07/11/12	CHHL	5.100	12.000	<2.5	6.8	39	300	<5	<2.5	140	<5	<5	<5
GMW-36	09/26/12	CHHL	14,000	6,600	35	11	<2.5	230	<5	17	100	<5	<5	<5
GMW-36	10/18/12	CHHL	8,800	12,000	350	33	28	490	<5	70	100	<5	<5	<5
GMW-36	11/29/12	CHHL	8,400	6,600	520	550	66	490	<10	190	<100	<10	<10	<10
GMW-36	04/12/13	CHHL	560,000	19,000	7,400	20,000	8,900	50,000	<400	270	<4,000	<400	<400	<400
GMW-36	10/11/13	CHHL	120,000	130,000	9,600	18,000	3,400	18,000	<200	380	<2,000	<200	<200	<200
GMW-36	10/28/15	BT for CH2MHill	19,000	16,000 HD	2,300	82	500	2,700	<20	1,500	710	<20	<20	<20
GMW-36	04/15/16	BT for CH2MHill	16,000	13,000	660	<10	170	1,700	<20	540	1,400	<20	<20	<20
GMW-37	11/25/96	Terra Services			<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-37	07/11/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
GMW-37	01/06/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-37	05/26/98	Terra Services	<300		<0.30	<0.30	<0.50	0.60	<0.50	<0.50				
GMW-37	11/11/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	11				
GMW-37 GMW-37	05/07/99	Alton Geoscience Secor	<500 <416	<500	1.1 <0.50	4.5 <0.50	<0.50 <0.50	1.9 <0.50	<1 <0.50	14 16				
GMV-37 GMW-37	11/18/99 05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	16				
GMW-37	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	34				
GMW-37	02/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	54				
GMW-37	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	11				
GMW-37	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	49				
GMW-37	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.3				
GMW-37	04/10/02	Secor	<300		< 0.50	<0.50	<0.50	<0.50	< 0.50	7.2				
GMW-37	10/22/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	49				
GMW-37	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.75				
GMW-37	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.86				
GMW-37	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	10/06/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	4.3				
GMW-37	01/27/04	Secor	<50		<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50				
GMW-37	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	07/19/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	2.6				
GMW-37 GMW-37	11/02/04	Secor	<50 <50		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50				
GMW-37 GMW-37	02/02/05 05/04/05	Secor Secor	<50 <50		<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
GMW-37 GMW-37	08/01/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	11/01/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	02/27/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	05/02/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	09/18/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	,			I	2.00			2.00	00	2.00	1	1	1	

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-37	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	04/16/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	10/14/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-37	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	10/19/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	05/26/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	10/06/10	BT for Parsons	<50 <50		<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10	<1	<1 <1	<1 <1
GMW-37 GMW-37	04/12/11 10/11/11	BT for Parsons CH2M Hill	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-37	04/17/12	CH2M Hill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	10/16/12	CHZM HIII	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	10/09/13	CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-37	10/29/14	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-37	04/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-37	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-37	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-37	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38	11/26/96	Terra Services			1.8	<0.50	<0.50	<1.5	<0.50	7.7				
GMW-38	07/10/97	Terra Services	<100	<500	<0.50	2.0	<0.50	0.83	<0.50	<5				
GMW-38	01/05/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-38	05/21/98	Terra Services	<300		<0.30	<0.50	<0.50	<1	<0.50	1.2				
GMW-38	11/12/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	25				
GMW-38	05/07/99	Alton Geoscience	<500	<500	<0.50	1.5	< 0.50	<0.50	<1	7.9				
GMW-38	11/18/99	Secor	<416		<0.50	<0.50	< 0.50	<0.50	< 0.50	1.7				
GMW-38	05/17/00	Secor	<300		<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50				
GMW-38	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
GMW-38	05/08/01	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	11/06/01	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	1.6				
GMW-38	02/01/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	1.7				
GMW-38	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	10/23/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.5				
GMW-38	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	10/06/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	01/28/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.4				
GMW-38	07/19/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	11/02/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	02/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	05/04/05	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	1.1				
GMW-38	08/02/05	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50				
GMW-38	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	02/28/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.66				
GMW-38	05/02/06	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	09/18/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38 GMW-38	03/13/07 05/05/07	Secor Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
GIVIVV-30	03/03/07	Secol	\00		\0.50	\0.50	\0.50	\0.50	\0.50	\0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-38	08/30/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	11/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-38	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.74	<10	<1	<1	<1
GMW-38	07/21/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.55	27	<1	<1	<1
GMW-38	10/21/09	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	29	<1	<1	<1
GMW-38 GMW-38	03/15/10 05/26/10	BT for Parsons BT for Parsons	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-38	05/26/10	BT for Parsons	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	0.50	<10	<1	<1	<1
GMW-38	10/06/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	01/11/11	BT for Parsons	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	04/12/11	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	07/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	10/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	01/10/12	CH2M Hill	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	07/10/12	CHHL	<50	<50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	10/17/12	CHHL	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	01/15/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-38	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38	04/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-38 GMW-39	10/04/16	BT for CH2MHill	<50 	<50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-39	11/21/96 07/10/97	Terra Services Terra Services	<100	<500	<0.50	0.50	<0.50	<1.5 <1	<0.50	<5 <5				
GMW-39	01/05/98	Terra Services	<100	<500 <500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-39	05/19/98	Terra Services			<0.30	<0.50	<0.50	<1.5	<0.50	0.90				
GMW-39	11/12/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	3.2				
GMW-39	05/07/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	2.9				
GMW-39	11/18/99	Secor	<416		<0.50	<0.50	<0.50	<0.50	<0.50	12				
GMW-39	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	9.4				
GMW-39	11/29/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	16				
GMW-39	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-39	11/06/01	Secor	<300		1.2	<0.50	<0.50	<0.50	<0.50	39				
GMW-39	02/01/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	36				
GMW-39	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	20				
GMW-39	10/22/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	89				
GMW-39	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	32				
GMW-39	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	23				
GMW-39	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	3.3				
GMW-39	10/06/03	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	6.6				
GMW-39	01/28/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	3.6				
GMW-39	04/20/04 07/19/04	Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	4.8 3.7				
GMW-39 GMW-39	11/03/04	Secor Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	3.7				
GMW-39	02/02/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	1.7				
GMW-39	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-39	08/02/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-39	11/01/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
0.000	11/01/00	2000.	-00		-0.00	-0.00	-0.00	-0.00	-0.00	.0.00		1	1	·U

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GMW-39	(µq/L)
GMW-39 05/02/06 Secor <50 0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
GMW-39	
GMW-39 12/06/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0	
GMW-39	
GMW-39 05/04/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <2.5 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5	
GMW-39 08/29/07 Secor <500 <2.5 <2.5 <2.5 <2.5 <2.5 <5 <3.6	
GMW-39 11/13/07 Secor 160 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1 2.6	
GMW-39 02/20/08 Secor 110 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	
GMW-39 04/16/08 Secor 90 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5	
GMW-39	
GMW-39 10/15/08 Stantec <500 <2.5 <2.5 <2.5 <2.5 <5 5.6 GMW-39 02/24/09 BT for Parsons <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
GMW-39 02/24/09 BT for Parsons <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	
GMW-39 04/22/09 Blaine Tech for AMEC <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5	
GMW-39 07/21/09 BT for Parsons <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	
GMW-39 10/22/09 BT for Parsons <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0	<1
GMW-39	<1
GMW-39	<1
GMW-39 07/13/10 BT for Parsons <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1
GMW-39	<1
GMW-39	<1
GMW-39	<1
GMW-39 07/12/11 CH2M Hill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1
GMW-39 10/11/11 CH2M Hill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1
GMW-39 01/10/12 CH2M Hill <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1
GMW-39 04/19/12 CH2M Hill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1
GMW-39 07/10/12 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1
GMW-39 10/17/12 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <4.50 <4.50 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1
GMW-39 01/15/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1 <1 GMW-39 04/10/13 CHHL <50 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.88 54 <1 <1	<1
GMW-39 04/10/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.88 54 <1 <1	<1
	<1
GMW-39 10/10/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 1.8 420 <1 <1	<1
	<1
GMW-39 04/16/14 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<1
GMW-39 10/30/14 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 1.7 <10 <1.0 <1.	<1.0
GMW-39 10/30/14 BT for CH2MHill <100 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 3.6 15 <1.0 <1.	<1.0
GMW-39 04/23/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.95 <10 <1.0 <1.	<1.0
GMW-39 04/23/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.87 <10 <1.0 <1.	<1.0
GMW-39 10/23/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0	<1.0
GMW-39 10/23/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0	<1.0
GMW-39 04/14/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0	<1.0
DUP-4 (GMW-39) 04/14/16 BT for CH2MHiII <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.51 <10 <1.0 <1.0	<1.0
GMW-39 10/05/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 1.6 <10 <1.0 <1.	<1.0
DUP-1 (GMW-39) 10/05/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 1.5 <10 <1.0 <1.	
GMW-40 11/27/96 Terra Services 400 <500 0.50 <0.50 5.8 5.9 <0.50 <5	
GMW-40 07/10/97 GTI 210 2,600	
GMW-40 01/07/98 GTI <500 <100 <0.50 <0.50 <0.50 <1 <0.50 <0.50 <	
GMW-40 05/21/98 BBC <300 <0.30 <0.50 <0.50 <1 <0.50 <0.50 <	
GMW-40 11/05/98 GTI <300 <0.50 <0.50 3.8 7.6 < 0.50 <0.50	
GMW-40 05/26/99 GTI <300 0.90 <0.50 <0.50 <0.50 <0.50 4.4	
GMW-40 11/18/99 IT Corporation <300 2.8 <0.50 0.90 2.8 <0.50 9.3	
GMW-40 05/17/00 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 11	
GMW-40 12/01/00 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	
GMW-40 05/10/01 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-40	11/08/01	IT Corporation	<300		<0.50	<0.50	1.1	3.1	<0.50	19				
GMW-40	04/12/02	IT Corporation	<300		1.7	<0.50	0.70	0.90	<0.50	17				
GMW-40	04/16/03	GTI			5.2	<0.50	2.7	4.7	<0.50	55				
GMW-40	10/08/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	52				
GMW-40	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	< 0.50	39	<10	<2	<2	<2
GMW-40	11/06/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-40	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	0.70	<0.50	0.76	<10	<2	<2	<2
GMW-40	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.76	<10	<2	<2	<2
GMW-40 GMW-40	05/05/06 12/08/06	BT for Parsons			<0.50 0.87	<0.50 <0.50	<0.50 <0.50	<0.50 14	<0.50 <0.50	4.9 15	<10 <10	<2 <2	<2 <2	<2 <2
GMW-40	05/03/07	BT for Parsons			3.7	<0.50	2.2	27	<0.50	46	63	<2	<2	<2
GMW-40	11/16/07	BT for Parsons BT for Parsons			0.61	<0.50	1.9	8.4	<0.50	<0.50	63 <10	<2	<2	<2
GMW-40	04/18/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-40	10/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.2	<10	<2	<2	<2
GMW-40	04/24/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-40	10/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.4 J	<10	<2	<2	<2
GMW-40	04/14/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50	<10	<2	<2	<2
GMW-40	10/06/10	BT for Parsons	<50		1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-40	10/08/13	Parsons	120 HD	460 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-40	04/14/14	Parsons	<100	240 HD	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-40	10/29/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-40	10/29/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-40	04/22/15	SGI	<100	130	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-40	10/05/16	SGI	<100	1.100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-41	11/27/96	GSI	250	<500	<0.50	<0.50	<0.50	<1	< 0.50					
GMW-41	07/10/97	GTI	75	1,200	<5	<5	<5	<5	<5	<5				
GMW-41	01/07/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
GMW-41	05/21/98	BBC	<300		< 0.30	<0.50	<0.50	<1	< 0.50	< 0.50				
GMW-41	11/05/98	GTI	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.0				
GMW-41	05/26/99	GTI	<300		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50				
GMW-41	11/18/99	IT Corporation	<300		< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-41	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-41	11/30/00	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
GMW-41	05/10/01	IT Corporation	<300		<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50				
GMW-41	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-41	04/12/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
GMW-41	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	1.1				
GMW-41	04/16/03	GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-41	10/08/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.4				
GMW-41	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.3	<10	<2	<2	<2
GMW-41	11/06/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.6	<10	<2	<2	<2
GMW-41	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-41	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-41	05/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-41	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-41	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.51	<10	<2	<2	<2
GMW-41	11/16/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<2	<2	<2
GMW-41	04/18/08	BT for Parsons			< 0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-41	10/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-41	04/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-41 GMW-41	10/21/09 04/14/10	BT for Parsons BT for Parsons			<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	0.43 J 0.33 J	<10 5.7 J	<2 <2	<2 <2	<2 <2
GIVIVV-41	04/14/10	סו וטו רמוצטווצ			\U.3U	\U.3U	\0.50	\U.0U		U.33 J	5./ J	~∠	~∠	~∠

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-41	10/06/10	BT for Parsons	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-41	10/06/10	BT for Parsons			< 0.50				<0.50	< 0.50	<10			
GMW-41	04/11/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-41	10/11/11	Parsons			<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-41	04/16/12	Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	5.4 J	<2	<2	<2
GMW-41	10/16/12	Parsons			<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-41	04/09/13	Parsons		<100	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-41	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	0.5 J	<10	<2	<2	<2
GMW-41	10/28/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-41	04/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	<0.50	3.2	<10	<2.0	<2.0	<2.0
GMW-41	04/22/15	SGI	<100	120	<0.50	<0.50	<0.50	<1.0	<0.50	2.6	<10	<2.0	<2.0	<2.0
GMW-41	10/05/16	SGI	<100	330	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-42	11/05/98	GTI	7,530		800	<7.5	55	810						
GMW-42	05/27/99	GTI	6,510		1,100	110	60	580						
GMW-42	11/18/99	IT Corporation	7,900		810	490	180	1,200						
GMW-42	05/17/00	IT Corporation	3,800		9.9	1.2	26	230						
GMW-42	12/01/00	IT Corporation	380		1.0	<0.30	<0.30	<0.60		18				
GMW-42 GMW-42	05/10/01 11/07/01	IT Corporation IT Corporation	490 <300		24 <0.30	40 <0.30	11 <0.30	79 1.6		5.3 <5				
GMW-42	04/10/01		<300		<0.30	<0.30	<0.30	<0.60		7.0				
GMW-42 GMW-42	10/09/13	IT Corporation Parsons	<100	120 HD	<0.50	<0.50	<0.50	<0.60	<0.50	<0.50	<10	<2	<2	<2
GMW-42	04/14/14	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-42	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-42	04/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-43	11/27/96	GSI	620	<500	<0.50	<0.50	<0.50	<1	-0.00			-2.0		-2.0
GMW-43	07/10/97	GTI	<50	<50	<0.50	<1	<1	<2						
GMW-43	01/07/98	GTI	<500	<100	0.30	<0.30	< 0.30	<0.60						
GMW-43	05/21/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
GMW-43	11/05/98	GTI	<300		<0.30	<0.30	< 0.30	<0.60						
GMW-43	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-43	11/18/99	IT Corporation	<300		<0.30	< 0.30	< 0.30	< 0.60						
GMW-43	05/17/00	IT Corporation	<300		0.92	< 0.30	0.45	<0.60						
GMW-43	11/30/00	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
GMW-43	05/09/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	< 0.60		<5				
GMW-43	11/07/01	IT Corporation	<300		<0.30	<0.30	< 0.30	<0.60		<5				
GMW-43	04/11/02	IT Corporation	<300		<0.30	<0.30	< 0.30	<0.60		<5				
GMW-43	10/23/02	GTI	<300		< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-43	04/14/03	GTI			<1	<1	<1	<2		<3				
GMW-43	10/08/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-43	04/21/04	BT for Parsons			<0.50	<1	<1	<1		<1				
GMW-43	11/06/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-43	05/10/05	BT for Parsons			<0.30	0.68	<0.30	<0.30		<5				
GMW-43	11/08/05	BT for Parsons			<0.30	0.47	<0.30	0.31		<5				
GMW-43	05/04/06	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-43	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-43	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<1		8.0				
GMW-43	11/15/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-43	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-43	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	04/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50		<0.50	<0.50	<0.50
GMW-43	10/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10 <10	<2	<2	<2 <2
GMW-43	04/15/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50	<u> </u>	<2	<2	< Z

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	ТРН-д	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-43	10/08/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
GMW-43	04/11/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	10/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	04/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	19	<2	<2	<2
GMW-43	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	04/08/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	10/07/13	Parsons	<100	180 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-43	04/14/14	Parsons	<100 <100	<100 <100	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50	<0.50	<10	<2	<2 <2.0	<2
GMW-43 GMW-43	10/27/14 04/22/15	SGI SGI	<100	<100	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.0	<0.50 <0.50	<2.0 <2.0	<10 <10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0
GMW-44	11/27/96	GSI	820	<500	<0.50	<0.50	<0.50	<1.0						
GMW-44	07/10/97	GTI	68	1,100	<0.50	<0.50	<0.50	<2						
GMW-44	01/06/98	GTI	<500	700	<0.30	<0.30	<0.30	<0.60						
GMW-44	05/21/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
GMW-44	11/05/98	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-44	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-44	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-44	05/17/00	IT Corporation	<300		<0.30	<0.30	<0.30	1.9						
GMW-44	11/30/00	IT Corporation	<300		0.98	<0.30	0.95	<0.60		<5				
GMW-44	05/09/01	IT Corporation	<300		<0.30	< 0.30	<0.30	<0.60		<5				
GMW-44	11/07/01	IT Corporation	<300		<0.30	< 0.30	<0.30	<0.60		<5				
GMW-44	04/11/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-44	10/23/02	GTI	<300		<0.30	<0.30	<0.30	<0.30		<5				
GMW-44	04/14/03	GTI			<1	<1	<1	<2		<3				
GMW-44	10/08/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
GMW-44	04/21/04	BT for Parsons			<0.50	<1	<1	<1		<1				
GMW-44	11/04/04	BT for Parsons			< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-44	05/06/05	BT for Parsons			0.45	0.68	< 0.30	< 0.30		<5				
GMW-44	11/08/05	BT for Parsons			< 0.30	< 0.30	< 0.30	0.39		<5				
GMW-44	05/04/06	BT for Parsons			< 0.30	< 0.30	< 0.30	< 0.30		<5				
GMW-44	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-44	05/04/07	BT for Parsons			<0.50	<0.50	<0.50	<1		8.3				
GMW-44	11/15/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-44	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5				
GMW-44	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	04/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50		<0.50	<0.50	<0.50
GMW-44	10/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	04/15/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50	<10	<2	<2	<2
GMW-44	10/08/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
GMW-44	04/11/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	10/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<2	<2	<2
GMW-44	04/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	10	<2	<2	<2
GMW-44	10/16/12	Parsons		400 5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	04/08/13	Parsons		100 b	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	10/07/13	Parsons	<100	<100	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-44	04/14/14	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2 <2.0
GMW-44 GMW-44	10/27/14 04/22/15	SGI SGI	<100 <100	<100 170	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.0	<0.50 <0.50	<2.0 <2.0	<10 <10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0
												_		
GMW-44 GMW-45	10/05/16 11/22/96	SGI GSI	<100 23,000	170 <500	<0.50 1,100	<0.50 230	<0.50 580	<1.5 2,900	<0.50 <0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-45	07/09/97	GTI	1,100	2,700	330	230 <5	280	930	<0.50					
GMW-45	01/06/98	GTI	3,200	3,400	286	1.3	188	543						
OIVIVV-70	31/00/30	011	0,200	0,400	200	1.0	100	0-10						

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-45	05/20/98	BBC	4,200		270	221	109	569						
GMW-45	11/05/98	GTI	1,400		81	< 0.30	40	75						
GMW-45	05/27/99	GTI	3,750		420	<0.60	180	390						
GMW-45	11/18/99	IT Corporation	3,960		380	<3	140	100						
GMW-45	05/17/00	IT Corporation	5,200		620	8.0	87	37						
GMW-45	11/29/00	IT Corporation	2,400		330	1.3	6.0	4.0		<10				
GMW-45	05/09/01	IT Corporation	6,500		620	74	51	420		<50				
GMW-45	11/07/01	IT Corporation	5,700		730	<3	8.5	19		<50				
GMW-45	04/10/02	IT Corporation	9,800		900	21	69	240		240				
GMW-45	10/23/02	GTI	3,200		770	5.5	120	290		<5				
GMW-45	04/10/03	GTI			344	11	5.6	10		<6				
GMW-45	10/08/03	BT for Parsons			470	< 0.60	6.5	3.7		<10				
GMW-45	04/21/04	BT for Parsons			140	<1	2.5	<1		<1				
GMW-45	11/04/04	BT for Parsons			84	< 0.30	3.0	2.9		<5				
GMW-45	05/05/05	BT for Parsons			670	17	520	720		<50				
GMW-45	11/05/05	BT for Parsons			340	0.46	130	250		10				
GMW-45	05/03/06	BT for Parsons			76	4.1	11	16		<5				
GMW-45	12/05/06	BT for Parsons			67	1.9	3.6	6.4		<5				
GMW-45	05/02/07	BT for Parsons			37	0.56	2.0	3.0		11				
GMW-45	11/14/07	BT for Parsons			42	<0.50	< 0.50	<1		9.6				
GMW-45	04/16/08	BT for Parsons			21	0.52	1.4	2.9		<5				
GMW-45	10/15/08	BT for Parsons			9.7	<0.50	1.9	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-45	04/21/09	BT for Parsons			11	<2	<2	<2		<2				
GMW-45	10/21/09	BT for Parsons			15	<0.50	2.2	<0.50	< 0.50	<0.50	11	<2	<2	<2
GMW-45	04/12/10	BT for Parsons			85	<0.50	2.6	0.28		<0.50	11	<2	<2	<2
GMW-45	10/07/10	BT for Parsons			53				< 0.50	< 0.50	15			
GMW-45	04/14/11	BT for Parsons			150	<0.50	3.6	0.94	<0.50	<0.50	<10	<2	<2	<2
GMW-45	10/11/11	Parsons			43	< 0.33	1.8	0.29 J	<0.50	<0.50	41	<2	<2	<2
GMW-45	04/19/12	Parsons			28	0.24 J	1.9	0.8 J	< 0.50	<0.50	28	<2	<2	<2
GMW-45	10/17/12	Parsons			44	<0.50	1.6	<0.50	<0.50	<0.50	20	<2	<2	<2
GMW-45	04/11/13	Parsons		3,400 b	24	<0.50	1.4	0.59 J	<0.50	<0.50	13	<2	<2	<2
GMW-45	10/30/14	SGI	1,500	3,700	0.78	<0.50	0.52	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-45	10/10/16	SGI	2,200	4,500	< 0.50	< 0.50	< 0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-47	11/27/96	GSI	9,600	<500	1,800	<25	160	660						
GMW-47	07/09/97	GTI	420	93	350	<1	170	79						
GMW-47	01/06/98	GTI	1,900	<100	438	11	75	253	<2.5	<2.5				
GMW-47	05/20/98	BBC	<300		1.0	<0.30	<0.30	<0.60						
GMW-47	11/05/98	GTI	1,700		910	4.9	18	140						
GMW-47	05/26/99	GTI	<300		130	<0.30	0.33	3.0						
GMW-47	11/18/99	IT Corporation	2,100		1,100	0.77	5.8	27						
GMW-47	05/17/00	IT Corporation	7,200		2,300	700	200	1,100						
GMW-47	11/29/00	IT Corporation	990		280	0.59	2.2	<0.60		<5				
GMW-47	03/30/01	IT Corporation												
GMW-47	05/09/01	IT Corporation	7,600		1,400	110	55	590		16				
GMW-47	11/07/01	IT Corporation	1,500		410	8.2	8.7	150		<50				
GMW-47	04/10/02	IT Corporation	4,100		710	150	9.2	360		<25				
GMW-47	10/23/02	GTI	4,000		430	<5	26	100	<2.5	<5				
GMW-47	04/09/03	GTI			1.4	<0.50	<0.50	<0.50	<1	<0.50				
GMW-47	09/18/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-47	10/08/03	BT for Parsons	140		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-47	02/21/04	BT for Parsons			4.2	<0.50	<0.50	<0.50		<0.50				
GMW-47	04/21/04	BT for Parsons	160		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl-	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			· ·	((II.)	((/l .)	benzene	(····//)	, ,	(/II.)	(/I .)	(((II.)	((II.)
GMW-47	07/21/04	BT for Parsons	(µg/L) 330	(µq/L)	(μg/L) <0.50	(µg/L) <0.50	(µg/L) <0.50	(μg/L) <0.50	(µg/L)	(μg/L) <0.50	(µg/L)	(µg/L)	(µq/L)	(µg/L)
GMW-47	11/03/04	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	03/02/05	BT for Parsons	170		33	<1	5.8	<1		<1				
GMW-47	05/05/05	BT for Parsons	420		22	<0.50	6.0	18	<0.50	<0.50	<10	<2	<2	<2
GMW-47	08/04/05	BT for Parsons	<100		3.4	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	11/05/05	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	03/08/06	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	05/03/06	BT for Parsons	<100		2.3	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	07/28/06	BT for Parsons	<100		0.95	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	12/05/06	BT for Parsons	<100		5.4	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	03/23/07	BT for Parsons	<100		11	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	05/02/07	BT for Parsons	<100		4.8	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	08/31/07	BT for Parsons	<100		1.8	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	11/13/07	BT for Parsons	<100		0.83	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	02/07/08	BT for Parsons	<100		1.7	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	04/16/08	BT for Parsons	<100		1.6	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	07/29/08	BT for Parsons	<100		<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	10/15/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-47	02/12/09	BT for Parsons	170		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	04/20/09	BT for Parsons	180		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-47	07/20/09	Blaine Tech for AMEC	200		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	15	<2	<2	<2
GMW-47	10/19/09	BT for Parsons	170		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	15	<2	<2	<2
GMW-47	01/11/10	BT for Parsons			< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	17	<2	<2	<2
GMW-47	04/19/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	13	<2	<2	<2
GMW-47	10/06/10	BT for Parsons			0.35 J				< 0.50	<0.50	16			
GMW-47	01/11/11	BT for Parsons			5.2	<0.50	0.75	<0.50	<0.50	1.2	17	<2	<2	<2
GMW-47	04/14/11	BT for Parsons			0.36 J	<0.50	0.27 J	<0.50	<0.50	2.6	<10	<2	<2	<2
GMW-47	07/12/11	Parsons			0.54	<0.50	0.58	<0.50	<0.50	3.8	32	<2	<2	<2
GMW-47	10/11/11	Parsons			0.55	<0.50	0.99	0.32 J	< 0.50	6.1	46	<2	<2	<2
GMW-47	01/10/12	Parsons			0.63	< 0.50	0.74	0.36 J	<0.50	7.9	110	<2	<2	<2
GMW-47	04/20/12	Parsons			0.52	<0.50	0.68	0.31 J	< 0.50	5.0	310	<2	<2	<2
GMW-47	07/10/12	Parsons			0.15 J	< 0.50	0.29 J	0.31	< 0.50	6.5	250	<2	<2	<2
GMW-47	10/17/12	Parsons			0.46 J	<0.50	0.17 J	<0.50	< 0.50	4.5	310	<2	<2	<2
GMW-47	01/15/13	Parsons		580 b	<0.50	<0.50	<0.50	<0.50	<0.50	3.7	320	<2	<2	<2
GMW-47	04/11/13	Parsons		1,500 b	<0.50	<0.50	<0.50	<0.50	<0.50	5.4	150	<2	<2	<2
GMW-47	10/08/13	Parsons	<100	990 HD	<0.50	<0.50	<0.50	<0.50	<0.50	4.8	490	<2	<2	<2
GMW-47	04/16/14	Parsons	<100	1,500 HD	<0.50	<0.50	<0.50	<0.50	<0.50	6.0	280	<2	<2	<2
GMW-47	10/29/14	SGI	<100	2,100	<0.50	<0.50	<0.50	<1.5	<0.50	5.8	130	<2.0	<2.0	<2.0
GMW-47	04/28/15	SGI	<100	2,100	<0.50	<0.50	<0.50	<1.5	<0.50	5.9	350	<2.0	<2.0	<2.0
GMW-47	10/26/15	SGI	<100	1,300	<0.50	<0.50	<0.50	<1.5	<0.50	4.8	31	<2.0	<2.0	<2.0
GMW-47	04/14/16	SGI	<100	450	<0.50	<0.50	<0.50	<1.5	<0.50	5.7	<10	<2.0	<2.0	<2.0
GMW-47	10/07/16	SGI	<100	2,000	<0.50	<0.50	<0.50	<1.5	<0.50	4.9	120	<2.0	<2.0	<2.0
DUP-5 (GMW-47)	10/07/16	SGI	<100	1,900	<0.50	<0.50	<0.50	<1.5	<0.50	5.1	140	<2.0	<2.0	<2.0
GMW-48	11/22/96	GSI	56,000	<500	10,000	1,800	1,500	6,900	0.80					
GMW-48	10/09/13	Parsons	1,200 HD	3,100 HD	450	0.49 J	1.3	1.5	<0.50	0.78	32	<2	<2	<2
GMW-48	04/17/14	Parsons	1,800 HD	1,900 HD	400	<1.2	1.7	1.3	<1.2	<1.2	44	<5	<5	<5
GMW-48	10/31/14	SGI	2,600	3,100	450	<0.50	2.1	<1.5	<0.50	<2.0	21	<2.0	<2.0	<2.0
GMW-48	04/29/15	SGI	1,000	2,400	300	<2.5	2.5	<5.0	<2.5	<10	<50	<10	<10	<10
GMW-48	10/26/15	SGI	1,500	1,800	170	<2.5	18	126	<2.5	<10	<50	<10	<10	<10
GMW-48	10/11/16	SGI	470	1,100	200	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
DUP-8 (GMW-48)	10/11/16	SGI	530	1,100	200	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
GMW-50	01/10/12	Parsons			48	<0.50	0.24 J	2.5	<0.50	0.47 J	9.6 J	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-50	04/14/16	SGI	<100	440	35	<0.50	<0.50	<1.5	<0.50	1.3	<10	<2.0	<2.0	<2.0
GWM-54	04/22/15	SGI	<100	1,800	<0.50	<0.50	<0.50	<1.0	<0.50	2.3	<10	<2.0	<2.0	<2.0
GMW-56	11/05/98	GTI	<300		<0.30	<0.30	16	<0.60						
GMW-56	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
GMW-56	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-56	05/17/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
GMW-56	11/29/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
GMW-56	05/09/01	IT Corporation	<300 <300		<0.30	<0.30 <0.30	<0.30 <0.30	<0.60		<5 <5				
GMW-56 GMW-56	11/07/01 04/10/02	IT Corporation	<300		<0.30 <0.30	<0.30	<0.30	<0.60 <0.60		<5 12				
GMW-56	04/10/02	IT Corporation GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-56	10/08/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-56	04/21/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	05/05/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	11/05/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	05/03/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	05/02/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	11/14/07	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-56	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	0.94	<0.50	<0.50	<10	<2	<2	<2
GMW-56	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	04/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	10/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	4.2 J	<2	<2	<2
GMW-56	04/12/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	04/15/11	BT for Parsons			<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-56	10/08/13	Parsons	<100	190 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-56	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-56	04/22/15	SGI	<100	<100	< 0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-56	04/13/16	SGI	<100	<100	< 0.50	<0.50	0.62	0.73	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-56	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-57	11/05/98	GTI	<300		12	0.63	4.5	0.97						
GMW-57	05/26/99	GTI	379		150	15	12	55						
GMW-57	11/18/99	IT Corporation	4,000		950	240	150	750						
GMW-57	05/17/00	IT Corporation	17,000		3,200	2,200	750	4,300						
GMW-57	11/29/00	IT Corporation	11,000		2,300	21	340	1,800		<100				
GMW-57	03/30/01	IT Corporation												
GMW-57	05/09/01	IT Corporation	28,000		3,300	3,100	690	3,600		<50				
GMW-57	11/07/01	IT Corporation	19,000		3,900	1,600	390	3,400		<500				
GMW-57	04/10/02	IT Corporation	5,000		720	150	8.2	360	<2.5	<2.5				
GMW-57	10/23/02	GTI	1,700		690	<0.30	3.2	5.7		<5				
GMW-57	04/09/03	GTI			<1	<1	<1	<2		<3				
GMW-57	09/18/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
GMW-57	10/11/03	BT for Parsons	200		47	<0.50	0.57	<0.50	<0.50	< 0.50				
GMW-57	02/21/04	BT for Parsons			190	<0.50	<0.50	<0.50		<0.50				
GMW-57	04/21/04	BT for Parsons	110		21	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<2	<2	<2
GMW-57	07/21/04	BT for Parsons	340		48	<0.50	<0.50	<0.50		<0.50	270	57	54	50
GMW-57	11/03/04	BT for Parsons	120		22	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	03/02/05	BT for Parsons	400		190	<1	2.5	<1		<1				
GMW-57 GMW-57	05/05/05 08/04/05	BT for Parsons BT for Parsons	280 170		57 120	<0.50 <0.50	<0.50 0.54	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<2 <2	<2 <2	<2 <2
GIVIVV-31	00/04/03	וטו דמואטווא	170		120	\0.50	0.54	\0.50	\0.50	\0.50	<u> </u>	~2	~2	\ 2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-57	11/05/05	BT for Parsons	120		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	03/08/06	BT for Parsons	180		4.8	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	05/03/06	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	07/28/06	BT for Parsons	180		1.8	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	12/05/06	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	03/23/07	BT for Parsons	120		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	05/02/07	BT for Parsons	120		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	08/31/07	BT for Parsons	110		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	11/13/07	BT for Parsons	160		0.72	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	02/07/08	BT for Parsons	150		4.0	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	04/16/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	07/29/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	10/15/08	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	02/12/09	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	04/20/09	BT for Parsons	<100		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	07/21/09	Blaine Tech for AMEC	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
GMW-57	10/19/09	BT for Parsons	<100		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	8.1 J	<2	<2	<2
GMW-57	01/11/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	04/12/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	10/06/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
GMW-57	01/10/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	04/11/11	BT for Parsons			1.4	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	07/11/11	Parsons			10	<0.50	<0.50	< 0.50	<0.50	< 0.50	<10	<2	<2	<2
GMW-57	10/11/11	Parsons			1.6	<0.50	<0.50	0.48 J	<0.50	<0.50	<10	<2	<2	<2
GMW-57	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	07/09/12	Parsons			< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	10/16/12	Parsons			< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-57	04/08/13	Parsons		180 b	<0.50	<0.50	<0.50	<0.50	<0.50	0.54	<10	<2	<2	<2
GMW-57	10/08/13	Parsons	<100	140 HD	0.34 J	< 0.50	< 0.50	0.99	< 0.50	0.74	<10	<2	<2	<2
GMW-57	04/16/14	Parsons	<100	340 HD	<0.50	<0.50	<0.50	<0.50	<0.50	0.68	<10	<2	<2	<2
GMW-57	10/29/14	SGI	140	380	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-57	04/28/15	SGI	<100	310	<0.50	<0.50	<0.50	<1.0	<0.50	3.0	<10	<2.0	<2.0	<2.0
GMW-57	10/22/15	SGI	<100	440	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-57	04/13/16	SGI	<100	400	<0.50	<0.50	0.80	2.8	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-57	10/07/16	SGI	<100	570	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	1.4	<10	<2.0	<2.0	<2.0
GMW-58	11/04/98	GTI	2,590		200	210	67	280						
GMW-58	05/26/99	GTI	1,360		310	62	42	170						
GMW-58	11/18/99	IT Corporation	1,600		82	26	20	100						
GMW-58	05/17/00	IT Corporation	21,000		3,500	5,900	730	3,900						
GMW-58	03/02/05	BT for Parsons	5,800		1,700	<20	250	400		<20				
GMW-58	05/05/05	BT for Parsons	12,000		410	<2.5	13	600	<2.5	<2.5	<50	<10	<10	<10
GMW-58	08/04/05	BT for Parsons	5,800		500	<2.5	56	124	<2.5	<2.5	<50	<10	<10	<10
GMW-58	11/05/05	BT for Parsons	6,300		560	<2.5	380	196	<2.5	<2.5	<50	<10	<10	<10
GMW-58	03/08/06	BT for Parsons	5,300		250	<2.5	140	21	<2.5	<2.5	<50	<10	<10	<10
GMW-58	05/03/06	BT for Parsons	2,900		260	<1	85	27	<1	<1	<20	<4	<4	<4
GMW-58	07/28/06	BT for Parsons	3,200		310	<1	78	23	<1	<1	<20	<4	<4	<4
GMW-58	03/23/07	BT for Parsons	1,700		350	<1	5.9	<1	<1	<1	<20	<4	<4	<4
GMW-58	05/02/07	BT for Parsons	2,200		320	<1	9.5	<1	<1	<1	<20	<4	<4	<4
GMW-58	08/31/07	BT for Parsons	3,000		240	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-58	11/13/07	BT for Parsons	2,000		240	<1	7.4	<1	<1	<1	<20	<4	<4	<4

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-58	02/07/08	BT for Parsons	1,100		270	<1	1.8	<1	<1	<1	<20	<4	<4	<4
GMW-58	04/16/08	BT for Parsons	1,100		310	<2.5	<2.5	<2.5	8.4	<2.5	<50	<10	<10	<10
GMW-58	07/29/08	BT for Parsons	870		45	<0.50	<0.50	<0.50	<0.50	0.77	<10	<2	<2	<2
GMW-58	10/15/08	BT for Parsons	1,200		62	<0.50	0.67	0.62	<0.50	<0.50	<10	<2	<2	<2
GMW-58	02/12/09	BT for Parsons	1,000		36	<0.50	0.85	<0.50	<0.50	0.55	<10	<2	<2	<2
GMW-58	04/20/09	BT for Parsons	130		<0.50	<0.50	<0.50	<0.50	<0.50	13	<10	<2	<2	<2
GMW-58	07/20/09	Blaine Tech for AMEC	100		1.2	<0.50	<0.50	<0.50	<0.50	6.4	<10	<2	<2	<2
GMW-58	10/19/09	BT for Parsons	1,000		9.5	<0.50	0.24 J	<0.50	<0.50	1.5	6 J	<2	<2	<2
GMW-58	01/11/10	BT for Parsons			9.7	<0.50	<0.50	<0.50	<0.50	1.7	3.8 J	<2	<2	<2
GMW-58	04/19/10	BT for Parsons			12	<0.50	<0.50	<0.50	<0.50	0.81	5.7 J	<2	<2	<2
GMW-58	10/06/10	BT for Parsons			8.6				<0.50	<0.50	<10			
GMW-58	01/10/11	BT for Parsons			5.8	<0.50	<0.50	<0.50	<0.50	0.46 J	<10	<2	<2	<2
GMW-58	04/13/11	BT for Parsons			94	<0.50	0.35 J	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-58	07/11/11	Parsons			31	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-58	10/11/11	Parsons			27	<0.50	<0.50	<0.50	<0.50	0.65	<10	<2	<2	<2
GMW-58	04/18/12	Parsons			28	<0.50	0.18 J	0.48 J	0.82	0.54	<10	<2	<2	<2
GMW-58	07/10/12	Parsons			27	<0.50	<0.50	<0.50	<0.50	0.46 J	18	<2	<2	<2
GMW-58	10/17/12	Parsons			18	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-58	01/15/13	Parsons		420 b	8.7	<0.50	<0.50	0.32	<0.50	<0.50	17	<2	<2	<2
GMW-58	04/10/13	Parsons	400 UD	1,600 b	6.7	<0.50	<0.50	< 0.50	<0.50	0.46 J	25	<2	<2	<2
GMW-58	10/08/13	Parsons	460 HD	1,200 HD	4.7	<0.50	<0.50	<0.50	<0.50	0.43 J	15	<2	<2	<2
GMW-58	04/16/14	Parsons	600 HD	920 HD	12	<0.50	0.24 J	<0.50	<0.50	0.64	17	<2	<2	<2
GMW-58	10/29/14	SGI SGI	280 260	340 420	37 36	<0.50 <0.50	<0.50 <0.50	<1.5	<0.50 <0.50	<2.0 <2.0	<10 <10	<2.0	<2.0 <2.0	<2.0
GMW-58	10/29/14							<1.5				<2.0		<2.0
GMW-58	04/28/15	SGI	<100 <100	410	1.1	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-58 GMW-59	04/15/16	SGI GTI	9,880	290	1.3 950	<0.50 600	<0.50 210	<1.5 620	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-59	11/04/98 11/29/00	IT Corporation	67.000		3,500	900	750	3,600		 <130				
GMW-59	04/10/03	GTI			261	4.8	18	110		<3				
GMW-59	10/08/03	BT for Parsons			760	4.6 <3	65	450		<50				
GMW-59	04/21/04	BT for Parsons			590	<1	100	276		380				
GMW-59	11/03/04	BT for Parsons			95	<0.60	15	18		<10				
GMW-59	03/02/05	BT for Parsons	4,200		400	<0.60 <5	130	22		35				
GMW-59	05/05/05	BT for Parsons	11.000		170	<0.50	60	7.8	<0.50	11	<10	<2	<2	<2
GMW-59	08/04/05	BT for Parsons	6,400		140	<1	56	6.6	<1	<1	<20	<4	<4	<4
GMW-59	11/05/05	BT for Parsons	9.500		270	<0.50	26	2.2	<0.50	<0.50	<10	<2	<2	<2
GMW-59	03/08/06	BT for Parsons	4,600		260	<1	7.4	<1	<0.50	<1	<20	<4	<4	<4
GMW-59	05/03/06	BT for Parsons	9,900		210	<1	4.0	<1	<1	<1	<20	<4	<4	<4
GMW-59	07/28/06	BT for Parsons	3,200		540	<1	3.1	<1	<1	4.8	<20	<4	<4	<4
GMW-59	12/05/06	BT for Parsons			800	4.3	5.2	11		<10				
GMW-59	03/23/07	BT for Parsons	8,200		840	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-59	05/02/07	BT for Parsons	4,800		1,100	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-59	08/31/07	BT for Parsons	4,800		720	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-59	11/13/07	BT for Parsons	4,700		660	<5	<5	<5	<5	<5	<100	<20	<20	<20
GMW-59	02/07/08	BT for Parsons	3,200		490	<2.5	3.8	<2.5	<2.5	2.7	<50	<10	<10	<10
GMW-59	04/16/08	BT for Parsons	3,600		580	<2.5	3.5	<2.5	15	3.7	<50	<10	<10	<10
GMW-59	07/29/08	BT for Parsons	2,300		580	<2.5	<2.5	<2.5	<2.5	3.3	<50	<10	<10	<10
GMW-59	10/15/08	BT for Parsons	2,500		830	<2.5	<2.5	<2.5	<2.5	5.5	<50	<10	<10	<10
GMW-59	02/12/09	BT for Parsons	2,500		650	<2.5	<2.5	<2.5	<2.5	3.2	<50	<10	<10	<10
GMW-59	04/20/09	BT for Parsons	8,500		610	<2.5	<2.5	<2.5	<2.5	2.7	<50	<10	<10	<10
GMW-59	07/20/09	Blaine Tech for AMEC	6,700		520	<2.5	<2.5	<2.5	<2.5	3.5	<50	<10	<10	<10
GMW-59	10/21/09	BT for Parsons	2,600		1,700	<2.5	1.4 J	<2.5	<2.5	16	18 J	<10	<10	<10

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-59	01/11/10	BT for Parsons			2,200	<10	<10	<10	<10	17	<200	<40	<40	<40
GMW-59	04/19/10	BT for Parsons	2,900		570	<0.50	1.9	<0.50	<0.50	2.3	11	<2	<2	<2
GMW-59	10/06/10	BT for Parsons	850		87				<0.50	3.5	17			
GMW-59	01/11/11	BT for Parsons	2,500		1,100	<0.50	1.1	<0.50	<0.50	8.8	23	<2	<2	<2
GMW-59	04/14/11	BT for Parsons	10,000		130	<0.50	0.85	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-59	07/12/11	Parsons	1,400		14	<0.50	0.43 J	<0.50	<0.50	<0.50	8 J	<2	<2	<2
GMW-59	10/11/11	Parsons	<1,800		130	<0.24	0.78	<0.50	<0.50	2.1	13	<2	<2	<2
GMW-59	01/10/12	Parsons	2,800		340	0.24 J	0.54	<0.50	<0.50	5.2	16	<2	<2	<2
GMW-59	04/20/12	Parsons	3,100		870	0.27 J	0.85	0.24 J	<0.50	8.4	36	<2	<2	<2
GMW-59	07/10/12	Parsons			1,100	<5	1.5 J	<5	<5	9.7	<100	<20	<20	<20
GMW-59	10/19/12	Parsons	3,400 HD		1,000	<5	1.8 J	<5	<5	7.8	<100	<20	<20	<20
GMW-59	01/15/13	Parsons	2,400	1,500 b	670	<2.5	1.6 J	<2.5	<2.5	7.4	<50	<10	<10	<10
GMW-59	04/12/13	Parsons	2,500 HD	8,200	680	<2.5	2.2 J	<2.5	<2.5	6.6	<50	<10	<10	<10
GMW-59	10/09/13	Parsons	1,400 HD	3,100 HD	240	<0.50	0.76	0.30	<0.50	5.1	<10	<2	<2	<2
GMW-59	04/18/14	Parsons	5,600 HD	7,700 HD	170	<0.50	1.5	0.99	<0.50	3.5	14	<2	<2	<2
GMW-59	11/03/14	SGI	1,500	2,000	300	<0.50	0.93	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-59	04/29/15	SGI	910	1,600	150	<2.5	<2.5	<5.0	<2.5	<10	<50	<10	<10	<10
GMW-59	10/26/15	SGI	3,000	2,600	180	<5.0	34	241	<5.0	<20	<100	<20	<20	<20
GMW-59	04/14/16	SGI	640	3,300	87	<0.50	<0.50	<1.5	<0.50	1.0	<10	<2.0	<2.0	<2.0
DUP-7 (GMW-59)	04/14/16	SGI	530	3,300	86	<0.50	<0.50	<1.5	<0.50	1.0	<10	<2.0	<2.0	<2.0
GMW-59	10/11/16	SGI	470	1,800	110	<1.0	<1.0	<3.0	<1.0	<2.0	<20	<4.0	<4.0	<4.0
GMW-60	07/21/04	BT for Parsons	15,000		1,700	160	710	2,050		<0.50				
GMW-60	11/03/04	BT for Parsons	12,000		1,700	70	900 860	1,780	<5	<5 <20	<100	<20	<20	<20
GMW-60 GMW-60	03/02/05	BT for Parsons	8,300		1,300	<20 <5	790	2,040				 <20	 <20	 <20
	05/05/05	BT for Parsons	9,400		1,100		790 680	1,740	<5	<5 <5	<100 <100	<20	<20 <20	<20 <20
GMW-60 GMW-60	08/04/05 11/05/05	BT for Parsons	6,200 7,200		1,000 970	<5 <5	710	1,070	<5 <5	<5 <5	<100	<20	<20	<20
GMW-60	03/08/06	BT for Parsons BT for Parsons	5,900		680	<5 <5	640	1,130 800	<5 <5	<5 <5	<100	<20	<20	<20
GMW-60	05/03/06	BT for Parsons	3,900		770	<5 <5	230	235	<5 <5	<5 <5	<100	<20	<20	<20
GMW-60	07/28/06	BT for Parsons	4.600		850	<5 <5	170	102	<5 <5	<5 <5	<100	<20	<20	<20
GMW-60	12/05/06	BT for Parsons	4,100		660	<5 <5	130	92	<5	<5 <5	<100	<20	<20	<20
GMW-60	03/23/07	BT for Parsons	3,500		490	<2.5	87	80	<2.5	<2.5	<50	<10	<10	<10
GMW-60	05/02/07	BT for Parsons	2.800		300	<2.5	18	23	<2.5 <2.5	<2.5	<50 <50	<10	<10	<10
GMW-60	08/31/07	BT for Parsons	2,000		250	<2.5	18	5.9	<2.5	<2.5	<50	<10	<10	<10
GMW-60	11/13/07	BT for Parsons	1.500		180	<0.50	21	4.3	<0.50	<0.50	<10	<2	<2	<2
GMW-60	02/07/08	BT for Parsons	1,700		270	0.80	65	48	<0.50	<0.50	<10	<2	<2	<2
GMW-60	04/16/08	BT for Parsons	1,400		160	<1	24	<1	<1	<1 <1	<20	<4	<4	<4
GMW-60	07/29/08	BT for Parsons	2,000		240	<1	3.9	<1	<1	<1	<20	<4	<4	<4
GMW-60	10/15/08	BT for Parsons	1,400		220	<1	2.7	<1	<1	<1	<20	<4	<4	<4
GMW-60	02/12/09	BT for Parsons	1,600		200	<1	2.5	<1	<1	<1	<20	<4	<4	<4
GMW-60	04/20/09	BT for Parsons	3,500		800	<5	7.9	<5	<5	<5	<100	<20	<20	<20
GMW-60	07/20/09	Blaine Tech for AMEC	3,200		940	<5	11	<5	<5	<5	<100	<20	<20	<20
GMW-60	10/19/09	BT for Parsons	2,600		800	<5	8.8	<5	<5	-5	<100	<20	<20	<20
GMW-60	01/11/10	BT for Parsons			940	<5 <5	12	<5 <5	<5 <5		<100	<20	<20	<20
GMW-60	04/13/10	BT for Parsons	1.900		580	<0.50	8.7	0.26	<0.50	<0.50	<10	<2	<2	<2
GMW-60	10/06/10	BT for Parsons	560		770				<0.50	<0.50	<10			
GMW-60	01/11/11	BT for Parsons	3,200		870	< 0.50	12	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-60	04/15/11	BT for Parsons	2,100		590	<0.50	9.8	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-60	07/12/11	Parsons	2,200		560	<0.50	10	0.27 J	<0.50	<0.50	8.8 J	<2	<2	<2
GMW-60	10/11/11	Parsons	2,300		510	<0.50	9.1	0.27 J	<0.50	<0.50	<10	<2	<2	<2
GMW-60	01/10/12	Parsons	2,100		210	0.3 J	7.3	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-60	04/20/12	Parsons	1,200		13	<0.50	3.1	0.36 J	<0.50	<0.50	14	<2	<2	<2
GIVIVV-00	UT12U112	1 4130113	1,200		10	-0.00	V. I	0.000	-0.00	-0.00		-2	٠.۷	-۷

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-60	07/10/12	Parsons			5.1	<0.50	0.70	0.24	<0.50	<0.50	69	<2	<2	<2
GMW-60	10/17/12	Parsons	630 b		1.5	<0.50	0.4 J	<0.50	<0.50	<0.50	280	<2	<2	<2
GMW-60	01/15/13	Parsons	610	460 b	4.3	<0.50	0.37 J	<0.50	<0.50	<0.50	620	<2	<2	<2
GMW-60	04/11/13	Parsons	1,000 b	3,200 b	61	<0.50	1.6	0.73 J	<0.50	<0.50	460	<2	<2	<2
GMW-60	10/09/13	Parsons	920 HD	2,300 HD	25	<0.50	0.70	0.59	<0.50	<0.50	800	<2	<2	<2
GMW-60	04/17/14	Parsons	650	2,700 HD	11	<1	0.3 J	<1	<1	<1	1,200	<4	<4	<4
GMW-60	10/30/14	SGI	470	1,500	8.6	<0.50	<0.50	<1.5	<0.50	<2.0	680	<2.0	<2.0	<2.0
GMW-60	10/30/14	SGI	500	1,800	7.1	<0.50	<0.50	<1.5	<0.50	<2.0	780	<2.0	<2.0	<2.0
GMW-60	04/28/15	SGI	330	2,000	3.1	<0.50	<0.50	<1.0	<0.50	<2.0	1,600	<2.0	<2.0	<2.0
GMW-60	10/26/15	SGI	<100	870	0.98	<0.50	<0.50	<1.5	<0.50	<2.0	43	<2.0	<2.0	<2.0
GMW-60	04/13/16	SGI	110	100	5.1	<0.50	0.69	2.6	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-60	10/07/16	SGI	<100	870	<0.50	< 0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-61	07/21/04	BT for Parsons	19,000		2,400	1,700	1,000	4,000		<0.50				
GMW-61	11/03/04	BT for Parsons	23,000		2,500	2,200	1,200	5,000	<5	<5	<100	<20	<20	<20
GMW-61	03/02/05	BT for Parsons	20,000		2,700	1,900	1,100	5,900		<20				
GMW-61	05/05/05	BT for Parsons	11,000		2,000	310	840	2,500	<10	<10	<200	<40	<40	<40
GMW-61	08/04/05	BT for Parsons	11,000		1,900	740	740	3,500	<10	<10	<200	<40	<40	<40
GMW-61	11/05/05	BT for Parsons	16,000		2,600	480	1,100	4,900	<10	<10	<200	<40	<40	<40
GMW-61	03/08/06	BT for Parsons	11,000		2,100	280	1,000	2,700	<10	<10	<200	<40	<40	<40
GMW-61	05/03/06	BT for Parsons	9,600		1,900	89	810	2,030	<10	<10	<200	<40	<40	<40
GMW-61	07/28/06	BT for Parsons	7,200		1,400	20	460	1,290	<10	<10	<200	<40	<40	<40
GMW-61	12/05/06	BT for Parsons	7,900		1,500	19	330	2,050	<5	<5 	<100	<20	<20	<20
GMW-61	03/23/07	BT for Parsons	7,500		1,200	16	220	1,340	<5 	<5	<100	<20	<20	<20
GMW-61 GMW-61	05/02/07 08/31/07	BT for Parsons	11,000 9.200		1,600	27 17	290 190	2,090	<5 <0.50	<5	<100 <10	<20 <2	<20 <2	<20 <2
		BT for Parsons	-,		1,500	6.3	190 99	1,170		<0.50	<100	<20	<20	<2 <20
GMW-61 GMW-61	11/13/07 02/07/08	BT for Parsons	2,300 2.600		580 330	8.6	70	360 363	<5 <2.5	<5 <2.5	<100 <50	<10	<10	<10
GMW-61	02/07/08	BT for Parsons BT for Parsons	2,000		480	5.0	64	399	<2.5 <2.5	<2.5 <2.5	<50 <50	<10	<10	<10
GMW-61	07/29/08	BT for Parsons	1.500		400	<2.5	28	129	<2.5 <2.5	<2.5	<50 <50	<10	<10	<10
GMW-61	10/15/08	BT for Parsons	1,300		450	<2.5	34	150	<2.5 <2.5	<2.5	<50 <50	<10	<10	<10
GMW-61	02/12/09	BT for Parsons	1,100		340	<2.5	13	57	<2.5 <2.5	<2.5	<50 <50	<10	<10	<10
GMW-61	04/20/09	BT for Parsons	1,100		490	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-61	07/20/09	Blaine Tech for AMEC	760		350	<2.5	<2.5	<2.5	<2.5 <2.5	<2.5	<50 <50	<10	<10	<10
GMW-61	10/19/09	BT for Parsons	620		320	<2.5	1.2 J	<2.5	<2.5	<2.5	<50	<10	<10	<10
GMW-61	01/11/10	BT for Parsons			190	<1	0.99 J	<1	<1	<1	<20	<4	<4	<4
GMW-61	04/15/10	BT for Parsons	740		380	<0.50	1.7	<0.50	<0.50	<0.50	3.7 J	<2	<2	<2
GMW-61	10/06/10	BT for Parsons	1.200		100		1.7		<0.50	<0.50	<10			
GMW-61	01/10/11	BT for Parsons	800		190	<0.50	1.8	0.48	<0.50	<0.50	<10	<2	<2	<2
GMW-61	04/14/11	BT for Parsons	790		110	<0.50	1.2	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-61	07/12/11	Parsons	230		6.4	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-61	10/11/11	Parsons	140		<0.50	<0.70	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-61	01/10/12	Parsons	210		0.15 J	1.1	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-61	04/19/12	Parsons	190		9.1	0.63	0.2 J	0.33 J	<0.50	<0.50	27	<2	<2	<2
GMW-61	07/10/12	Parsons			110	0.29 J	0.87	0.28	<0.50	<0.50	14	<2	<2	<2
GMW-61	10/19/12	Parsons	1500 b		290	0.87	2.5	0.63	<0.50	<0.50	<10	<2	<2	<2
GMW-61	01/15/13	Parsons	130	140 b	2.7	<0.50	<0.50	<0.50	<0.50	<0.50	69	<2	<2	<2
GMW-61	04/11/13	Parsons	<100	340 b	0.43 J	<0.50	<0.50	< 0.50	<0.50	<0.50	60	<2	<2	<2
GMW-61	10/08/13	Parsons	130 HD	390 HD	9.4	<0.50	<0.50	<0.50	<0.50	<0.50	210	<2	<2	<2
GMW-61	04/17/14	Parsons	220 HD	190 HD	9.9	<0.50	0.18 J	0.31	<0.50	<0.50	55	<2	<2	<2
GMW-61	10/29/14	SGI	120	200	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	110	<2.0	<2.0	<2.0
GMW-61	04/28/15	SGI	130	260	12	<0.50	<0.50	<1.5	<0.50	<2.0	130	<2.0	<2.0	<2.0
GMW-61	04/14/16	SGI	<100	330	0.65	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-61	10/07/16	SGI	<100	390	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-62	11/14/07	BT for Parsons	4,200		1,400	85	160	92	<5	<5	<100	<20	<20	<20
GMW-62	02/07/08	BT for Parsons	4,100		2,100	190	450	610	<5	<5	<100	<20	<20	<20
GMW-62	04/17/08	BT for Parsons	1,000		430	15	50	24	<5	<5	<100	<20	<20	<20
GMW-62	07/29/08	BT for Parsons	2,400		1,300	33	160	109	<2.5	<2.5	<50	<10	<10	<10
GMW-62	10/15/08	BT for Parsons	2,800		1,700	19	220	161	<5	<5	<100	<20	<20	<20
GMW-62	02/12/09	BT for Parsons	3,600		1,800	5.1	150	164	<5	<5	<100	<20	<20	<20
GMW-62	04/23/09	BT for Parsons	1,500		370	<2.5	25	5.2	<2.5	<2.5	<50	<10	<10	<10
GMW-62	07/21/09	Blaine Tech for AMEC	1,800		1,200	<2.5	67	36	<2.5	<2.5	<50	<10	<10	<10
GMW-62	10/21/09	BT for Parsons	2,200		1,700	<2.5	43	13	<2.5	<2.5	<50	<10	<10	<10
GMW-62	01/12/10	BT for Parsons			3,900	<10	22	30	100	<1	<200	<40	<40	<40
GMW-62	04/14/10	BT for Parsons	2,400		1,600	0.60	26	45	<0.50	<0.50	<10	<2	<2	<2
GMW-62	10/05/10	BT for Parsons	6,700		1,200				<0.50	<0.50	<10			
GMW-63	10/15/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	02/12/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	04/23/09	BT for Parsons	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	07/21/09	Blaine Tech for AMEC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	10/22/09	BT for Parsons	<100		<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	01/12/10	BT for Parsons			0.39 J	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63 GMW-63	04/14/10 10/05/10	BT for Parsons			<0.50 <0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<2	<2	<2
		BT for Parsons				<0.50	<0.50		0.00					
GMW-63 GMW-63	01/10/11 04/12/11	BT for Parsons			<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<2 <2	<2 <2	<2 <2
GMW-63	04/12/11	BT for Parsons Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	07/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	10/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-63	12/17/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-63	04/20/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-63	10/21/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-63	04/11/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-63	10/03/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-64	10/15/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	02/12/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/23/09	BT for Parsons	<100		<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	07/21/09	Blaine Tech for AMEC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	10/21/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	01/12/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/14/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	10/05/10	BT for Parsons			< 0.50				<0.50	<0.50	<10			
GMW-64	01/10/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	07/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-64	07/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	10/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-64	12/17/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-64	04/20/15	SGI	<100	<100	<0.50	< 0.50	<0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-64	10/21/15	SGI SGI	<100 <100	<100 <100	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5	<0.50 <0.50	<2.0	<10 <10	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0
GMW-64 GMW-64	04/11/16 10/03/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5 <1.5	<0.50	<1.0 <1.0	<10	<2.0	<2.0	<2.0
GMW-65	10/03/16	BT for Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2.0 <2	<2.0 <2	<2.0
GMW-65	01/12/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	04/14/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	10/05/10	BT for Parsons			0.32 J				<0.50	<0.50	<10			
GMW-65	01/10/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	04/13/11	BT for Parsons			<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	07/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	04/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	07/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	10/17/12	Parsons			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
GMW-65	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	10/07/13	Parsons	<100	210 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-65	12/17/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-65	04/20/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-65	10/21/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-65	04/11/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-65	10/03/16	SGI	<100	<100	<0.50	< 0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-66	10/22/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66 GMW-66	04/19/10 10/06/10	BT for Parsons BT for Parsons			<0.50 <0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<2	<2 	<2
GMW-66	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	10/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	04/08/13	Parsons		130 b	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	10/07/13	Parsons	<100	150 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	04/15/14	Parsons	<100	96 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GMW-66	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-66R	04/13/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-66R	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-67	07/21/15	SGI	550	<100	21	<0.50	34	74	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-67	10/21/15	SGI	900	140	71	<0.50	110	82	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-67	10/21/15	SGI	970	120	66	<0.50	100	77	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GMW-67	04/13/16	SGI	310	<100	22	<0.50	73	6.8	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-67	10/03/16	SGI	<100	<100	4.2	<0.50	0.96	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-68	07/22/15	SGI	27,000	100	2,400	56	990	5,200	<10	<40	<200	<40	<40	<40
GMW-68	10/21/15	SGI	17,000	810	2,200	46	800	3,700	<10	<40	<200	<40	<40	<40
GMW-68	04/11/16	SGI	15,000	810	2,300	17	1,200	4,700	<10	<20	<200	<40	<40	<40

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GAMWAS C77115 SQ	Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
SMW-09 1092/15 SCI 2,800 330 330 450 440 380 450 420 4				(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SMY-029 OHT1/16 SCI	GMW-69	07/21/15	SGI	10,000	<100	500	14	550	1,570	<5.0	<20	<100	<20	<20	<20
Top-11 (ISBW 69)	GMW-69	10/21/15	SGI	2,900	330	350	<5.0	400	380	<5.0	<20	<100	<20	<20	<20
SMW-89 100316 SG 1,690 210 240 225 290 188 25 5.0 5.50 41	GMW-69	04/11/16	SGI	2,400	350	230	<2.5	390	360	<2.5	<5.0	<50	<10	<10	<10
CMW-C-1	DUP-1 (GMW-69)	04/11/16	SGI	2,900	340	260	1.3	390	360	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GMW-O-1 0709997 Terra Services <100 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	GMW-69	10/03/16	SGI	1,600	210	240	<2.5	290	188	<2.5	<5.0	<50	<10	<10	<10
GMW-O-1 1076978 Terts Services <100 <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	GMW-O-1	11/21/96	Terra Services			<0.50	<0.50	<0.50	<1.5	0.53	<5				
SMW-O-1 106/2098 Terra Services 4300 40.50 40.50 40.50 40.50 40.50 40.50	GMW-O-1	07/09/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	0.85	<5				
GMW-O-1 110498 Geomatix 4300 40.50 40.50 40.50 40.50 40.50 40.50		01/06/98	Terra Services		<500				<1.5						
GMW-O-1			Terra Services												
GMW-O-1			Geomatrix						<0.50	<0.50					
SMW-O-1 1981/1999 Alton Geoscience <500 <1,000 <0,550 <1 <1 <1 <1 <0,50 <1	GMW-O-1	11/04/98	Alton Geoscience	<300		< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50				
GMW-O-1 11/17/99 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <															
GMW-O-1					<1,000										
GMW-C)															
GMW-C-1 08/29/00 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50			Secor												
GMW-O-1 11/28/00 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-C-1 05/1001 Secor 4300 40,50 40,50 40,50 40,50 40,50 40,50															
GMW-C-1 09/1001 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 09/19/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1															
GMW-O-1															
GMW-O-1 04/09/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 07/30/02 IT Corporation <300															
GMW-O-1 01/24/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 01/28/03 Secor <300															
GMW-O-1															
GMW-O-1 07/30/03 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 10/08/03 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 01/29/04 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1															
GMW-O-1 07/20/04 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1															
GMW-O-1 02/03/05 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 05/04/05 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 08/03/05 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															-
GMW-O-1															
GMW-O-1 02/28/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 05/05/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 09/20/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 12/08/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 03/12/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 05/04/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
GMW-O-1 08/28/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 < <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
GMW-O-1 11/14/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50															
GMW-O-1 02/20/08 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 < <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
GMW-O-1 04/18/08 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 < <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
GMW-O-1 08/13/08 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 < GMW-O-1 10/17/08 Stantec <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 < GMW-O-1 02/23/09 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10															
GMW-O-1 10/17/08 Stantec <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 GMW-O-1 02/23/09 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10															
GMW-O-1 02/23/09 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10															
	GMW-O-1	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-1	07/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	03/15/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	07/12/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	01/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	07/10/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-1	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-1	04/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-1	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-1	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-1	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2 GMW-O-2	11/21/96	Terra Services			<0.50	<0.50 0.50	<0.50	<1.5 <1	12	<5 <5				
	07/09/97	Terra Services	<100	<500	<0.50		<0.50		<0.50	<5 <5				
GMW-O-2 GMW-O-2	01/07/98 05/20/98	Terra Services	<100 <300	<500	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1	13 14	<0.50				
GMW-O-2	11/11/98	Terra Services Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	05/05/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	11/16/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.7	<0.50				
GMW-O-2	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	<0.50				
GMW-O-2	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	11	<0.50				
GMW-O-2	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	<0.50				
GMW-O-2	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	01/15/03	Geomatrix	<300											
GMW-O-2	01/28/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	4.1	<0.50				
GMW-O-2	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	1.0	<0.50				
GMW-O-2	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	01/29/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	07/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	02/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	5.0	<0.50				
GMW-O-2	08/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	02/28/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-2	09/20/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	12/08/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	03/12/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	08/28/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	02/20/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2	04/18/08	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-2 GMW-O-2	08/13/08 10/16/08	Secor Stantec	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
GMW-0-2	02/23/09		<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50		<10			
GMW-O-2	04/22/09	Blaine Tech Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<10	 <1	 <1	 <1
GMW-O-2	07/21/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	10/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	03/16/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	07/13/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	01/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-O-2	07/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	07/10/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	01/14/13	CHHL	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-2	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-2	10/09/13	CHHL	<50	<50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-2	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-O-2	10/29/14	BT for CH2MHill	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2	04/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-2	10/04/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-3	11/27/96	Terra Services			2,900	1,000	1,200	1,950	<10	260				
GMW-O-3	07/14/97	Terra Services	14,000	1,300	1,500	410	700	1,200	<10	<100				
GMW-O-3	01/09/98	Terra Services	3,200	720	930	55	390	599	38	<50				
GMW-O-3	05/26/98	Terra Services	5,400		850	20	170	140	<5	<5				
GMW-O-3	08/26/98	Geomatrix	3,290		329	31	140	300	<2.5	<2.5				
GMW-O-3	11/17/98	Alton Geoscience	4,800		1,500	<100	350	400	<100	<100				
GMW-O-3	02/03/99	Alton Geoscience	3,800	<500	250	<2.5	34	17	<5	<2.5				
GMW-O-3	05/07/99	Alton Geoscience	2,900	<500	170	1.2	3.4	5.3	<1	<0.50				
GMW-O-3	08/10/99	Alton Geoscience	<500	<1,000	56	1.6	2.3	<1	1.2	<1				
GMW-O-3	11/17/99	Secor	340		15	0.50	1.9	1.9	<0.50	<0.50				
GMW-O-3	02/29/00	Secor	<300		12	<0.50	1.2	1.1	<0.50	<0.50				
GMW-O-3	05/17/00	Secor	1,800		290	32	33	180	<0.50	<0.50				
GMW-O-3	08/29/00	Secor	580		130	2.5	13	23	<0.50	<0.50				
GMW-O-3	11/28/00	Secor	1,500		350	13	43	93	<0.50	<0.50				
GMW-O-3	02/05/01	Secor	1,800		420	26	40	55	<10	<10				
GMW-O-3 GMW-O-3	05/10/01 09/19/01	Secor Secor	2,000 840		380 230	4.5 <2.5	32 17	42 11	<2.5 <2.5	<2.5 <2.5				
GIVIVV-U-3	09/19/01	Secoi	040		230	\2. 5	17	11	\2. 5	\2. 0				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-3	11/07/01	IT Corporation	520		120	<2.5	7.2	6.0	<2.5	<2.5				
GMW-O-3	01/30/02	Secor	<300		< 0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50				
GMW-O-3	04/09/02	Secor	1,200		260	2.6	13	9.8	<0.50	<0.50				
GMW-O-3	07/30/02	IT Corporation	380		150	1.6	5.1	4.6	<0.50	<0.50				
GMW-O-3	10/24/02	Secor	310		79	0.65	1.9	1.2	<0.50	<0.50				
GMW-O-3	01/15/03	Geomatrix	<300											
GMW-O-3	01/28/03	Secor	550		140	3.0	9.1	14	<0.50	<0.50				
GMW-O-3	04/08/03	Secor	660		170	1.6	9.2	<1	<2	<1				
GMW-O-3	07/30/03	Secor	830		200	2.0	18	8.2	<3	<1.5				
GMW-O-3	10/08/03	Secor	660		96	0.74	9.6	1.4	<1	<0.50				
GMW-O-3	01/29/04	Secor	850		120	0.63	3.0	0.72	<1	<0.50				
GMW-O-3	04/20/04	Secor	<50		65	< 0.50	<0.50	0.56	<0.50	<0.50				
GMW-O-3	07/20/04	Secor	370		29	<0.50	1.4	<0.50	<0.50	<0.50				
GMW-O-3	11/04/04	Secor	850		71	<0.50	2.7	<0.50	<1	<0.50				
GMW-O-3	02/03/05	Secor	210		16	< 0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-O-3	05/04/05	Secor	380		32	0.67	2.1	4.6	<0.50	<0.50				
GMW-O-3	08/03/05	Secor	1,000		4.4	1.1	110	<1	<2	<1				
GMW-O-3	11/01/05	Secor	1,300		35	2.3	67	50	<1	<0.50				
GMW-O-3	02/28/06	Secor	640		26	< 0.50	7.1	6.0	<0.50	<0.50				
GMW-O-3	05/04/06	Secor	400		19	< 0.50	0.71	1.2	<0.50	<0.50				
GMW-O-3	09/19/06	Secor	110		0.71	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	12/08/06	Secor	<50		< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
GMW-O-3	03/13/07	Secor	51		< 0.50	< 0.50	1.1	<0.50	<0.50	<0.50				
GMW-O-3	05/03/07	Secor	72		< 0.50	< 0.50	0.64	<0.50	<0.50	<0.50				
GMW-O-3	08/28/07	Secor	65		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	11/14/07	Secor	170		3.1	<0.50	9.7	<0.50	<0.50	<0.50				
GMW-O-3	02/07/08	Secor	96		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	04/15/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	08/14/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	10/16/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-3	02/23/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10			
GMW-O-3	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	07/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	03/15/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	07/12/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	01/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/10/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	07/10/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	01/15/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-3	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-3	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-3	10/21/15	BT for CH2MHill	<50	<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-3	04/12/16	BT for CH2MHill	<50	<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-3	10/05/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	11/22/96	Terra Services			< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<5				
GMW-O-4	07/09/97	Terra Services	<100	<500	<0.50	1.9	<0.50	<1	<0.50	<5				
GMW-O-4	01/02/98	Terra Services	<100	<500	<0.50	< 0.50	< 0.50	<1.5	< 0.50	<5				
GMW-O-4	05/21/98	Terra Services			< 0.50	< 0.50	< 0.50	<1	< 0.50	0.70				
GMW-O-4	11/12/98	Alton Geoscience	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	05/06/99	Alton Geoscience	<500	<500	<0.50	< 0.50	< 0.50	< 0.50	<1	<0.50				
GMW-O-4	11/16/99	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	11/17/99	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
GMW-O-4	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	11/29/00	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	11/07/01	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
GMW-O-4	04/09/02	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	10/24/02	Secor	<300		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50				
GMW-O-4	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	11/01/05	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	05/04/06	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	05/03/07	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
GMW-O-4	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4	04/15/08	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-4	10/15/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50				
GMW-O-4	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	10/20/09	Blaine Tech	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
GMW-O-4	10/05/10	Blaine Tech	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4	04/12/11	Blaine Tech	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4	10/05/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-4 (MID)	11/22/96	Terra Services			<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-O-4 (MID)	07/09/97	Terra Services	<100	<500	<0.50	0.99	<0.50	<0.10	<0.50	<5				
GMW-O-4 (MID)	01/02/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-O-4 (MID)	05/21/98	Terra Services	<300											
GMW-O-4 (MID)	11/04/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	05/06/99	Alton Geoscience								<0.50				
GMW-O-4 (MID)	05/06/99	Alton Geoscience	<500	<500					<1					

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-4 (MID)	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	10/08/03 04/20/04	Secor Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
GMW-O-4 (MID) GMW-O-4 (MID)	11/04/04	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	05/04/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	11/01/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	05/04/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	12/07/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-O-4 (MID)	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	04/15/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	10/15/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-4 (MID)	04/21/09	Blaine Tech for AMEC	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	10/20/09	Blaine Tech	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-O-4 (MID)	05/25/10	Blaine Tech	<50		<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-4 (MID)	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	11/22/96	Terra Services			11	5.7	9.2	32	<0.50	<5				
GMW-O-5	07/09/97	Terra Services	<100	<500	<0.50	1.9	<0.50	<1	<0.50	<5				
GMW-O-5	01/07/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	15				
GMW-O-5	05/21/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
GMW-O-5 GMW-O-5	08/24/98 11/04/98	Geomatrix	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5 GMW-O-5	11/04/98	Alton Geoscience Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	02/03/99	Alton Geoscience	<500 <500	<500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	05/05/99	Alton Geoscience	<500 <500	<500 <500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-O-5	08/10/99	Alton Geoscience	<500	<1.000	2.3	4.4	<1	2.9	<0.50	<1				
GMW-O-5	11/16/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	02/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	08/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	02/05/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	01/15/03	Geomatrix	<300											
GMW-O-5	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	10/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-5	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-O-5	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-O-5	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	10/15/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-5	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	10/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	10/04/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-5	04/09/13	CHHL CHHL	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<10	<1	<1 <1	<1 <1
GMW-O-5 GMW-O-5	10/09/13 04/16/14	CHHL	<50 <50	<50 <50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-O-5	10/29/14	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-5	04/22/15	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-5	10/21/15	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-5	04/13/16	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-5	10/04/16	BT for CH2MHill	<50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-6	11/22/96	Terra Services			<0.50	<0.50	<0.50	<1.5	<0.50	<5		<1.0	<1.0 	~1.0
GMW-O-6	07/09/97	Terra Services	<100	<500	<0.50	0.90	<0.50	<1.5	<0.50	<5				
GMW-O-6	01/02/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5 <5				
GMW-O-6	05/21/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
GMW-O-6	11/04/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	05/05/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-O-6	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	05/17/00	Secor	<300		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.9				
GMW-O-6	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	04/09/02	Secor	<300		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
GMW-O-6	10/24/02	Secor	<300		< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50				
GMW-O-6	10/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-6	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-6	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-6	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-6	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-7	05/07/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
GMW-O-8	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.5	2.4				
GMW-O-8	01/16/03	Geomatrix			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-8	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-8	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-8	04/20/04	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-8	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-8	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-8	11/01/05	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
GMW-O-8	05/04/06	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-8	12/08/06	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-8	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50				
GMW-O-8	11/14/07	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-8	04/18/08	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-8	10/16/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-8	04/22/09	Blaine Tech for AMEC	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
GMW-O-8	10/21/09	Blaine Tech	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-8	05/25/10	Blaine Tech	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-8	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-8	04/12/11	Blaine Tech	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
GMW-O-8	10/11/11	CH2M Hill	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-8	04/18/12	CH2M Hill	<50	<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-8	10/16/12	CHHL	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
GMW-O-9	11/22/96	Terra Services			< 0.50	< 0.50	< 0.50	<1.5	46	<5				
GMW-O-9	07/10/97	Terra Services	<100	<500	< 0.50	3.6	< 0.50	<1	< 0.50	<5				
GMW-O-9	01/07/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-O-9	05/21/98	Terra Services			< 0.50	<0.50	<0.50	<0.60	12	< 0.50				
GMW-O-9	11/16/98	Alton Geoscience	<300		3.0	7.0	1.0	6.0	5.8	<0.50				
GMW-O-9	05/05/99	Alton Geoscience	<500	<500	< 0.50	< 0.50	< 0.50	< 0.50	<1	<0.50				
GMW-O-9	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	17	<0.50				
GMW-O-9	05/17/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	72	< 0.50				
GMW-O-9	11/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	53	<0.50				
GMW-O-9	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	87	<0.50				
GMW-O-9	11/07/01	IT Corporation	<300		< 0.50	<0.50	< 0.50	<0.50	53	< 0.50				
GMW-O-9	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-9	10/24/02	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	35	<0.50				
GMW-O-9	04/09/03	Secor	<50		< 0.50	<0.50	< 0.50	<0.50	50	< 0.50				
GMW-O-9	10/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	35	<0.50				
GMW-O-9	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	15	<0.50				
GMW-O-9	11/04/04	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	9.9	<0.50				
GMW-O-9	05/06/05	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	61	< 0.50				
GMW-O-9	11/02/05	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-O-9	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	1.8	<0.50				
GMW-O-9	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	2.5	<0.50				
GMW-O-9	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-9	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	5.9	<0.50				
GMW-O-9	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-9	10/17/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-9	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	10/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	10/05/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-9	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	04/16/14	CHHL	<50	<50	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-9	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-9	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-9	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-9	04/13/16	BT for CH2MHill	<50	59	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-9	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	11/26/96	Terra Services			450	18	37	22	81	1,300				
GMW-O-10	07/14/97	Terra Services	17,000	900	4,200	2,800	650	1,600	<30	890				
GMW-O-10	01/09/98	Terra Services	25,000	12,000	3,900	2,800	510	1,470	<10	1,200				
GMW-O-10	05/27/98	Terra Services	<300		1.0	<0.50	<0.50	0.80	<0.50	1.0				
GMW-O-10	11/16/98	Alton Geoscience	6,840		2,900	540	320	310	<13	2,000				
GMW-O-10	05/07/99	Alton Geoscience	<500	<500	6.2	<0.50	0.61	<0.50	<1	0.64				
GMW-O-10	11/16/99	Secor	32,000		8,300	5,700	860	2,640	<25	2,600				
GMW-O-10	05/17/00	Secor	18,000		4,500	3,300	450	1,420	<25	1,300				
GMW-O-10	11/29/00	Secor	18,000		4,200	2,900	430	1,260	<25	1,400				
GMW-O-10	05/10/01	Secor	7,900		2,400	810	150	280	<10	950				
GMW-O-10	11/07/01	IT Corporation	8,100		1,200	120	<10	540	<10	1,100				
GMW-O-10	04/11/02	Secor	960		190	18	5.1	157	10	610				
GMW-O-10	10/24/02	Secor	2,000		270	27	<5	60	<5	290				
GMW-O-10	04/10/03	Secor	13,000		3,600	370	460	780	<50	520				
GMW-O-10	08/01/03	Secor	5,800		2,600	220	320	460	20	580				
GMW-O-10	10/08/03	Secor	4,900		1,500	240	160	275	24	460				
GMW-O-10	04/21/04	Secor	<50		<0.50	<0.50 85	<0.50 400	<0.50 409	<0.50 <30	<0.50 590				
GMW-O-10	11/04/04	Secor	8,900		3,900	<0.50	400 <0.50	409 <0.50	<0.50					
GMW-O-10 GMW-O-10	05/06/05 11/02/05	Secor Secor	<50 52		<0.50 19	0.50	<0.50	<0.50	<0.50 1.0	<0.50 10				
GMW-O-10	05/05/06	Secor	12,000		4,100	1,800	380	<0.50 640	1.0 <50	160				
GMW-0-10	12/07/06	Secor	8.900		4,100	470	320	310	<50 <50	190				
GMW-O-10	05/04/07	Secor	3,800		1,600	10	<10	120	<20	160				
GMW-O-10	11/14/07	Secor	12.000		5,100	54	340	325	<50	190				
GMW-O-10	04/18/08	Secor	1,300		680	< 5	14	11	<10	23				
GMW-O-10	08/14/08	Secor	1,600		820	5.3	31	42	<10	23 <5				
GMW-O-10	10/21/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.58				
GMW-O-10	04/22/09	Blaine Tech for AMEC	180		37	<0.50	<0.50	<0.50	<0.50	1.2	<10	<1	<1	<1
GMW-O-10	10/22/09	Blaine Tech	99		6.9	<0.50	<0.50	<0.50	<0.50	0.77	<10	<1	<1	<1
GMW-O-10	05/27/10	Blaine Tech	370		77	1.2	<0.50	<0.50	<0.50	0.87	<10	<1	<1	<1
GMW-O-10	10/07/10	Blaine Tech	380		42	1.2	0.51	<0.50	<0.50	0.79	<10	<1	<1	<1
GMW-O-10	04/13/11	Blaine Tech	270		39	1.0	<0.50	<0.50	<0.50	0.77	<10	<1	<1	<1
GMW-O-10	10/13/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	04/19/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	10/19/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	04/11/13	CHHL	110	<50	0.54	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	10/11/13	CHHL	75	64	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	04/17/14	CHHL	140	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-10	10/30/14	BT for CH2MHill	110	51	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	10/30/14	BT for CH2MHill	<100	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	04/23/15	BT for CH2MHill	160	150	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	04/23/15	BT for CH2MHill	110	160	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	10/26/15	BT for CH2MHill	160	180 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	10/26/15	BT for CH2MHill	170	110 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-10	04/14/16	BT for CH2MHill	910	89	430	12	16	<2.5	<5	<2.5	<50	<5	<5	<5

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DUP-5 (GMW-O-10)	04/14/16	BT for CH2MHill	890	78	420	12	16	<2.5	<5	<2.5	<50	<5	<5	<5
GMW-O-10	10/04/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-2 (GMW-O-10)	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-11	10/04/10	Blaine Tech	10,000		4,200	220	89	170	<30	160	560	32	<30	<30
GMW-O-12	10/05/10	Blaine Tech	23,000		12,000	<50	<50	<50	<100	71	<1,000	<100	<100	<100
GMW-O-12	04/14/11	Blaine Tech	16,000		7,300	<25	<25	<25	<50	25	<500	<50	<50	<50
GMW-O-12	10/13/11	CH2M Hill	20,000		11,000	<100	<100	<100	<200	<100	<2,000	<200	<200	<200
GMW-O-12	04/20/12	CH2M Hill	29,000	260,000	12,000	<50	<50	<50	<100	<50	<1,000	<100	<100	<100
GMW-O-12	10/19/12	CHHL	12,000	120,000	4,700	<25	<25	<25	<50	<25	<500	<50	<50	<50
GMW-O-12	04/12/13	CHHL	34,000	160,000	13,000	<100	<100	<100	<200	<100	<2,000	<200	<200	<200
GMW-O-12	10/11/13	CHHL	30,000	73,000	13,000	<63	<63	<63	<130	<63	<1,300	<130	<130	<130
GMW-O-14	11/27/96	Terra Services	88,000	74,000	4,500	3,200	520	2,600	440	<300				
GMW-O-14	07/17/97	Terra Services	160,000	610,000	7,600	4,900	2,200	43,000	<500	<5,000				
GMW-O-14	01/09/98	Terra Services	33,000	780,000	7,200	4,500	510	2,300	<30	<300				
GMW-O-14	05/27/98	Terra Services	3,500		330	<2.5	80	88	<2.5	<0.50				
GMW-O-14	11/17/98	Alton Geoscience	3,850		5,000	3,840	1,040	4,510	<100	<100				
GMW-O-14	11/17/98	Alton Geoscience												
GMW-O-14	05/07/99	Alton Geoscience	23,000	54,000	5,100	3,400	650	2,800	<50	<20				
GMW-O-14	11/18/99	Secor	26,000		5,900	4,100	780	2,500	<50	<50				
GMW-O-14 GMW-O-14	05/17/00 11/29/00	Secor Secor	10,000		2,300	630	370 1,200	820 4.400	<50 <50	<100 <50				
			42,000		8,800	5,000	,	,						
GMW-O-14 GMW-O-14	05/10/01 11/07/01	Secor	5,200 15.000		100 3.900	34 890	96 640	237 1,280	<1 <1	<1 <2				
GMW-O-14	04/09/02	IT Corporation Secor	38,000		7,400	2,700	990	3,200	<13	24				
GMW-O-14	07/30/02	IT Corporation	11.000		4.900	2,700	550	1.890	<13	14				
GMW-O-14	10/24/02	Secor	26,000		7,100	3,500	970	3,500	<13 <25	<25				
GMW-O-14	01/28/03	Secor	39.000		12,000	8.400	1,500	5,600	<25	38				
GMW-O-14	03/12/03	Geomatrix	1,500		760	72	66	115	<2.5	14				
GMW-O-14	04/09/03	Secor	33.000		5.100	2.900	990	3.300	<40	<20				
GMW-O-14	07/30/03	Secor	20.000		3,100	1.900	790	3,300	74	<15				
GMW-O-14	10/09/03	Secor	43.000		8.700	4.200	1,300	5,300	180	<50				
GMW-0-14	01/29/04	Secor	55,000		13,000	6,900	1,400	5,600	240	<50				
GMW-0-14 GMW-0-14	04/20/04	Secor	54,000		11,000	5.700	1,500	6.100	170	<50 <50				
GMW-0-14 GMW-0-14	07/20/04	Secor	72.000		13,000	8.200	1,700	7.400	200	<50 <50				
GMW-0-14	11/04/04	Secor	41.000		9.000	7.000	1,300	5.500	<200	<100				
GMW-0-14	02/03/05	Secor	34,000		8,600	2,300	950	3,100	69	34				
GMW-0-14	05/04/05	Secor	420		11	1.6	18	19	6.5	<0.50				
GMW-O-14	08/03/05	Secor	15,000		160	600	290	1,840	<10	<5				
GMW-O-14	11/02/05	Secor	14,000		320	350	160	2.690	<40	<20				
GMW-O-14	02/28/06	Secor	8,200		860	87	18	1.020	15	<5				
GMW-O-14	05/05/06	Secor	6,700		1,500	77	<10	450	35	<10				
GMW-O-14	09/20/06	Secor	6,900		1,400	250	39	640	30	<10				
GMW-0-14	12/07/06	Secor	9,000		1,400	150	27	501	36	<10				
GMW-O-14	03/12/07	Secor	4,700		1,000	180	26	400	23	<5				
GMW-O-14	05/04/07	Secor	8,200		1,700	330	48	570	44	<10				
GMW-O-14	08/28/07	Secor	12,000		75	110	200	1,000	<5	<2.5				
GMW-O-14	11/15/07	Secor	16,000		320	300	520	2,470	<20	<10				
GMW-O-14	02/20/08	Secor	35,000		7,900	1,900	1,200	3,400	<100	<50				
GMW-O-14	04/15/08	Secor	26,000		4,900	1,800	840	2,800	59	<25				
GMW-O-14	08/14/08	Secor	25,000		4,300	1,100	730	2,800	70	<25				
GMW-O-14	10/16/08	Stantec	21,000		3,200	940	500	3,000	<30	<15				
GMW-O-14	02/23/09	Blaine Tech	30,000		6,100	3,500	1,200	3,900	77	<25	<500			

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-14	04/22/09	Blaine Tech for AMEC	36,000		9,300	2,300	1,300	3,500	120	<50	<1,000	170	<100	<100
GMW-O-14	07/22/09	Blaine Tech	32,000		7,800	1,900	1,500	4,100	86	<25	<500	130	<50	<50
GMW-O-14	10/23/09	Blaine Tech	40,000		14,000	1,900	1,500	3,500	<200	<100	<2,000	<200	<200	<200
GMW-O-14	03/16/10	Blaine Tech	57,000		14,000	6,200	1,700	4,700	<200	<100	<2,000	310	<200	<200
GMW-O-14	05/28/10	Blaine Tech	26,000		7,900	1,500	370	2,180	110	<25	<500	180	<50	<50
GMW-O-14	07/14/10	Blaine Tech	22,000		7,900	420	77	1,500	100	<50	<1,000	130	<100	<100
GMW-O-14	10/07/10	Blaine Tech	16,000		5,900	200	220	680	<100	<50	<1,000	<100	<100	<100
GMW-O-14	01/11/11	Blaine Tech	49,000		12,000	5,500 470	1,400	2,700	120 <100	<50 <50	<1,000	190	<100 <100	<100 <100
GMW-O-14 GMW-O-14	04/13/11 07/12/11	Blaine Tech CH2M Hill	26,000 12.000		8,200	470 50	680 <25	2,300	<100 <50	<50 <25	<1,000 <500	160 <50	<100 <50	<100 <50
GMW-0-14 GMW-0-14	10/12/11	CH2M Hill	,		3,800	55	<25 <25	1,800	<50 <50	<25 <25	<500 <500	<50 <50	<50 <50	<50 <50
GMW-O-14	01/09/12	CH2M Hill	16,000 38,000		4,000 9,000	2.200	1,200	2,500 4,300	<200	<100	<2,000	<200	<200	<200
GMW-0-14 GMW-0-14	04/20/12	CH2M Hill	47.000	2.500	11.000	1.100	1,200	5.000	<100	<50	<1.000	170	<100	<100
GMW-O-14	07/10/12	CHHL	48,000	390	12,000	3,500	1,200	3,700	<100	<50	<1,000	270	<100	<100
GMW-O-14	10/18/12	CHHL	15,000	2,700	2,600	1,100	520	1,800	<50	<25	<500	70	<50	<50
GMW-O-14	01/15/13	CHHL	7,700	8,300	1,200	72	420	1,300	<20	<10	<200	25	<20	<20
GMW-O-14	04/11/13	CHHL	27,000	3,700	6,900	200	1,800	2,300	61	<25	<500	180	<50	<50
GMW-O-14	10/11/13	CHHL	54,000	3,000	14.000	760	2,200	3.000	<130	64	<1.300	260	<130	<130
GMW-O-14	04/16/14	CHHL	32,000	1,900	9,700	130	1,500	1,500	<200	<100	<2,000	<200	<200	<200
GMW-O-14	10/31/14	BT for CH2MHill	19.000	1,300	6,600	50	730	350	<50	<25	<500	200	<50	<50
GMW-O-14	10/31/14	BT for CH2MHill	25,000	1,600	6,200	110	710	710	<50	<25	<500	200	<50	<50
GMW-O-14	04/23/15	BT for CH2MHill	15,000	1,100	6,900	59	530	92	<50	26	2,000	220	<50	<50
GMW-O-14	04/23/15	BT for CH2MHill	12,000	870	5,500	47	420	71	<50	<25	<500	180	<50	<50
GMW-O-14	10/26/15	BT for CH2MHill	24,000	890 HD	12,000	<100	570	<100	<200	<100	<2,000	220	<200	<200
GMW-O-14	10/26/15	BT for CH2MHill	25,000	820 HD	12,000	<100	560	<100	<200	<100	<2,000	220	<200	<200
GMW-O-14	04/15/16	BT for CH2MHill	3,200	930	1,300	<10	<10	<10	<20	13	<200	100	<20	<20
DUP-6 (GMW-O-14)	04/15/16	BT for CH2MHill	3,400	720	1,400	<10	<10	<10	<20	13	<200	110	<20	<20
GMW-O-14	10/07/16	BT for CH2MHill	30,000	640	12,000	72	390	290	<100	<50	<1,000	220	<100	<100
DUP-7 (GMW-O-14)	10/07/16	BT for CH2MHill	32,000	530	12,000	85	470	330	<100	<50	<1,000	230	<100	<100
GMW-O-15	10/16/08	Stantec	1,700		550	3.0	37	34	<5	110				
GMW-O-15	03/16/10	Blaine Tech	530		10	1.1	0.64	2.7	<0.50	400	<10	<1	<1	1.9
GMW-O-15	04/16/10	Blaine Tech	6,700		1,700	54	120	176	<10	1,300	1,800	<10	<10	11
GMW-O-15	05/25/10	Blaine Tech	650		82	16	8.4	44	<2	180	1,500	<2	<2	<2
GMW-O-15	07/13/10	Blaine Tech	580		110	7.5	11	27	<1	300	5,100	<1	<1	1.5
GMW-O-15	08/12/10	Blaine Tech	710		120	4.1	10	34	<1	260	5,300	<1	<1	1.5
GMW-O-15	09/20/10	Blaine Tech	620		120	3.3	13	24	<1	230	6,000	<1	<1	1.4
GMW-O-15	10/05/10	Blaine Tech	14,000		1,800	280	92	760	<20	3,200	3,000	<20	<20	35
GMW-O-15	12/22/10	Blaine Tech	28,000		3,900	610	850	3,000	<40	1,900	1,300	<40	<40	<40
GMW-O-15	01/12/11	Blaine Tech	12,000		1,300	49	280	700	<20	430	12,000	<20	<20	<20
GMW-O-15	02/24/11	Blaine Tech	12,000		700	450	310	1,300	<10	970	4,100	<10	<10	20
GMW-O-15	03/23/11	Blaine Tech	2,400		210	47	39	190	<2	310	3,600	<2	<2	5.2
GMW-O-15	04/29/11	Blaine Tech	1,200		250	27	27	154	<2	350	3,900	<2	<2	2.4
GMW-O-15	05/13/11	Blaine Tech	1,300		200	18	22	127	<2	350	6,600	<2	<2	3.6
GMW-O-15	06/22/11	Blaine Tech	1,800		190	95	34	220	<1	310	6,800	<1	<1	1.8
GMW-O-15	07/12/11	CH2M Hill	1,000		150	17	14	97	<2	220	6,400	<2	<2	<2
GMW-O-15	08/19/11	CH2M Hill	33,000		820 480	2,200	610	4,400	<50 <5	290	9,200	<50	<50	<50
GMW-O-15 GMW-O-15	09/22/11 10/13/11	CH2M Hill CH2M Hill	3,400 3,900		480 530	290 290	58 73	320 460	<5 <10	640 220	6,800 3,200	<5 <10	<5 <10	10 <10
GMW-O-15 GMW-O-15	12/21/11	CH2M HIII CH2M HIII	520		110	1.5	5.7	22	<10	79	5,300	<10	<10	<10 <2
GMW-0-15	01/10/12	CH2M Hill	470		110	1.3	6.9	15	<1	86	4,300	<1	<1	1.2
GMW-0-15	01/10/12	CH2M HILL	4,800		340	390	85	600	<1 <5	110	4,000	<5	<5	1.2
GMW-O-15	03/28/12	CH2M HILL	1,300	120	230	68	13	110	<2	99	4,600	<2	<2	<2
O14144-O-10	00120112	OF IZIVI I IILL	1,500	120	200	1 30		. 10	-2	33	7,500	-2		-2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-15	04/27/12	CH2M Hill	2,100	1,300	180	67	16	160	<1	49	4,300	<1	<1	1.0
GMW-O-15	05/25/12	CH2M HILL	110,000	24,000	320	270	420	3,400	<100	190	<1,000	<100	<100	100
GMW-O-15	07/11/12	CHHL	17,000	13,000	6,700	63	120	270	<100	1,500	1,600	<100	<100	<100
GMW-O-15	08/29/12	CHHL	190	89	73	1.2	3.3	8.1	< 0.50	22	5,300	<1	<1	<1
GMW-O-15	09/26/12	CHHL	220	<50	53	0.74	3.7	7.3	<0.50	17	2,900	<1	<1	<1
GMW-O-15	10/18/12	CHHL	210	140	50	<0.50	3.3	5.9	<1	13	2,600	<1	<1	<1
GMW-O-15	11/29/12	CHHL	380	75	140	1.3	3.0	6.4	<2	33	3,900	<2	<2	<2
GMW-O-15	12/26/12	CHHL	1,400	110	100	23	3.4	20	<0.50	22	3,900	<1	<1	<1
GMW-O-15	01/15/13	CHHL	1,200	<50	240	29	16	45	<3	52	3,100	<3	<3	<3
GMW-O-15	02/20/13	CHHL	230	<50	59	<0.50	2.5	3.2	<1	14	3,100	<1	<1	<1
GMW-O-15	04/12/13	CHHL	460	110	89	2.3	4.6	5.5	<1	36	3,600	<1	<1	<1
GMW-O-15	10/11/13	CHHL	56,000	88,000	7,600	2,300	750	4,100	<100	8,000	7,100	<100	<100	<100
GMW-O-15	10/27/15	BT for CH2MHill	120,000	490,000	12,000	16,000	2,200	12,000	<200	8,800	<2,000	<200	<200	210
GMW-O-15	04/14/16	BT for CH2MHill	370,000	82,000	5,700	15,000	4,600	36,000	<200	2,800	3,400	<200	<200	<200
GMW-O-16	11/27/96	Terra Services			570	67	14	360	<5	120				
GMW-O-16	07/17/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	310				
GMW-O-16	01/06/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-O-16	05/20/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<0.50	76				
GMW-O-16	11/13/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.70				
GMW-O-16	05/07/99	Alton Geoscience	<500	<500	0.66	<0.50	<0.50	0.72	<1	7.6				
GMW-O-16	11/18/99	Secor	<416		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
GMW-O-16	11/30/00	Secor	<300		0.80	<0.50	<0.50	<0.50	<0.50	0.60				
GMW-O-16	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	10/22/02	Secor	<300		1.6	0.98	<0.50	<0.50	<0.50	< 0.50				
GMW-O-16	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16 GMW-O-16	04/22/04 07/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	11/02/04	Secor Secor	 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	05/05/05		92			<0.50	<0.50	<0.50	<0.50					
GMW-O-16 GMW-O-16	08/02/05	Secor Secor	92 57		1.6 1.3	<0.50	<0.50	<0.50	<0.50	110 93				
GMW-O-16	11/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	57				
GMW-O-16	02/28/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	5.3				
GMW-O-16	05/04/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	6.3				
GMW-O-16	09/19/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.57				
GMW-O-16	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	05/05/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-16	02/07/08	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	0.68				
GMW-O-16	04/16/08	Secor	<50		<0.50	1.2	0.59	5.5	<0.50	0.63				
GMW-O-16	10/14/08	Stantec	<50 <50		<0.50	<0.50	<0.50	0.60	<0.50	0.65				
GMW-O-16	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.55	<10	<1	<1	<1
GMW-O-16	10/21/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	03/16/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	04/16/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	05/26/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	0.88	<10	<1	<1	<1
GMW-O-16	07/13/10	Blaine Tech	<50		0.73	<0.50	<0.50	<0.50	<0.50	1.9	<10	<1	<1	<1
GMW-O-16	08/12/10	Blaine Tech	<50 <50		0.73	<0.50	<0.50	<0.50	<0.50	2.3	<10	<1	<1	<1
GMW-O-16	09/20/10	Blaine Tech	<50 <50		0.69	<0.50	<0.50	<0.50	<0.50	3.1	<10	<1	<1	<1
GMW-O-16	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-16	11/16/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	4.0	<10	<1	<1	<1
GMW-O-16	12/22/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	2.0	<10	<1	<1	<1
GMW-O-16	01/11/11	Blaine Tech	<50		0.52	<0.50	<0.50	<0.50	<0.50	0.94	<10	<1	<1	<1
GMW-O-16	02/24/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.67	<10	<1	<1	<1
GMW-O-16	03/23/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.6	<10	<1	<1	<1
GMW-O-16	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<10	<1	<1	<1
GMW-O-16	05/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.8	<10	<1	<1	<1
GMW-O-16	06/22/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.9	<10	<1	<1	<1
GMW-O-16	07/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.8	<10	<1	<1	<1
GMW-O-16	08/19/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<1	<1	<1
GMW-O-16	09/22/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	2.9	<10	<1	<1	<1
GMW-O-16	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<10	<1	<1	<1
GMW-O-16	11/28/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<10	<1	<1	<1
GMW-O-16	12/21/11	CH2M Hill	<50		<0.50	<0.50	<0.50	0.50	<0.50	1.8	<10	<1	<1	<1
GMW-O-16	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	1.4	<0.50	3.4	<10	<1	<1	<1
GMW-O-16	02/23/12	CH2M HILL	<50		<0.50	<0.50	<0.50	<0.50	<0.50	2.3	<10	<1	<1	<1
GMW-O-16	03/28/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.0	<10	<1	<1	<1
GMW-O-16	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.79	<10	<1	<1	<1
GMW-O-16	05/25/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	06/15/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	07/10/12	CHHL	<50	<50	2.5	1.1	<0.50	0.70	<0.50	0.57	<10	<1	<1	<1
GMW-O-16	08/29/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16 GMW-O-16	09/26/12	CHHL CHHL	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.89	<0.50 <0.50	<0.50 0.70	<10 <10	<1 <1	<1 <1	<1 <1
	10/17/12		<50 <50			<0.50			<0.50				<1	·
GMW-O-16 GMW-O-16	11/29/12 12/26/12	CHHL CHHL	<50 <50	83 <50	<0.50 <0.50	<0.50	<0.50 <0.50	0.56 < 0.50	<0.50	<0.50 1.5	<10 <10	<1 <1	<1	<1 <1
GMW-O-16	01/15/13	CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	0.95	<10	<1	<1	<1
GMW-0-16	02/20/13	CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<10	<1	<1	<1
GMW-O-16	04/10/13	CHHL	<50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	10/10/13	CHHL	170	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	24	<1	<1	<1
GMW-O-16	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-16	10/29/14	BT for CH2MHill	<50	<50	0.89	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-16	04/22/15	BT for CH2MHill	89	<50 <50	2.5	<0.50	<0.50	<0.50	<0.50	<0.50	22	<1.0	<1.0	<1.0
GMW-O-16	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-16	04/14/16	BT for CH2MHill	<50	310	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-16	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-17	11/22/96	Terra Services			<0.50	<0.50	<0.50	<1.5	<0.50	<5				
GMW-O-17	07/10/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
GMW-O-17	01/07/98	Terra Services	<100	<500	<0.50	0.64	<0.50	<1.5	<0.50	<5				
GMW-O-17	05/21/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<0.50	<0.50				
GMW-O-17	11/04/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	05/05/99	Alton Geoscience	<500	<500	0.64	<0.50	<0.50	<0.50	<1	0.58				
GMW-O-17	11/16/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	11/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	10/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-17	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-17	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	04/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	26	<1	<1	<1
GMW-O-17	07/02/13	CHHL			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-17	10/29/14	BT for CH2MHill	<50 <50	<50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<10	<1.0	<1.0 <1.0	<1.0 <1.0
GMW-O-17	04/21/15	BT for CH2MHill		<50	< 0.50			<0.50			<10	<1.0		
GMW-O-17	10/21/15	BT for CH2MHill	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
GMW-O-17	04/12/16	BT for CH2MHill BT for CH2MHill							0.00			_		
GMW-O-17 GMW-O-18	10/04/16 11/26/96	Terra Services	<50 	<50 	<0.50 <10	<0.50 <10	<0.50 <10	<0.50 <30	<0.50 <10	<0.50 10.000	<10	<1.0	<1.0	<1.0
GMW-O-18	07/11/97		<100	<500	<3	<3	<3	<3	<3	3,000				
GMW-O-18	01/07/98	Terra Services Terra Services	<100	<500	<5	<5	<5	<15	<5	3,000				
GMW-O-18	05/21/98	Terra Services	2,000	~500 	<100	<100	<100	<200	<100	5,600				
GMW-O-18	11/17/98	Alton Geoscience	543		<0.50	1.0	<0.50	2.6	<0.50	1,420				
GMW-O-18	05/06/99	Alton Geoscience	2,700	<500	<5	<5	<5	< 5	<13	15,000				
GMW-O-18	11/18/99	Secor	2,700		<13	<12.5	<12.5	<12.5	<13	6.700				
GMW-O-18	05/19/00	Secor	3,500		<25	<25	<25	<25	<25	10,000				
GMW-O-18	11/02/05	Secor	<50		< 0.50	< 0.50	<0.50	<0.50	<0.50	1.4				
GMW-O-18	05/09/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	2.1				
GMW-0-18	12/07/06	Secor	<100		<0.50	<0.50	<0.50	<0.50	<1	0.65				
GMW-O-18	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.62				
GMW-O-18	11/15/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.6				
GMW-O-18	04/15/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-O-18	10/15/08	Stantec	<200		<1	<1	<1	<1	<2	<1				
GMW-O-18	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.0	140	<1	<1	<1
GMW-O-18	10/21/09	Blaine Tech	2.400		170	440	17	410	<5	490	480	<5	<5	<5
GMW-O-18	03/16/10	Blaine Tech	<50		0.60	1.3	<0.50	1.8	<0.50	4.5	550	<1	<1	<1
GMW-O-18	04/16/10	Blaine Tech	1,300		0.67	<0.50	3.1	13	<0.50	1.2	2,400	<1	<1	<1
GMW-O-18	05/25/10	Blaine Tech	110		<0.50	<0.50	< 0.50	< 0.50	<1	2.9	6,500	<1	<1	<1
GMW-O-18	07/14/10	Blaine Tech	110		< 0.50	<0.50	<0.50	< 0.50	< 0.50	0.85	11,000	<1	<1	<1
GMW-O-18	08/12/10	Blaine Tech	220		0.64	<0.50	<0.50	< 0.50	<1	0.93	15,000	<1	<1	<1
GMW-O-18	09/20/10	Blaine Tech	290		1.1	<0.50	<0.50	0.55	<1	1.2	23,000	<1	<1	<1
GMW-O-18	10/05/10	Blaine Tech	4,000		1,200	420	23	91	<10	670	2,600	<10	<10	<10
GMW-O-18	11/16/10	Blaine Tech	2,000		< 0.50	<0.50	<0.50	<0.50	<1	0.53	21,000	<1	<1	<1
GMW-O-18	01/12/11	Blaine Tech	<3000		<1	<1	<1	<1	<2	<1	29,000	<2	<2	<2
GMW-O-18	02/24/11	Blaine Tech	1,400		60	31	19	85	<0.50	380	1,600	<1	<1	3.9
GMW-O-18	03/23/11	Blaine Tech	110		6.0	1.4	1.1	6.3	<0.50	2.9	3,300	<1	<1	<1
GMW-O-18	04/29/11	Blaine Tech	<50		3.7	<0.50	<0.50	1.7	<0.50	7.5	780	<1	<1	<1
GMW-O-18	05/13/11	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<1	<0.50	<10	<1	<1	<1
GMW-O-18	06/22/11	Blaine Tech	7,500		<0.50	<0.50	<0.50	440	<1	5.5	3,200	<1	<1	<1
GMW-O-18	08/19/11	CH2M Hill	2,600		17	3.9	3.2	40	<2	85	61	<2	<2	<2
GMW-O-18	09/22/11	CH2M Hill	34,000		700	110	690	5,300	<50	400	6,100	<50	<50	54
GMW-O-18	10/14/11	CH2M Hill	6,000		190	13	36	100	<20	1,600	6,600	<20	<20	26
GMW-O-18	11/23/11	CH2M Hill	25,000		65	<10	51	<10	<20	310	6,000	<20	<20	22
GMW-O-18	12/21/11	CH2M Hill	190		<0.50	<0.50	<0.50	0.53	<0.50	70	1,600	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

GMW-O-18 02/2 GMW-O-18 03/2 GMW-O-18 05/2 GMW-O-18 06/2 GMW-O-18 07/2 GMW-O-18 09/2 GMW-O-18 09/2 GMW-O-18 10/3	1/10/12 2/23/12 3/28/12 5/25/12 5/15/12 7/11/12 3/30/12	CH2M Hill CH2M HILL CH2M HILL CH2M HILL CH2M HILL CH2M HILL CH2M HILL	(μg/L) 570 180 140 <100	(µg/L) 	(µg/L) 100	(µq/L)							1	1 l'
GMW-O-18 02/2 GMW-O-18 03/2 GMW-O-18 05/2 GMW-O-18 06/2 GMW-O-18 07/2 GMW-O-18 08/2 GMW-O-18 09/2 GMW-O-18 10/3	2/23/12 8/28/12 5/25/12 5/15/12 7/11/12 8/30/12	CH2M HILL CH2M HILL CH2M HILL CH2M HILL	180 140		100		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-18 03/2 GMW-O-18 05/2 GMW-O-18 06/7 GMW-O-18 07/7 GMW-O-18 08/2 GMW-O-18 09/2 GMW-O-18 10/2	3/28/12 5/25/12 5/15/12 7/11/12 3/30/12	CH2M HILL CH2M HILL CH2M HILL	140		100	<0.50	5.3	3.9	<1	110	4,800	<1	<1	2.2
GMW-O-18 05/2 GMW-O-18 06/2 GMW-O-18 07/2 GMW-O-18 08/3 GMW-O-18 09/2 GMW-O-18 10/3	5/25/12 5/15/12 7/11/12 3/30/12	CH2M HILL CH2M HILL			8.8	6.8	0.84	7.8	<0.50	5.9	9,200	<1	<1	<1
GMW-O-18 06/ GMW-O-18 07/ GMW-O-18 08/3 GMW-O-18 09/2 GMW-O-18 10/3	6/15/12 7/11/12 8/30/12	CH2M HILL	<100	<50	<0.50	<0.50	<0.50	<0.50	<1	<0.50	10,000	<1	<1	<1
GMW-O-18 07/ GMW-O-18 08/3 GMW-O-18 09/2 GMW-O-18 10/3	7/11/12 3/30/12			<50	<0.50	<0.50	<0.50	<0.50	<1	<0.50	7,700	<1	<1	<1
GMW-O-18 08/3 GMW-O-18 09/2 GMW-O-18 10/3	3/30/12	CHHI	180	50	<0.50	<0.50	<0.50	<0.50	<1	0.60	17,000	<1	<1	<1
GMW-O-18 09/2 GMW-O-18 10/3			180	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	14,000	<1	<1	<1
GMW-O-18 10/3	9/26/12	CHHL	71	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	14,000	<1	<1	<1
		CHHL	55	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	8,900	<1	<1	<1
	0/30/12	CHHL	110	<50	<0.50	<0.50	<0.50	<0.50	<1	<0.50	11,000	<1	<1	<1
	1/29/12	CHHL	110	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	10,000	<1	<1	<1
	2/26/12	CHHL	76	240	22	2.1	0.82	2.4	<0.50	5.5	850	<1	<1	<1
	1/15/13	CHHL	91	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	8,000	<1	<1	<1
	1/12/13	CHHL	<100	58	<0.50	0.51	<0.50	0.53	<1	<0.50	4,000	<1	<1	<1
	0/10/13	CHHL	120	<50	2.2	1.1	<0.50	6.0	<0.50	<0.50	6,000	<1	<1	<1
	1/03/15	BT for CH2MHill	2,900	49,000	62	150	39	226	<3.0	100	1,800	<3.0	<3.0	<3.0
	1/14/16	BT for CH2MHill	11,000,000	5,900,000	53,000	620,000	310,000	2,300,000	<10,000	6,000	<100,000	<10,000	<10,000	<10,000
	1/25/96	Terra Services			<0.50	<0.87	2.8	5.1	<0.50	<5				
	7/16/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
	1/06/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
	5/20/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<0.50	2.0				
	1/12/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	5/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	0.51				
	1/18/99	Secor	<416		<0.50	<0.50	<0.50	<0.50	<0.50	0.50				
	5/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	9/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	1/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	1/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	1/09/03	Secor	<50		<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50				
	3/01/03	Secor Secor	<50 <50		<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50				
	0/07/03	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
					~0.50 	~0.50 	~0.50 	<0.50 	<0.50 					
	7/20/04	Secor Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	5/05/05	Secor	510		110	<0.50	17	25	<1	150				
	3/02/05	Secor	160		2.1	<0.50	1.2	<0.50	<0.50	19				
	1/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	2/28/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	5/04/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	2/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	5/05/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	1/15/07	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	1/16/08	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	0/14/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
		Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	0/20/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	3/15/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	1/16/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	5/26/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	7/13/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	3/12/10	Blaine Tech	<50		0.52	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	9/20/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
	0/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ЕТВЕ	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-19	11/16/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	12/22/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	01/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	02/24/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	03/23/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	05/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	06/22/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	08/19/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	09/22/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	11/28/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	12/21/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	01/10/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	02/23/12	CH2M HILL	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	03/28/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	05/25/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	06/15/12	CH2M HILL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	07/10/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	08/29/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	09/26/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	11/29/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	70	<1	<1	<1
GMW-O-19	12/26/12	CHHL	<50	<50	<0.50	<0.50	<0.50	0.52	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	01/15/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	02/20/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-O-19	10/09/13	CHHL CHHL	110 <50	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-O-19	04/15/14				<0.50									
GMW-O-19	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0 <1.0	<1.0
GMW-O-19	04/22/15	BT for CH2MHill	<50 <50	<50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<10	<1.0	<1.0	<1.0 <1.0
GMW-O-19 GMW-O-19	10/22/15 04/14/16	BT for CH2MHill BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<10 <10	<1.0 <1.0	<1.0	<1.0
		BT for CH2MHill	<50 <50										_	
GMW-O-19 GMW-O-20	10/05/16 10/05/10		46.000	<50 	<0.50 17.000	<0.50 390	<0.50 680	<0.50 2.700	<0.50 <200	<0.50 <100	<10 <2.000	<1.0 <200	<1.0 <200	<1.0 <200
GMW-O-20	04/13/11	Blaine Tech Blaine Tech	42,000		12,000	170	580	400	<200	<100	<2,000	<200	<200	<200
GMW-O-20	10/13/11	CH2M Hill	34.000		6.300	460	240	850	<100	<50	<1.000	<100	<100	<100
GMW-0-20	04/20/12	CH2M Hill	48.000	230.000	11.000	520	350	2.500	<100	<50 <50	<1,000	<100	<100	<100
GMW-O-20	10/19/12	CHZIVI HIII	36.000	340.000	6,100	1.000	360	2,700	<50	<25	<500	<50	<50	<50
GMW-0-20	10/19/12	BT for CH2MHill	35,000	95,000	2.700	930	230	4,200	<40	38	<400	<40	<40	<40
GMW-O-20 GMW-O-21	10/07/16	Secor	47.000	95,000	15.000	5.200	500	3,160	<100	5.200	<400 	<40 	<40 	<40
GMW-O-21	10/07/03	Blaine Tech	66,000		19,000	8,200	1.200	3,800	<200	<100	<2,000	<200	<200	<200
GMW-O-21	04/29/11	Blaine Tech	18.000		7.400	2.400	1,200	1.940	<50	95	<500	86	<50	<50
GMW-O-21	10/14/11	CH2M Hill	31.000		8,300	4.100	290	2.400	<100	51	<1.000	<100	<100	<100
GMW-O-21	04/19/12	CH2M Hill	32,000	1,200	11,000	4,400	230	3,000	<100	<50	<1,000	<100	<100	<100
GMW-O-21	10/19/12	CHHL	1,200	880	370	71	4.8	66	<2	3.2	96	8.7	<2	<2
GMW-0-21	10/19/12	BT for CH2MHill	18.000	2,000	2,900	21	280	1,600	<40	<20	<400	<40	<40	<40
GMW-0-21	10/07/16	Blaine Tech	120.000	2,000	22,000	21.000	1,800	8.100	<200	2.600	<2.000	<200	<200	<200
GMW-O-23	04/13/11	Blaine Tech	75,000		15,000	13,000	850	5,800	<200	1,700	<2,000	<200	<200	<200
GMW-O-23	10/13/11	CH2M Hill	65,000		16,000	11,000	540	3,800	<200	1,700	<2,000	<200	<200	<200
GWW-0-23	10/13/11	CH IZIVI T IIII	00,000		10,000	11,000	340	3,000	~200	1,500	`2,000	~200	~200	~200

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-O-23	10/19/12	CHHL	29,000	31,000	7,000	5,000	130	1,900	<100	400	<1,000	<100	<100	<100
GMW-O-23	10/07/16	BT for CH2MHill	2,800	170,000	15	<4.0	9.3	110	<8.0	5.0	<80	<8.0	<8.0	<8.0
GMW-O-24	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.99	<10	<1	<1	<1
GMW-O-24	04/09/13	CHHL	<50	<50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	4.2	<10	<1	<1	<1
GMW-O-24	10/23/13	CHHL	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	1.2	<10	<1	<1	<1
GMW-O-24	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
GMW-O-24	10/29/14	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-24	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-24	04/23/15	BT for CH2MHill	<50	74	0.70	<0.50	<0.50	0.97	<0.50	0.50	20	<1.0	<1.0	<1.0
GMW-O-24	04/23/15	BT for CH2MHill	<50	<50	0.64	<0.50	<0.50	0.98	<0.50	<0.50	16	<1.0	<1.0	<1.0
GMW-O-24	06/30/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	0.76	<10	<1.0	<1.0	<1.0
GMW-O-24	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-24	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-24	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-1 (GMW-O-24)	04/12/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-O-24	10/04/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-1 (GMW-O-24)	10/04/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-7	11/25/96	Terra Services			<0.50	<0.50	< 0.50	5.8	<0.50	<5				
GMW-SF-7	07/11/97	Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1	< 0.50	8.7				
GMW-SF-7	01/02/98	Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<5				
GMW-SF-7	05/19/98	Terra Services	<300		< 0.50	< 0.50	< 0.50	<1	< 0.50	<0.50				
GMW-SF-7	11/11/98	Alton Geoscience	<300		0.96	<0.50	0.50	1.3	<0.50	<0.50				
GMW-SF-7	05/07/99	Alton Geoscience	<500	<500	1.0	4.1	<0.50	1.8	<1	1.3				
GMW-SF-7	11/18/99	Secor	350		< 0.50	<0.50	<0.50	<0.50	<0.50	200				
GMW-SF-7	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	11/29/00	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	02/01/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	04/10/02	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	1.9				
GMW-SF-7	10/22/02	Secor	<300		< 0.50	<0.50	<0.50	<0.50	<0.50	2.5				
GMW-SF-7	01/29/03	Secor	<300		< 0.50	< 0.50	< 0.50	<0.50	<0.50	4.1				
GMW-SF-7	04/09/03	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	0.73				
GMW-SF-7	07/30/03	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	10/06/03	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
GMW-SF-7	01/28/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	04/20/04	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	32				
GMW-SF-7	07/19/04	Secor	550		<1	<1	<1	<1	<2	680				
GMW-SF-7	11/02/04	Secor	220		<0.50	<0.50	<0.50	<0.50	<0.50	340				
GMW-SF-7	02/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	08/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	02/27/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	05/02/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	09/18/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	03/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	05/05/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	08/30/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	11/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	04/16/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-SF-7	10/14/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-7	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-SF-7	04/17/12	CH2M Hill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7 GMW-SF-7	10/16/12 04/10/13	CHHL CHHL	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-SF-7	10/09/13	CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50		<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	04/15/14	CHHL	<50 <50	<50 <50	<0.50	<0.50	<0.50	1.1 <0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-7	10/29/14	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-7	04/22/15	BT for CH2MHill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	81	<1.0	<1.0	<1.0
GMW-SF-7	10/21/15	BT for CH2MHill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-7	04/13/16	BT for CH2MHill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-7	10/05/16	BT for CH2MHill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	11/22/96	Terra Services	<100	<500	4.5	<1	<1	<3	<1	920		~1.0		~1.0
GMW-SF-8	07/11/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	140				
GMW-SF-8	01/06/98	Terra Services	<100	<500	4.1	<0.50	<0.50	<1.5	<0.50	450				
GMW-SF-8	05/22/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<1	0.90				
GMW-SF-8	11/12/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	40				
GMW-SF-8	05/07/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	4.8				
GMW-SF-8	11/18/99	Secor	660		<0.50	<0.50	<0.50	<0.50	<0.50	800				
GMW-SF-8	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	42				
GMW-SF-8	11/30/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	220				
GMW-SF-8	05/08/01	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	20				
GMW-SF-8	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	260				
GMW-SF-8	04/10/02	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.8				
GMW-SF-8	10/22/02	Secor	<300		<0.50	<0.50	<0.50	< 0.50	< 0.50	5.2				
GMW-SF-8	01/29/03	Secor	<300		< 0.50	<0.50	<0.50	<0.50	< 0.50	1.5				
GMW-SF-8	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	6.5				
GMW-SF-8	07/30/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	10/06/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	01/27/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-SF-8	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	07/19/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	11/03/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	02/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	08/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	11/01/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	02/27/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	05/02/06	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50				
GMW-SF-8	09/18/06	Secor	<50		<0.50	< 0.50	<0.50	<0.50	<1	< 0.50				
GMW-SF-8	12/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	05/04/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GMW-SF-8	04/16/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	10/14/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GMW-SF-8	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GMW-SF-8	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-8	10/09/13	CHHL CHHL	<50 <50	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
GMW-SF-8 GMW-SF-8	04/15/14 10/29/14	BT for CH2MHill	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	04/22/15	BT for CH2MHIII	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	10/22/15	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	04/13/16	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-8	10/05/16	BT for CH2MHill	<50 <50	<50 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
GMW-SF-9	09/24/03	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	9.2	~10	~1.0		<u></u>
GMW-SF-9	10/10/03	Geomatrix	79		<0.50	<0.50	<0.50	<0.50	<0.50	14				
GMW-SF-9	10/10/03	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-9	04/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-9	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	40	<1	<1	<1
GMW-SF-9	10/12/11	CH2M Hill	<100		1.5	<0.50	<0.50	<0.50	<1	< 0.50	<10	<1	<1	<1
GMW-SF-9	04/19/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	110	<1	<1	<1
GMW-SF-9	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	270	<1	<1	<1
GMW-SF-10	09/24/03	Secor	90		<0.50	<0.50	<0.50	<0.50	<0.50	210				
GMW-SF-10	10/10/03	Geomatrix	100		<0.50	<0.50	<0.50	<0.50	<0.50	120				
GMW-SF-10	10/07/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-10	04/14/11	Blaine Tech	<50		<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
GMW-SF-10	10/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
GMW-SF-10	04/19/12	CH2M Hill	<50	<50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GMW-SF-10	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
GW-1	10/17/08	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	0.84	2.3	<10	<2	<2	<2
GW-1	08/03/09	Blaine Tech for AMEC	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-1	04/29/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	4.7	<2.0	<10	<2.0	<2.0	<2.0
GW-1	10/21/15	SGI	<100	<100	2.3	<0.50	4.2	15.2	4.9	<2.0	<10	<2.0	<2.0	<2.0
GW-1	10/21/15	SGI	<100	<100	2.2	<0.50	4.0	14.8	4.7	<2.0	<10	<2.0	<2.0	<2.0
GW-1	10/05/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	9.1	<1.0	<10	<2.0	<2.0	<2.0
GW-2	01/12/10	Blaine Tech for DESC	<100		3.6	<0.50	<0.50	<0.50	23	1.8	8.8 J	2.6	<2	<2
GW-2	10/08/10	BT for Parsons	180		18				4.6	1.4	21			
GW-2	04/19/12	Parsons	<100		<0.50	<0.50	<0.50	<0.50	4.0	0.60	<10	<2	<2	<2
GW-2	07/10/12	Parsons			2.4	<0.50	<0.50	0.24	6.2	0.69	10	0.79 J	<2	<2
GW-2	04/11/13	Parsons	<100 <100	<100	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	11	1.2 0.55	<10	0.46 J	<2 <2	<2 <2
GW-2 GW-2	10/07/13 04/15/14	Parsons Parsons	<100	<100 <95	<0.50	<0.50 <0.50	<0.50	<0.50	4.3 3.3	0.55	<10 <10	<2 <2	<2	<2
GW-2	11/03/14	SGI	1.800	230	<0.50 31	<0.50 4.0	<0.50 65	<0.50 346	3.3 2.5	0.5 1 <2.0	<10	<2.0	<2.0	<2.0
GW-2	04/21/15	SGI	<100	<100	<0.50	4.0 <0.50	< 0.50	346 <1.0	2.5	<2.0	<10	<2.0	<2.0	<2.0
GW-2	10/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	1.1	<2.0	<10	<2.0	<2.0	<2.0
GW-2	04/12/16	SGI	<100	<100	1.0	<0.50	1.9	6.1	1.2	<1.0	<10	<2.0	<2.0	<2.0
GW-2	10/05/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	1.6	<1.0	<10	<2.0	<2.0	<2.0
GW-3	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
GW-3	10/11/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.9				
GW-3	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<10	<2	<2	<2
GW-3	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	05/10/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
2.10	33, 10,00	2 4100110			0.00	0.00	0.00	0.00	0.00	0.00	10	·-		

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Data	Commind Div	TDU -	TDU 4	Bannana	Taluana	Ethyl-	Vulance	4.2.004	MTBE	ТВА	DIPE	ETBE	TAME
vveii	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	benzene	Xylenes	1,2-DCA	WILDE	IBA	DIPE	EIBE	IAME
			(µa/L)	(µa/L)	(µg/L)	(µa/L)	(µa/L)	(ua/L)	(µa/L)	(µa/L)	(ug/L)	(ug/L)	(µg/L)	(µg/L)
GW-3	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	05/03/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	12/06/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	04/24/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	17	<2	<2	<2
GW-3	10/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	04/15/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	18	<2	<2	<2
GW-3	04/11/13	Parsons		120	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	9.6 J	<2	<2	<2
GW-3	10/07/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-3	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-3	04/21/15	SGI	<100	100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-3	10/23/15	SGI	<100	<100	<0.50	< 0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-3	10/23/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-3	04/12/16	SGI	<100	<100	1.0	<0.50	2.2	6.9	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-3	10/05/16	SGI	<100	100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-4 (GW-3) GW-4	10/05/16	SGI	<100 <100	<100 270	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.0	<0.50	<1.0 2.6	<10	<2.0	<2.0 <2.0	<2.0 <2.0
	04/24/15 04/24/15	SGI SGI	<100	310	<0.50	<0.50	<0.50	<1.0	<0.50 <0.50	2.6	<10 <10	<2.0 <2.0	<2.0	<2.0
GW-4 GW-4	10/22/15	SGI	<100	4.100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
				,				_						
GW-4 GW-6	10/10/16 11/06/98	SGI GTI	<100 339	120	<0.50 9.3	<0.50 1.1	<0.50 8.4	<1.5 6.6	<0.50 <0.50	<1.0 <0.50	<10	<2.0	<2.0	<2.0
GW-6	05/27/99	GTI	<300		62	<0.50	12	<0.50	<0.50	<0.50				
GW-6	11/18/99	IT Corporation	690		90	<1	80	<0.50	<0.50	<0.50				
GW-6	05/17/00	IT Corporation	<300		1.7	<0.50	2.5	<0.50	<0.50	19				
GW-6	12/01/00	IT Corporation	<300		3.7	<0.50	1.6	<0.50	<0.50	21				
GW-6	05/10/01	IT Corporation	<300		0.70	<0.50	<0.50	<0.50	<0.50	23				
GW-6	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	21				
GW-6	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	9.6				
GW-6	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
GW-6	10/10/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.71				
GW-6	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	05/10/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	05/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	05/02/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-6	04/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<2	<2	<2
GW-6	10/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.8	<10	<2	<2	<2
GW-6	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.76	<10	<2	<2	<2
GW-6	10/05/10	BT for Parsons			<0.50				<0.50	1.1	4.7 J			
GW-6	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.51	<10	<2	<2	<2
GW-6	04/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.54	<10	<2	<2	<2
GW-6	10/19/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.67	<10	<2	<2	<2
GW-6	04/10/13	Parsons		130 b	<0.50	<0.50	<0.50	<0.50	<0.50	0.68	<10	<2	<2	<2
GW-6	10/08/13	Parsons	<100	180 HD	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	12	<2	<2	<2
GW-6	04/15/14	Parsons	<100	<95	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GW-6	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-6	04/21/15	SGI	<100	250	<0.50	<0.50	<0.50	<1.0	<0.50	3.1	25	<2.0	<2.0	<2.0
GW-6	10/05/16	SGI	<100	140	<0.50	<0.50	<0.50	<1.5	< 0.50	1.4	<10	<2.0	<2.0	<2.0
GW-7	04/12/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	1.8				
GW-7	04/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-7	04/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-7	10/11/16	SGI	<100	120	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-8	10/09/13	Parsons	<100 <100	190 HD	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<2	<2	<2
GW-8 GW-8	04/18/14	Parsons SGI	<100	100 HD 180	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <1.5	<0.50 <0.50	<0.50 <2.0	<10 <10	<2 <2.0	<2 <2.0	<2 <2.0
GW-8	10/28/14 04/24/15	SGI	<100	170	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-8	10/22/15	SGI	<100	110	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-8	10/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
GW-8 GW-13(1")	11/15/07	BT for Parsons	<100	< 100 	<0.50	<0.50	<0.50	<0.50	0.50	3.5	20	<2.0 <2	<2.0	<2.0
GW-13(6")	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	0.83	5.3	31	<2	<2	<2
GW-13(6")	04/17/08	BT for Parsons	230		<0.50	<0.50	<0.50	<0.50	0.83	4.4	28	<2	<2	<2
GW-13(6")	04/24/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	14	11	<10	2.1	<2	<2
GW-13(6")	01/12/10	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	21	4.8	5.2 J	3.7	<2	<2
GW-13(6")	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	7.4	12	16	1.5 J	<2	<2
GW-13(6")	10/08/10	BT for Parsons	<100		<0.50				5.0	11	24			
GW-13(6")	04/22/11	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	3.7	6.8	16	0.72 J	<2	<2
GW-13(6")	04/18/12	Parsons	<100		<0.50	<0.50	<0.50	<0.50	6.9	3.0	<10	1.2 J	<2	<2
GW-13(6")	07/09/12	Parsons			< 0.50	< 0.50	<0.50	< 0.50	0.60	0.78	<10	<2	<2	<2
GW-13(6")	04/10/13	Parsons	<100	<100	< 0.50	<0.50	< 0.50	<0.50	9.1	1.7	19	2 J	<2	<2
GW-13(6")	10/09/13	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	2.4	0.92	<10	<2	<2	<2
GW-13(6")	04/16/14	Parsons	<100	<100	< 0.50	<0.50	<0.50	<0.50	9.2	1.4	<10	1.8 J	<2	<2
GW-13(6")	11/03/14	SGI	1,500	170	9.4	2.4	53	279	7.6	<2.0	<10	<2.0	<2.0	<2.0
GW-13(6")	04/21/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	8.5	<2.0	<10	<2.0	<2.0	<2.0
GW-13(6")	04/21/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	8.5	<2.0	<10	<2.0	<2.0	<2.0
GW-13(6")	10/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	6.2	<2.0	<10	<2.0	<2.0	<2.0
GW-13(6")	04/12/16	SGI	<100	<100	0.57	<0.50	1.6	5.4	6.6	<1.0	<10	<2.0	<2.0	<2.0
GW-13(6")	10/05/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	8.1	<1.0	<10	<2.0	<2.0	<2.0
GW-14(1")	11/15/07	BT for Parsons			35	<0.50	14	3.9	<0.50	18	20	<2	<2	<2
GW-14(1")	04/18/08	BT for Parsons	900		78	<0.50	<0.50	2.3	<0.50	18	13	<2	<2	<2
GW-14(1")	10/22/09	BT for Parsons	110		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-14(1") GW-14(6")	01/13/10 05/03/07	BT for Parsons	950		62 200	0.35 J 5.2	1.0 220	1.4 900	<0.50	17 39	18	<2	<2	<2
GW-14(6) GW-14(6")	10/16/08	BT for Parsons	820		40	5.2 <0.50	2.1	1.0	<0.50	22	16	<2	<2	<2
GW-14(6) GW-14(6")	04/24/09	BT for Parsons BT for Parsons	690		66	<0.50	0.99	0.64	<0.50	13	14	<2	<2	<2
GW-14(6")	04/24/09	BT for Parsons				~0.50 	0.99	0.64	<0.50 					
GW-14(6")	04/13/11	BT for Parsons			76	< 0.50	9.4	9.0	<0.50	17	7.8 J	<2	<2	0.87 J
GW-14(6")	04/20/12	Parsons	1800 b		19	<0.50	14	6.5	<0.50	8.5	<10	<2	<2	<2
GW-14(6")	07/10/12	Parsons			18	<0.50	16	11	<0.50	8.2	5.1 J	<2	<2	<2
GW-14(6")	04/12/13	Parsons	1800 b	4.800	30	<0.50	8.2	1.34 J	<0.50	13	10	<2	<2	0.82 J
GW-14(6")	10/09/13	Parsons	1,600 HD	3,400 HD	48	<0.50	7.3	1.2	<0.50	15	<10	<2	<2	<2
GW-14(6")	04/17/14	Parsons	2,200 HD	7,700 HD	32	<0.50	8.4	1.2	<0.50	11	64	<2	<2	<2
GW-14(6")	10/31/14	SGI	1,700	3,200	160	<0.50	1.1	0.62	<0.50	20	20	<2.0	<2.0	<2.0
GW-15(6")	05/03/07	BT for Parsons	8,500		1,100	1,000	130	570	<0.50	<0.50	<10	<2	<2	<2
GW-15(6")	11/03/14	SGI	32,000	11,000	2,700	78	1,100	5,100	<10	<40	<200	<40	<40	<40
GW-15(6")	04/21/15	SGI	7,700	2,100	250	<10	150	850	<10	<40	<200	<40	<40	<40
GW-15(6")	10/26/15	SGI	7,500	38,000	350	<2.5	120	655	<2.5	<10	<50	<10	<10	<10
GW-15(6")	10/26/15	SGI	7,100	9,700	370	<2.5	120	638	<2.5	<10	<50	<10	<10	<10

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GW-15(6")	10/11/16	SGI	8,700	24,000	730	<2.5	<2.5	<7.5	<2.5	<5.0	<50	<10	<10	<10
GW-16(6")	10/23/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-16(6")	01/13/10	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	6.4 J	<2	<2	<2
GW-16(6")	04/19/10	BT for Parsons			<0.50	<0.50	2.6	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-16(6")	10/08/10	BT for Parsons	<100		1.7				<0.50	<0.50	5.5 J			
GW-16(6")	04/12/11	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	76	<2	<2	<2
GW-16(6")	10/09/13	Parsons	<100	1,300 HD	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
GW-16(6")	04/17/14	Parsons	<100	<98	4.7	<0.50	<0.50	< 0.50	<0.50	<0.50	<10	<2	<2	<2
GW-16(6")	11/03/14	SGI	2,500	250	58	6.0	88	470	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-16(6")	11/03/14	SGI	2,300	290	56	5.6	85	449	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-16(6")	04/21/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
GW-16(6")	10/21/15	SGI SGI	100 <100	<100	7.1	<0.50	7.4 <0.50	25.8	<0.50 <0.50	<2.0	<10	<2.0	<2.0 <2.0	<2.0 <2.0
GW-16(6")	04/13/16			<100	<0.50	<0.50		2.3		<1.0	<10	<2.0		
GW-16(6") GWR-1	10/04/16	SGI	<100	<100	< 0.50	<0.50 21	<0.50 150	<1.5 102	<0.50	<1.0 2.700	<10	<2.0	<2.0	<2.0
GWR-1	11/26/96	Terra Services	1,300	920	1,500 220	21 <5	360	102 29	<5 <5	,				
GWR-1 GWR-1	07/16/97 01/09/98	Terra Services Terra Services	210	920 <500	2.9	<0.50	40	240	<0.50	1,800 330				
GWR-1	05/27/98		4,100		960	90	90	240	<0.50	630				
GWR-1	11/17/98	Terra Services Alton Geoscience	3.830		1.200	74	99	387	<25	1.070				
GWR-1	05/07/99	Alton Geoscience	4,200	530	1,200	22	96	290	<13	910				
GWR-1	11/18/99	Secor	1,300		220	<10	14	14	<10	690				
GWR-1	05/16/00	Secor	880		160	<10	16	16	6.1	550				
GWR-1	11/30/00	Secor	3,200		1.600	8.6	87	33	<0.50	360				
GWR-1	05/08/01	Secor	4,400		1,800	170	160	235	<10	370				
GWR-1	11/06/01	Secor	2.300		240	13	31	56	<0.50	2.400				
GWR-1	04/09/02	Secor	2,500		580	<10	18	57	<10	4,000				
GWR-1	10/23/02	Secor	1,900		270	<10	<10	<10	<10	2.500				
GWR-1	10/07/03	Secor	1,400		150	1.7	7.5	20	110	1,300				
GWR-1	05/06/05	Secor	16,000		260	610	460	2.060	<5	11				
GWR-1	08/01/05	Secor	8.300		1.700	490	370	1,110	<20	25				
GWR-1	05/04/06	Secor	3,700		980	23	120	343	<10	19				
GWR-1	09/18/06	Secor	960		220	4.4	19	64	<2	5.4				
GWR-1	05/02/07	Secor	750		170	1.3	12	<1	<2	4.1				
GWR-1	04/17/08	Secor	3,600		1,700	17	87	60	<30	21				
GWR-1	04/20/09	Blaine Tech for AMEC	5,100		3,000	<15	48	<15	<30	31	<300	30	<30	<30
GWR-1	05/27/10	Blaine Tech	2,100		800	9.5	16	34	<10	23	<100	27	<10	<10
GWR-1	04/13/11	Blaine Tech	1,300		490	43	31	54	<5	4.1	160	5.2	<5	<5
GWR-1	04/20/12	CH2M Hill	450	230	84	<1	4.8	<1	<2	3.4	<20	4.9	<2	<2
GWR-1	10/18/12	CHHL	440	240	140	2.2	<1.5	1.5	<3	8.6	68	15	<3	<3
GWR-1	04/11/13	CHHL	<500	330	<2.5	<2.5	<2.5	<2.5	<5	9.1	68	13	<5	<5
GWR-1	10/11/13	CHHL	<200	220	<1	<1	<1	<1	<2	6.7	120	12	<2	<2
GWR-1	04/17/14	CHHL	130	90	<0.50	<0.50	<0.50	<0.50	<0.50	6.6	180	10	<1	<1
GWR-1	10/30/14	BT for CH2MHill	<100	1,000 HD	<0.50	<0.50	<0.50	<0.50	<0.50	8.9	54	5.3	<1.0	<1.0
GWR-3	10/08/10	Blaine Tech	21,000		10,000	<100	<100	<100	<200	400	<2,000	<200	<200	<200
GWR-3	04/13/11	Blaine Tech	25,000		11,000	<50	<50	<50	<100	300	<1,000	<100	<100	<100
GWR-3	10/13/11	CH2M Hill	<20,000		9,100	<100	<100	<100	<200	280	<2,000	<200	<200	<200
HL-2	11/27/96	Terra Services			2,600	100	560	390	170	3,000				
HL-2	07/16/97	Terra Services	1,400	530	200	1.2	150	13	74	810				
HL-2	01/09/98	Terra Services	150		<0.50	0.79	3.5	<1.5	40	570				
HL-2	01/12/98	Terra Services		<500										
HL-2	05/27/98	Terra Services	500		72	9.0	6.0	42	60	308				
HL-2	11/17/98	Alton Geoscience	<300		0.95	<0.50	<0.50	0.60	0.94	14				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
HL-2	05/07/99	Alton Geoscience	<500	<500	1.8	5.1	<0.50	1.8	<1	4.8				
HL-2	11/19/99	Secor	<300		2.0	<0.50	<0.50	<0.50	2.6	36				
HL-2	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.4	14				
HL-2	11/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	3.2				
HL-2	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	7.3				
HL-2	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
HL-2	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-2	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	0.85				
HL-2 HL-2	07/08/03 10/07/03	Geomatrix	 <50		<0.50 <0.50	<1 <0.50	<1 <0.50	<1 <0.50	<0.50 <0.50	<1 0.96				
HL-2 HL-2	04/21/04	Secor Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50					
HL-2 HL-2	07/08/04	Geomatrix	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	7.9 0.67				
HL-2	05/06/05	Secor	280		78	<0.50	<0.50	1.2	<0.50 15	130				
HL-2	11/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<1	1.8				
HL-2	05/09/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	1.7				
HL-2	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-2	05/02/07	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-2	11/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
HL-2	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.56				
HL-2	10/17/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-2	04/20/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<10	<1	<1	<1
HL-2	10/11/11	CH2M Hill	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	04/17/12	CH2M Hill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1	<1	<1
HL-2	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-2	04/10/13	CHHL	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-2	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-2	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1	<1	<1
HL-2	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.58	<10	<1.0	<1.0	<1.0
HL-2	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	0.61	< 0.50	0.88	<10	<1.0	<1.0	<1.0
HL-2	10/21/15	BT for CH2MHill	<50	<50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-2	04/13/16	BT for CH2MHill	<50	63	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-2	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
DUP-2 (HL-2)	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-3	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.4	110				
HL-3	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.6	93				
HL-3	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.1	77				
HL-3	10/23/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	85				
HL-3	10/07/03	Secor	80		<0.50	<0.50	<0.50	<0.50	<0.50	67				
HL-3	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-3	05/03/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
HL-3	05/02/07	Secor	81		<0.50	<0.50	<0.50	<0.50	<0.50	38				
HL-3	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	4.7				
HL-3	04/20/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.2	<10	<1	<1	<1
HL-3	05/27/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-3	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-3	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-3	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
HL-3	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
HL-3	04/16/14	CHHL	<50	130	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
HL-3	10/30/14	BT for CH2MHill	<100	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-3	04/22/15	BT for CH2MHill	<50	70	<0.50	<0.50	<0.50	<0.50	<0.50	1.4	<10	<1.0	<1.0	<1.0
HL-3	10/23/15	BT for CH2MHill	60 HD	<50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	<10	<1.0	<1.0	<1.0
HL-3	04/13/16	BT for CH2MHill	<50	100	< 0.50	< 0.50	0.80	3.0	<0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-3	10/06/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
HL-4	11/25/96	Terra Services			<10	3.2	350	8.5	<3	1,200				
HL-4	07/16/97	Terra Services	270	<500	76	<1	<1	17	33	1,500				
HL-4	01/08/98	Terra Services	590	660	170	13	7.1	5.0	90	2,300				
HL-4	05/27/98	Terra Services	1,100		156	26	15	120	28	440				
HL-4	11/17/98	Alton Geoscience	2,030		700	76	20	108	<0.50	904				
HL-4	05/07/99	Alton Geoscience	2,800	<500	1,100	31	130	84	<6	1,500				
HL-4	11/18/99	Secor	2,500		720	<10	<10	118	<10	520				
HL-4	05/16/00	Secor	1,200		300	<10	<10	29	51	740				
HL-4	11/29/00	Secor	1,900		26	<10	<10	<10	89	2,800				
HL-4	05/08/01	Secor	1,700		39	< 0.50	0.50	1.7	27	3,300				
HL-4	11/06/01	Secor	950		97	<0.50	<0.50	0.90	<0.50	930				
HL-4	04/09/02	Secor	1,600		940	<5	<5	35	<5	200				
HL-4	10/23/02	Secor	<300		8.5	<5	<5	<5	<5	1,100				
HL-4	04/08/03	Secor	1,500		2.8	<2.5	<2.5	<2.5	36	2,200				
HL-4	10/07/03	Secor	690		140	<1	<1	<1	<2	480				
HL-4	04/21/04	Secor	340		39	<0.50	< 0.50	< 0.50	<1	370				
HL-4	11/03/04	Secor	200		54	< 0.50	< 0.50	< 0.50	<0.50	13				
HL-5	07/14/97	Terra Services	950	3,200										
HP-1	08/07/97	GTI			<5	<5	<5	<10	<5	<5				
HP-2	08/07/97	GTI			<5	<5	<5	<10	<5	<5				
HP-3	08/07/97	GTI			<5	<5	<5	<10	<5	<5				
HP-6	08/08/97	GTI			<5	<5	<5	<10	<5	<5				
HP-8	08/08/97	GTI			11.000	12.000	1.200	7.300	<500	<500				
MW-6	11/22/96	Terra Services			<0.50	<0.50	<0.50	<1.5	130	70				
MW-6	07/16/97	Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1	32	62				
MW-6	01/05/98	Terra Services	<100	<500	< 0.50	< 0.50	< 0.50	<1.5	11	39				
MW-6	05/26/98	Terra Services	<300		<2.5	<2.5	<2.5	<5	118	107				
MW-6	11/17/98	Alton Geoscience	<300		4.8	12	1.5	9.9	9.2	13				
MW-6	05/07/99	Alton Geoscience	<500	<500	< 0.50	1.5	< 0.50	< 0.50	83	120				
MW-6	11/16/99	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	20	18				
MW-6	05/19/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	14	12				
MW-6	11/28/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	12	3.0				
MW-6	05/09/01	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	9.8	11				
MW-6	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	11	6.2				
MW-6	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	7.6	6.0				
MW-6	10/24/02	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	9.4	4.6				
MW-6	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	7.4	3.2				
MW-6	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	9.1	2.5				
MW-6	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	4.9	2.8				
MW-6	11/05/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	4.0	4.0				
MW-6	05/05/05	Secor	89		<0.50	<0.50	<0.50	<0.50	16	61				
MW-6	11/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	9.9	30				
MW-6	05/03/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	6.8	2.5				
MW-6	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	7.1	2.7				
MW-6	05/05/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	4.0	2.5				
MW-6	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	3.4	2.3				
1V1 V V - U	11/14/01	55501	-00		-0.00	-0.00	-0.00	-0.00	J.7	2.5				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	2.2	2.7				
MW-6	10/17/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	2.5	4.0				
MW-6	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	1.6	0.69	<10	<1	<1	<1
MW-6	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.5	1.0	<10	<1	<1	<1
MW-6	05/27/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.5	1.9	<10	<1	<1	<1
MW-6	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	2.7	2.0	<10	<1	<1	<1
MW-6	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.7	2.3	<10	<1	<1	<1
MW-6	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	1.2	1.0	<10	<1	<1	<1
MW-6	04/19/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.86	<0.50	<10	<1	<1	<1
MW-6	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-6	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	0.70	<0.50	<10	<1	<1	<1
MW-6	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	0.82	0.51	<10	<1	<1	<1
MW-6	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	0.58	0.55	<10	<1	<1	<1
MW-6	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.51	0.67	<10	<1.0	<1.0	<1.0
MW-6	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	1.0	<10	<1.0	<1.0	<1.0
MW-6	10/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	0.99	1.9	5.7	<10	1.1	<1.0	<1.0
MW-6	04/14/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.72	1.2	<10	<1.0	<1.0	<1.0
MW-6	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.96	1.2	<10	<1.0	<1.0	<1.0
MW-7	11/25/96	Terra Services			3.5	<1	16	<3	6.8	1,000				
MW-7 MW-7	07/14/97	Terra Services	540 150	<500 <500	88 9.0	<3 <0.50	<3 <0.50	<3	<3 4.1	790 400				
	01/08/98	Terra Services						<1.5						
MW-7 MW-7	05/26/98 11/17/98	Terra Services Alton Geoscience	400 <300		<5 5.4	<5 7.0	<5 <5	7.0 <5	10 <5	380 351				
MW-7	05/07/99	Alton Geoscience	<500 <500	 <500	0.79	2.2	<0.50	0.71	6.8	540				
MW-7	11/16/99	Secor	540		8.5	<0.50	<0.50	<0.50	4.7	670				
MW-7	05/17/00	Secor	590		8.5 <5	<0.50 <5	<0.50 <5	<0.50 <5	4.7	900				
MW-7	11/30/00	Secor	590		4.1	<0.50	<0.50	<0.50	5.4	640				
MW-7	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	3.1	36				
MW-7	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	2.4	8.2				
MW-7	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.6	71				
MW-7	10/23/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	2.0	5.0				
MW-7	04/10/03	Secor	57		<0.50	<0.50	<0.50	<0.50	1.6	1.3				
MW-7	10/07/03	Secor	67		<0.50	<0.50	<0.50	<0.50	1.5	1.2				
MW-7	04/21/04	Secor	62		<0.50	<0.50	<0.50	<0.50	0.68	1.4				
MW-7	11/03/04	Secor	58		<0.50	<0.50	<0.50	<0.50	<0.50	0.85				
MW-7	05/06/05	Secor	58		<0.50	<0.50	<0.50	<0.50	<0.50	0.82				
MW-7	11/03/05	Secor	<100		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
MW-7	05/03/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-7	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	0.65	1.5				
MW-7	05/02/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	0.64	0.83				
MW-7	11/13/07	Secor	<50		<0.50	<0.50	<0.50	< 0.50	0.57	0.83				
MW-7	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.80				
MW-7	10/17/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	1.8	0.94				
MW-7	04/20/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	2.1	0.60	<10	2.9	<1	<1
MW-7	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	2.8	0.56	<10	2.0	<1	<1
MW-7	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	0.87	<0.50	<10	5.5	<1	<1
MW-7	10/07/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.0	0.64	260	9.3	<1	<1
MW-7	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.4	<0.50	98	6.0	<1	<1
MW-7	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	0.99	<0.50	25	1.5	<1	<1
MW-7	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	1.4	<0.50	<10	<1	<1	<1
MW-7	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0	<0.50	<10	<1	<1	<1
MW-7	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.3	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<10	<1	<1	<1
MW-7	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.2	<0.50	<10	<1	<1	<1
MW-7	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.82	<0.50	<10	<1.0	<1.0	<1.0
MW-7	04/22/15	BT for CH2MHill	<50	<50	< 0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1.0	<1.0	<1.0
MW-7	10/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0	<0.50	<10	<1.0	<1.0	<1.0
MW-7	04/14/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.78	<0.50	<10	<1.0	<1.0	<1.0
MW-7	10/05/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	<0.50	<10	<1.0	<1.0	<1.0
MW-8	11/26/96	Terra Services			4,400	<30	<30	<80	<30	26,000				
MW-8	07/17/97	Terra Services	<100	520	<10	<10	<10	<20	<10	11,000				
MW-8	01/02/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	<0.50	14				
MW-8	05/20/98	Terra Services	400		<2.5	<2.5	<2.5	<5	<2.5	554				
MW-8	11/17/98	Alton Geoscience	<300		2.4	6.0	0.80	4.6	<0.50	56				
MW-8	05/07/99	Alton Geoscience	<500	<500	< 0.50	< 0.50	<0.50	<0.50	<1	52				
MW-8	11/18/99	Secor	<416		<0.50	<0.50	<0.50	<0.50	<0.50	7.2				
MW-8	05/17/00	Secor	<300		< 0.50	< 0.50	<0.50	<0.50	<0.50	3.0				
MW-8	11/29/00	Secor	<300		< 0.50	< 0.50	<0.50	<0.50	<0.50	15				
MW-8	02/06/01	Secor	<300		< 0.50	< 0.50	<0.50	<0.50	<0.50	380				
MW-8	05/08/01	Secor	<300		< 0.50	<0.50	<0.50	< 0.50	<0.50	430				
MW-8	09/19/01	Secor	790		< 0.50	< 0.50	<0.50	< 0.50	<0.50	1,000				
MW-8	01/30/02	Secor	1,700		<10	<10	<10	<10	<10	1,900				
MW-8	04/10/02	Secor	1,500		11	<10	<10	<10	<10	2,200				
MW-8	10/22/02	Secor	<300		150	<10	12	<10	<10	750				
MW-8	01/29/03	Secor	<300		<1	<1	<1	<1	<1	190				
MW-8	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	28				
MW-8	07/30/03	Secor	<50		<0.50	<0.50	<0.50	< 0.50	<0.50	13				
MW-8	10/06/03	Secor	79		<0.50	<0.50	<0.50	<0.50	<0.50	4.7				
MW-8	01/28/04	Secor	100		<0.50	<0.50	<0.50	<0.50	<0.50	4.0				
MW-8	04/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.61				
MW-8	07/19/04	Secor	80		<0.50	<0.50	<0.50	< 0.50	<0.50	0.95				
MW-8	11/02/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-8	02/02/05	Secor	<50		< 0.50	< 0.50	<0.50	< 0.50	<0.50	1.8				
MW-8	05/04/05	Secor	<50		<0.50	<0.50	<0.50	< 0.50	<0.50	1.2				
MW-8	08/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	2.4				
MW-8	11/01/05	Secor	110		<0.50	<0.50	<0.50	4.2	<0.50	0.60				
MW-8	02/27/06	Secor	<50		< 0.50	< 0.50	<0.50	< 0.50	<0.50	0.65				
MW-8	05/02/06	Secor	<100		<0.50	<0.50	<0.50	<0.50	<1	1.1				
MW-8	09/19/06	Secor	<100		< 0.50	<0.50	<0.50	<0.50	<1	1.6				
MW-8	12/06/06	Secor	<100		< 0.50	<0.50	<0.50	<0.50	<1	0.61				
MW-8	03/13/07	Secor	<50		< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-8	05/04/07	Secor	<200		<1	<1	<1	<1	<2	<1				
MW-8	08/29/07	Secor	<200		<1	<1	<1	<1	<2	<1				
MW-8	11/13/07	Secor	<100		<0.50	<0.50	<0.50	<0.50	<1	1.9				
MW-8	02/07/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.7				
MW-8	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	3.3				
MW-8	10/14/08	Stantec	<100		<0.50	<0.50	<0.50	<0.50	<1	0.59				
MW-8	04/23/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	1.0	2,000	<1	<1	<1
MW-8	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.69	570	<1	<1	<1
MW-8	05/27/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.62	<10	<1	<1	<1
MW-8	10/07/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.53	<1,600	<1	<1	<1
MW-8	04/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1,100	<1	<1	<1
MW-8	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	970	<1	<1	<1
MW-8	04/19/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	71	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	220	<1	<1	<1
MW-8	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-8	10/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-8	04/16/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-8	10/30/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	2.9	<10	<1.0	<1.0	<1.0
MW-8	04/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	3.3	<10	<1.0	<1.0	<1.0
MW-8	10/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	0.51	<10	<1.0	<1.0	<1.0
MW-8	04/14/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-8 MW-9	10/05/16	BT for CH2MHill	<50	<50 	<0.50 18	<0.50 <0.50	<0.50 69	<0.50	<0.50 <0.50	0.85	<10	<1.0	<1.0	<1.0
MW-9	11/26/96 07/17/97	Terra Services		2.900	40	<0.50	140	1.6 22	<0.50 <1	<5 <10				
MW-9	01/08/98	Terra Services Terra Services	1,400 1,100	2,900 570	19	0.74	55	2.4	<0.50	<10 <5				
MW-9	05/26/98	Terra Services	4,700	570	69	<0.30	55 51	97	<2.5	10				
MW-9	11/18/99	Secor	1,800		24	<0.50	2.7	2.0	<0.50	<0.50				
MW-9	05/19/00	Secor	1,300		12	<0.50	0.80	0.50	<0.50	1.8				
MW-9	11/05/04	Secor	2,500		27	<0.50	0.84	0.52	<1	52				
MW-9	05/06/05	Secor	780		2.3	<1	25	<1	<2	110				
MW-9	11/01/05	Secor	1.700		9.3	<1	4.7	5.3	<2	120				
MW-9	05/04/06	Secor	1,000		13	<0.50	2.2	1.4	<1	140				
MW-9	12/08/06	Secor	1,400		16	< 0.50	<0.50	<0.50	<0.50	160				
MW-9	05/04/07	Secor	1,700		9.2	<0.50	0.50	<0.50	<1	130				
MW-9	04/18/08	Secor	2,500		51	<1	1.7	1.9	<2	16				
MW-9	10/14/08	Stantec	1,600		27	<1	<1	<1	<2	26				
MW-9	04/23/09	Blaine Tech for AMEC	1,600		33	<2.5	<2.5	<2.5	<5	6.2	130	<5	<5	<5
MW-9	05/27/10	Blaine Tech	1,600		24	<5	<5	<5	<10	<5	<100	<10	<10	<10
MW-9	10/07/10	Blaine Tech	2,400		23	<2	<2	<2	<4	3.3	50	<4	<4	<4
MW-9	04/14/11	Blaine Tech	1,400		18	<5	<5	<5	<10	<5	<100	<10	<10	<10
MW-9	10/12/11	CH2M Hill	1,200		17	<2.5	<2.5	<2.5	<5	<2.5	<50	<5	<5	<5
MW-9	04/20/12	CH2M Hill	2,200	4,500	20	<5	<5	<5	<10	<5	<100	<10	<10	<10
MW-9	10/17/12	CHHL	1,200	2,500	9.1	<2.5	<2.5	<2.5	<5	3.7	<50	<5	<5	<5
MW-9	04/11/13	CHHL	870	4,400	4.8	<2.5	<2.5	<2.5	<5	4.5	<50	<5	<5	<5
MW-9	10/10/13	CHHL	1,200	2,100	4.2	<1	<1	<1	<2	11	45	<2	<2	<2
MW-9	04/17/14	CHHL	1,100	2,500	<2.5	<2.5	<2.5	<2.5	<5	13	150	<5	<5	<5
MW-9	10/30/14	BT for CH2MHill	<500	2,600	<2.5	<2.5	<2.5	<2.5	<5.0	6.7	51	<5.0	<5.0	<5.0
MW-9	04/23/15	BT for CH2MHill	660	2,900	5.0	3.6	2.6	24	<5.0	6.4	83	<5.0	<5.0	<5.0
MW-9	10/26/15	BT for CH2MHill	420	1,600	<0.50	<0.50	<0.50	<0.50	<1.0	5.8	40	<1.0	<1.0	<1.0
MW-9	04/14/16	BT for CH2MHill	260	1,100	1.7	<0.50	<0.50	<0.50	<0.50	1.8	30	<1.0	<1.0	<1.0
MW-9	10/05/16	BT for CH2MHill	85	280	< 0.50	< 0.50	<0.50	< 0.50	<0.50	1.3	22	<1.0	<1.0	<1.0
MW-10	11/21/96	GSI	<38	<500	<0.50	<0.50	5.1	2.3	<0.50					
MW-10	07/09/97	GTI	<50	170	<0.50	<1	2.0	<2						
MW-10	01/06/98	GTI	<500	<100	<0.30	<0.30	<0.30	<0.60						
MW-10	05/20/98	BBC	<300		<0.30	<0.30	<0.30	<0.60						
MW-10	11/04/98	GTI	<300		<0.30	<0.30	<0.30	<0.60						
MW-10	05/27/99	GTI	<300		<0.30	<0.30	<0.30	<0.60						
MW-10	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
MW-10	05/16/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
MW-10	11/29/00	IT Corporation	<300		<0.30	<0.30	<0.30	2.4		<5				
MW-10	05/09/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5 <5				
MW-10	11/07/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-10	04/10/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-10 MW-11	04/14/16 12/01/00	SGI IT Corporation	<100 <300	<100	<0.50 <0.30	<0.50 <0.30	<0.50 <0.30	<1.5 <0.60	<0.50	<1.0 <5	<10	<2.0	<2.0	<2.0
IVIVV-II	12/01/00	i Corporation	\300		\0.30	\U.3U	\0.30	\0.00		\0				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11	05/10/01	IT Corporation	<300		1.0	< 0.30	0.61	<0.60		13				
MW-11	11/07/01	IT Corporation	<300		< 0.30	<0.30	<0.30	<0.60		<5				
MW-11	04/10/02	IT Corporation	<300		< 0.30	<0.30	<0.30	<0.60		19				
MW-11	04/14/03	GTI			84	1.5	59	51		<3				
MW-11	10/10/03	BT for Parsons			<0.30	<0.30	0.42	0.95		12				
MW-11	04/22/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		6.4				
MW-11	11/06/04	BT for Parsons			2.3	<0.30	0.64	5.9		8.1				
MW-11	05/07/05	BT for Parsons			0.34	0.61	<0.30	0.60		13				
MW-11	11/08/05	BT for Parsons			0.33	<0.30	<0.30	0.69		37				
MW-11	05/05/06	BT for Parsons			1.6	3.4	3.4	6.9		11				
MW-11	12/08/06	BT for Parsons			3.1	<0.50	<0.50	<1		20				
MW-11	05/03/07	BT for Parsons			4.3	<0.50	0.86	1.1		43				
MW-11	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<1		18				
MW-11	04/18/08	BT for Parsons			<0.50	<0.50	1.0	1.5		<5				
MW-11	10/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	12	<10	<2	<2	<2
MW-11	04/24/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	8.7	<10	<2	<2	<2
MW-11	10/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.9	<10	<2	<2	<2
MW-11	04/14/10	BT for Parsons			<0.50	< 0.50	0.58	<0.50		3.8	<10	<2	<2	<2
MW-11	04/19/12	Parsons	220		<0.50	<0.50	<0.50	0.31 J	<0.50	<0.50	<10	<2	<2	<2
MW-11 MW-12	07/10/12 05/22/98	Parsons	<300		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.10	<0.50 <0.50	<10	<2	<2	<2
		Terra Services						<1						
MW-12 MW-12	11/11/98 05/07/99	Alton Geoscience Alton Geoscience	<300 <500	<500	<0.50 1.2	<0.50 4.8	<0.50 <0.50	<0.50 2.1	<0.50 <1	<0.50 <0.50				
MW-12	11/16/99	Secor	<300		<0.50	4.8 <0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	05/19/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	11/30/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	11/07/01	IT Corporation	<300		1.3	1.1	<0.50	0.70	<0.50	<0.50				
MW-12	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	04/22/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	11/05/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	05/05/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
MW-12	11/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	05/03/06	Secor	<50		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50				
MW-12	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	05/05/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
MW-12	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	10/21/08	Stantec	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-12	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	10/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	10/06/10	Blaine Tech	<50		< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
MW-12	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
MW-12	10/18/12	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-12	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
MW-12	10/09/13	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

MW-12 MW-12 MW-12 MW-12 MW-12	04/16/14 10/29/14 04/22/15 11/06/15	CHHL BT for CH2MHill	(µg/L) <50				benzene	-						TAME
MW-12 MW-12 MW-12 MW-12	10/29/14 04/22/15 11/06/15	BT for CH2MHill	< <u>50</u>	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-12 MW-12 MW-12	04/22/15 11/06/15			<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<1	<1	<1
MW-12 MW-12	11/06/15		<50	<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-12		BT for CH2MHill	<50	<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
		BT for CH2MHill	<50	61	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
1 4) 4 1 1 C	04/13/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-12	10/05/16	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-13	11/22/96	GSI	1,100	<500	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
MW-13	07/09/97	GTI	<50	<50	< 0.50	<1	<1	<2						
MW-13	01/06/98	GTI	<500	<100	< 0.30	< 0.30	< 0.30	<0.60						
MW-13	05/20/98	BBC	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-13	11/05/98	GTI	<300		< 0.30	< 0.30	< 0.30	< 0.60						
MW-13	05/26/99	GTI	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-13	11/18/99	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-13	05/17/00	IT Corporation	<300		< 0.30	1.2	< 0.30	0.91						
MW-13	11/29/00	IT Corporation	<300		< 0.30	< 0.30	< 0.30	0.89		<5				
MW-13	03/30/01	IT Corporation												
MW-13	05/09/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
MW-13	11/07/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		14				
MW-13	04/10/02	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
MW-13	10/23/02	GTI	<300		< 0.50	<1	<1	<1	< 0.50	<1				
MW-13	04/09/03	GTI			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
MW-13	10/08/03	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
MW-13	04/21/04	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	11/03/04	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	05/05/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-13	11/05/05	BT for Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	05/03/06	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	12/05/06	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	05/02/07	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	11/13/07	BT for Parsons	<100		<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	10/15/08	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	04/20/09	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
MW-13	10/22/09	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<2	<2	<2
MW-13	04/19/10	BT for Parsons			< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	10/06/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
MW-13	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	10/12/11	Parsons			<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-13	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-13	04/09/13	Parsons		140 b	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-13	10/08/13	Parsons	<100	330 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-13	04/15/14	Parsons	<100	97 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	12	<2	<2	<2
MW-13	10/28/14	SGI	<100	100	<0.50	<0.50	<0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-13	04/28/15	SGI	<100	<100	0.63	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-13	10/22/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-13	04/12/16	SGI	<100	<100	0.95	<0.50	2.0	6.2	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-13	10/04/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-14	11/21/96	GSI	<50	<500	< 0.50	<0.50	< 0.50	<1.5	< 0.50	99				
MW-14	07/09/97	GTI	<50	200	<5	<5	<5	<5	<5	<5				
MW-14	01/06/98	GTI	<500	<100	107	<0.50	4.0	10	2.0	15				
MW-14	05/20/98	BBC	400		24	<0.50	7.0	14	<0.50	12				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14	08/26/98	Geomatrix	<300		<0.50	<0.50	0.70	2.1	<0.50	109				
MW-14	11/04/98	GTI	<300		<0.50	2.8	4.8	25	<0.50	49				
MW-14	02/03/99	Alton Geoscience	<500	<500	<0.50	<0.50	< 0.50	<1	<1	86				
MW-14	05/07/99	Alton Geoscience	<500	<500	<0.50	<0.50	< 0.50	0.53	<1	450				
MW-14	05/26/99	GTI	<300		<0.50	<0.50	0.70	1.1	<0.50	230				
MW-14	08/10/99	Alton Geoscience	<500	<1,000	<0.50	<1	<1	<1	2.9	110				
MW-14	11/18/99	IT Corporation	<300		<2.5	<5	<5	<5	12	26				
MW-14	02/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	36	15				
MW-14	05/16/00	IT Corporation	<300		<0.50	<0.50	<0.50	1.4	42	7.7				
MW-14	08/29/00	Secor	<300		<0.50	<0.50	<0.50	0.60	38	9.6				
MW-14	11/29/00	IT Corporation	<300		<0.50	<0.50	0.50	0.90	15	18				
MW-14	02/06/01	Secor	<300		<0.50	<0.50	<0.50	0.50	11	13				
MW-14	05/09/01	IT Corporation	<300		<0.50	<0.50	1.8	7.4	32	8.2				
MW-14	09/19/01	Secor	<300		<0.50	<0.50	<0.50	1.1	23	15				
MW-14 MW-14	11/07/01	IT Corporation	<300 <300		<0.50	<0.50	0.80 <0.50	2.3 1.5	29	10 25				
MW-14	01/30/02 04/10/02	Secor	<300		<0.50 <0.50	<0.50 <0.50	<0.50 2.7	1.5 6.4	8.1 4.1	25				
MW-14	04/10/02	IT Corporation	<300		<0.50	<0.50	0.98	2.4	3.9	24 25				
MW-14	10/23/02	IT Corporation GTI	<300		<0.50	<0.50	0.98	2.4 <1	4.3	25				
MW-14	01/28/03	Secor	<300		<0.50	<0.50	<0.50	0.67	5.9	17				
MW-14	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	1.8	17				
MW-14	10/10/03	BT for Parsons			<0.50	<0.50	1.2	4.0	7.4	19				
MW-14	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	0.89	4.7	19	<10	<2	<2	<2
MW-14	07/21/04	BT for Parsons	250		<0.50	<0.50	0.61	1.4		22				
MW-14	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	5.6	19	<10	<2	<2	<2
MW-14	03/02/05	BT for Parsons			<0.50	<1	<1	<1		14				
MW-14	05/07/05	BT for Parsons			1.3	<0.50	<0.50	<0.50	<0.50	9.3	22	<2	<2	<2
MW-14	11/08/05	BT for Parsons			6.5	<0.50	1.3	3.6	1.0	3.6	32	<2	<2	<2
MW-14	05/03/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	0.78	4.2	31	<2	<2	<2
MW-14	07/28/06	BT for Parsons	290		<0.50	<0.50	<0.50	<0.50	0.83	4.2	31	<2	<2	<2
MW-14	12/06/06	BT for Parsons			< 0.50	< 0.50	<0.50	< 0.50	0.98	3.3	20	<2	<2	<2
MW-14	03/23/07	BT for Parsons	670		<0.50	<0.50	<0.50	<0.50	0.94	3.5	29	<2	<2	<2
MW-14	05/03/07	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	0.94	3.6	<10	<2	<2	<2
MW-14	08/31/07	BT for Parsons	480		<0.50	<0.50	< 0.50	<0.50	<0.50	3.6	27	<2	<2	<2
MW-14	11/15/07	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50	0.97	4.0	20	<2	<2	<2
MW-14	02/07/08	BT for Parsons	180		<0.50	<0.50	< 0.50	<0.50	0.86	5.2	28	<2	<2	<2
MW-14	04/17/08	BT for Parsons			<0.50	<0.50	< 0.50	<0.50	1.2	4.6	32	<2	<2	<2
MW-14	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.3	10	<2	<2	<2
MW-14	02/12/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	1.1	1.6	<10	<2	<2	<2
MW-14	04/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	16	1.9	<10	<2	<2	<2
MW-14	07/20/09	Blaine Tech for AMEC			<0.50	<0.50	<0.50	<0.50	13	1.5	<10	2.4	<2	<2
MW-14	10/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	16	2.5	<10	3.0	<2	<2
MW-14	01/12/10	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	13	2.7	4.2 J	3.2	<2	<2
MW-14	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	0.4 J	4.3	<10	<2	<2	<2
MW-14	10/04/10	BT for Parsons			<0.50				0.99	3.4	<10			
MW-14	01/10/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.66	<10	<2	<2	<2
MW-14	04/13/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.0	<10	<2	<2	<2
MW-14	07/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.48 J	11	<2	<2	<2
MW-14	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	2.1	2.7	<10	0.83 J	<2	<2
MW-14	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	3.3	3.6	<10	0.83 J	<2	<2
MW-14 MW-14	04/18/12 07/09/12	Parsons			<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	6.6 4.0	0.78 0.72	<10 <10	1.2 J 1.1 J	<2 <2	<2 <2
IVIVV-14	07/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	4.0	0.72	<10	1.1 J	< 2	< 2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	7.0	1.9	<10	1.3 J	<2	<2
MW-14	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	10	0.93	<10	1.7 J	<2	<2
MW-14	04/10/13	Parsons		120 b	<0.50	<0.50	<0.50	<0.50	12	1.4	<10	2.4	<2	<2
MW-14	04/29/15	SGI	<100	120	< 0.50	< 0.50	< 0.50	<1.5	5.4	<2.0	<10	<2.0	<2.0	<2.0
MW-14	10/23/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	7.5	<2.0	<10	<2.0	<2.0	<2.0
MW-14	10/04/16	SGI	<100	<100	1.3	<0.50	< 0.50	<1.5	6.3	<1.0	<10	<2.0	<2.0	<2.0
MW-15	11/26/96	Terra Services			1.4	0.66	1.0	0.62	<0.50	27				
MW-15	07/14/97	Terra Services	1,000	3,500	1.5	1.1	<0.50	<1	<0.50	< 5				
MW-15	01/07/98	Terra Services	<500	1,500	0.62	0.73	<0.50	<1.5	<0.50	<5				
MW-15	05/22/98	Terra Services	<300		<0.50	<0.50	<0.50	0.70	<1	<0.50				
MW-15	11/13/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-15	05/07/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
MW-15	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-15	05/16/00	Secor	340		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-15	11/30/00	Secor	2,100		<0.50	0.80	<0.50	1.1	<0.50	<0.50				
MW-15	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-15	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	0.60				
MW-15	04/10/02	Secor	59,000		<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
MW-15	07/30/02	IT Corporation	780		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-15	12/08/06	Secor	420		<0.50	<0.50	<0.50	1.0	<0.50	0.60				
MW-15	05/04/07	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
MW-15	10/05/10	Blaine Tech	1,100		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	04/14/11	Blaine Tech	1,900		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	10/12/11	CH2M Hill	590		<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	04/27/12	CH2M Hill	1,100	40,000	<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	10/19/12	CHHL	940	34,000	<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	04/12/13	CHHL	890	240,000	<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	10/11/13	CHHL	2,000	140,000	<1	<1	<1	<1	<2	<1	<20	<2	<2	<2
MW-15	10/31/14	BT for CH2MHill	590	8,300	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<50	<5.0	<5.0	<5.0
MW-16	11/27/96	GSI	50	<500	<0.50	<0.50	<0.50	1.5	140	71				
MW-16	07/10/97	GTI	<50	<50	<5	<5	<5	<5	<5	<5				
MW-16	01/06/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
MW-16	05/21/98	BBC	<300		<0.50	0.70	<0.50	0.60	<0.50	<0.50				
MW-16	11/05/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	05/27/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
MW-16	05/17/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	05/09/01	IT Corporation	<300		2.6	<0.50	<0.50	0.60	<0.50	<0.50				
MW-16	11/07/01	IT Corporation	<300		1.2	<0.50	<0.50	<0.50	<0.50	31				
MW-16	02/01/02	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	220				
MW-16	04/11/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	260				
MW-16	10/23/02	GTI	<300		<0.50	<1	<1	<1	<0.50	14				
MW-16	01/29/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	6.8				
MW-16	04/09/03	GTI			<0.50	<0.50	<0.50	<0.50	<1	16				
MW-16	08/01/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	110				
MW-16	10/11/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	100				
MW-16	01/28/04	Secor	51		<0.50	<0.50	<0.50	<0.50	<0.50	89	440			
MW-16	04/21/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	83	110	<2	<2	<2
MW-16	07/20/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	22				
MW-16	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	3.3	120	<2	<2	<2
MW-16	02/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(ua/L)	(ua/L)	(µg/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)	(ug/L)	(ua/L)	(µg/L)	(µg/L)
MW-16	05/06/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	08/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	05/04/06	BT for Parsons			0.87	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	09/19/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-16	12/08/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	11/16/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	04/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	04/16/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/07/10	BT for Parsons			< 0.50				< 0.50	<0.50	<10			
MW-16	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/12/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/16/12	Parsons			<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-16	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-16	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-16	04/24/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-16	10/20/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-16	04/12/16	SGI	<100	<100	1.3	<0.50	2.5	8.1	0.51	<1.0	<10	<2.0	<2.0	<2.0
MW-16	10/07/16	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-17	11/27/96	GSI	45	<500	<0.50	<0.50	<0.50	<1	<0.50					
MW-17	07/09/97	GTI	<50	<50	<5	<5	<5	<5	<5	<5				
MW-17	01/06/98	GTI	<500	<100	<0.50	< 0.50	<0.50	<1	< 0.50	<0.50				
MW-17	05/20/98	BBC	<300		<0.50	< 0.50	< 0.50	<1	< 0.50	<0.50				
MW-17	11/04/98	GTI	<300		< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
MW-17	05/26/99	GTI	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
MW-17	11/18/99	IT Corporation	<300		< 0.50	<1	< 0.50	< 0.50	< 0.50	0.50				
MW-17	05/17/00	IT Corporation	<300		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50				
MW-17	11/29/00	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
MW-17	05/09/01	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
MW-17	11/07/01	IT Corporation	<300		< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50				
MW-17	04/10/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-17	10/23/02	ĠTI	<300		<0.50	<1	<1	<1	<0.50	<1				
MW-17	04/10/03	GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-17	10/08/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-17	04/21/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	11/03/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	05/05/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	11/05/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	05/03/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	12/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	05/02/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	11/13/07	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/20/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/16/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Dete	Compled By	TPH-g	TPH-d	Bannana	Taluana	Ethyl-	Vulanas	1.2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
vveii	Date	Sampled By	iPH-g	IPH-0	Benzene	Toluene	benzene	Xylenes	1,2-DCA	WILDE	IBA	DIPE	EIBE	IAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-17	10/06/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
MW-17	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	10/08/13	Parsons	<100	110 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-17	04/16/14	Parsons	<100	<100	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-17	10/27/14	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	< 0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-17	04/24/15	SGI	<100	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-17	10/20/15	SGI	130	<100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-17	04/13/16	SGI SGI	<100 <100	<100	<0.50	<0.50	0.67 0.74	2.4 2.5	<0.50 <0.50	<1.0 <1.0	<10	<2.0	<2.0	<2.0 <2.0
DUP-5 (MW-17)	04/13/16			<100	<0.50	<0.50	_				<10	<2.0	<2.0	
MW-17 DUP-1 (MW-17)	10/04/16 10/04/16	SGI SGI	<100 <100	<100	<0.50 <0.50	<0.50 <0.50	0.50 <0.50	<1.5 <1.5	<0.50 <0.50	<1.0 <1.0	<10 <10	<2.0	<2.0 <2.0	<2.0 <2.0
MW-18 (MID)	07/16/97	Terra Services	<100	<100 <500	<0.50					<1.0	<10	<2.0	<2.0	<2.0
MW-18 (MID)	01/05/98	Terra Services	420	<500 <500										
MW-18 (MID)	10/08/03	Secor	530		1.2	<1	<1	<1	16	640				
MW-18 (MID)	10/06/03	Blaine Tech	1,100		290	<1.5	<1.5	<1.5	<3	12	150	11	<3	<3
MW-18 (MID)	04/13/11	Blaine Tech	4,100		1,900	<10	<10	11	<20	13	<200	21	<20	<20
MW-18 (MID)	10/12/11	CH2M Hill	1,200		460	<2.5	<2.5	3.2	<5	4.6	82	9.3	<5	<5
MW-18 (MID)	04/20/12	CH2M Hill	<200	330	<1	<1	<1	<1	<2	2.4	21	4.2	<2	<2
MW-18 (MID)	10/18/12	CHHL	96	170	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	49	3.6	<1	<1
MW-18 (MID)	10/31/14	BT for CH2MHill	<200	<50	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	87	5.1	<2.0	<2.0
MW-18 (MID)	04/22/15	BT for CH2MHill	<50	140	<0.50	<0.50	<0.50	<0.50	1.2	<0.50	59	3.7	<1.0	<1.0
MW-18 (MID)	10/27/15	BT for CH2MHill	<50	130 HD	<0.50	<0.50	<0.50	<0.50	<0.50	1.2	<10	3.1	<1.0	<1.0
MW-18 (MID)	04/13/16	BT for CH2MHill	390	440	65	1.4	<0.50	2.0	<1	4.7	74	1.5	<1.0	<1.0
MW-18 (MID)	10/06/16	BT for CH2MHill	200	490	6.1	<0.50	<0.50	1.5	<0.50	2.7	55	1.3	<1.0	<1.0
MW-19 (MID)	11/26/96	Terra Services			48	< 0.50	17	1.8	7.7	600				
MW-19 (MID)	07/16/97	Terra Services	<100	<500	< 0.50	<0.50	<0.50	<1	9.1	810				
MW-19 (MID)	01/05/98	Terra Services	<100	<500	<5	<50	<5	<15	<5	1,400				
MW-19 (MID)	05/27/98	Terra Services	500		<5	<0.50	<5	<10	14	590				
MW-19 (MID)	08/26/98	Geomatrix	514		<2.5	<2.5	<2.5	<2.5	11	779				
MW-19 (MID)	11/17/98	Alton Geoscience	491		<5	<5	<5	<5	11	850				
MW-19 (MID)	02/03/99	Alton Geoscience	<10,000	<500	<10	<10	<10	<20	<20	1,300				
MW-19 (MID)	05/06/99	Alton Geoscience	540	<500	42	<1	<1	<1	<2.5	1,500				
MW-19 (MID)	08/10/99	Alton Geoscience	600	<1,000	<0.50	<1	<1	<1	6.8	980				
MW-19 (MID)	11/17/99	Secor	1,100		26	<5	<5	<5	<5	1,100				
MW-19 (MID)	02/29/00	Secor	2,000		530	<5	<5	<5	<5	1,100				
MW-19 (MID)	05/17/00	Secor	5,200		1,900	<25	<25	<25	<25	2,600				
MW-19 (MID)	08/29/00	Secor	2,700		560	<10	<10	<10	<10	3,200				
MW-19 (MID)	11/30/00	Secor	2,100		520	3.6	0.90	6.1	<0.50	1,200				
MW-19 (MID)	02/06/01	Secor	780		66	<10	<10	<10	<10	720				
MW-19 (MID)	05/09/01	Secor	360		4.4	<2.5	<2.5	<2.5	6.5	490				
MW-19 (MID)	09/19/01	Secor	<300		<2.5	<2.5	<2.5	<2.5	8.2	200				
MW-19 (MID)	11/06/01	Secor	<300		<1	<1	<1	<1	6.5	180				
MW-19 (MID)	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	5.1	33				
MW-19 (MID)	04/10/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	4.3	11				
MW-19 (MID)	10/23/02	Secor	<300		1.1	<0.50	<0.50	<0.50	3.5	7.4				
MW-19 (MID)	04/10/03	Secor	92		<0.50	< 0.50	<0.50	<0.50	2.5	4.3				
MW-19 (MID)	10/07/03	Secor	84		<0.50	<0.50	<0.50	<0.50	2.3	1.0				
MW-19 (MID)	04/21/04	Secor	99		<0.50	<0.50	<0.50	<0.50	2.6	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-19 (MID)	11/03/04	Secor	<100		<0.50	<0.50	<0.50	<0.50	2.0	0.81				
MW-19 (MID)	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-19 (MID)	11/03/05	Secor	68		<0.50	<0.50	<0.50	<0.50	4.2	1.2				
MW-19 (MID)	05/03/06	Secor	76		<0.50	<0.50	<0.50	<0.50	13	2.2				
MW-19 (MID)	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	1.3	<0.50				
MW-19 (MID)	05/02/07	Secor	61 57		<0.50	<0.50	<0.50	<0.50	2.2	1.1				
MW-19 (MID)	11/13/07 04/17/08	Secor			<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	2.9	0.86				
MW-19 (MID) MW-19 (MID)	10/17/08	Secor Stantec	<50 <50		<0.50	<0.50	<0.50	<0.50	3.0 3.2	1.2 1.3				
MW-19 (MID)	04/20/09	Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	3.2	0.81	66	9.8	 <1	 <1
MW-19 (MID)	10/21/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	5.0	0.79	130	16	<1	<1
MW-19 (MID)	05/26/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	3.1	< 0.50	<10	12	<1	<1
MW-19 (MID)	10/06/10	Blaine Tech	62		<0.50	<0.50	<0.50	<0.50	3.5	0.91	130	19	<1	<1
MW-19 (MID)	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	3.2	0.81	67	14	<1	<1
MW-19 (MID)	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	3.2	0.67	110	11	<1	<1
MW-19 (MID)	04/18/12	CH2M Hill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	4.7	1.0	290	22	<1	<1
MW-19 (MID)	10/17/12	CHHL	<50	77	<0.50	<0.50	<0.50	<0.50	5.3	1.1	360	28	<1	<1
MW-19 (MID)	04/11/13	CHHL	55	<50	<0.50	<0.50	<0.50	<0.50	9.2	2.0	330	31	<1	<1
MW-19 (MID)	10/10/13	CHHL	54	<50	<0.50	<0.50	<0.50	<0.50	7.4	2.0	350	25	<1	<1
MW-19 (MID)	04/17/14	CHHL	74	<50	< 0.50	<0.50	< 0.50	<0.50	9.1	2.0	440	25	<1	<u>·</u> <1
MW-19 (MID)	10/30/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	3.5	0.74	87	9.2	<1.0	<1.0
MW-19 (MID)	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	3.7	1.1	130	13	<1.0	<1.0
MW-19 (MID)	10/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	2.9	<0.50	36	6.2	<1.0	<1.0
MW-19 (MID)	04/13/16	BT for CH2MHill	<50	54	<0.50	<0.50	<0.50	<0.50	4.8	1.0	420	23	<1.0	<1.0
MW-19 (MID)	10/05/16	BT for CH2MHill	54	<50	<0.50	<0.50	<0.50	<0.50	3.8	0.68	220	19	<1.0	<1.0
MW-20 (MID)	11/22/96	Terra Services			< 0.50	< 0.50	< 0.50	1.5	66	36				
MW-20 (MID)	07/11/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	33	13				
MW-20 (MID)	01/05/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	17	9.2				
MW-20 (MID)	05/27/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	35	22				
MW-20 (MID)	11/16/98	Alton Geoscience	<300		14	41	4.8	30	31	33				
MW-20 (MID)	05/07/99	Alton Geoscience	<500	<500	5.6	22	1.7	9.8	22	13				
MW-20 (MID)	11/16/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	21	19				
MW-20 (MID)	05/19/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	22	11				
MW-20 (MID)	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	17	8.1				
MW-20 (MID)	05/09/01	Secor	<300		<50	<50	<50	<50	2,200	1,300				
MW-20 (MID)	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	23	11				
MW-20 (MID)	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	23	14				
MW-20 (MID)	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	17	12				
MW-20 (MID)	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	20	20				
MW-20 (MID)	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	17	11				
MW-20 (MID)	10/08/03	Secor	<100		<0.50	< 0.50	<0.50	<0.50	29	19				
MW-20 (MID)	04/21/04	Secor	56		<0.50	<0.50	<0.50	<0.50	27	18				
MW-20 (MID)	11/05/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	23	15				
MW-20 (MID)	05/05/05	Secor	97		<0.50	<0.50	<0.50	<0.50	33	57				
MW-20 (MID)	11/03/05	Secor	58		< 0.50	< 0.50	<0.50	<0.50	25	46				
MW-20 (MID)	05/03/06	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	21	32				
MW-20 (MID)	12/07/06	Secor	<50 59		<0.50	<0.50 <0.50	<0.50	<0.50	21 20	25 25				
MW-20 (MID) MW-20 (MID)	05/05/07 11/14/07	Secor	59		<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	20	25				
MW-20 (MID)	04/17/08	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	20 15	23				
MW-20 (MID)	10/17/08	Secor Stantec	<50 <50		<0.50	<0.50	<0.50	<0.50	15	18				
MW-20 (MID)	04/22/09	Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	17	16	28	11	 <1	<1
IVIVV-ZU (IVIID)	04122109	Diame Tech IOI AMEC	~ 500		~ 0.50	~0.50	~ 0.50	~ 0.50	1 17	10	20		_ `1	`1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

MW-20 (MD)	Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
MW-22 (MD)					(µg/L)	(µg/L)				(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-20 (MD) 10109619 Blaine Tech 51									0.00						<1
MW-20 (MD) 04/12/11 Blaine Tech 51 40,50 40,50 40,50 40,50 41,50 47, 41 MW-20 (MD) 10/11/11 CH2M HIII 450 450 40,50															<1
MW-22 (MID)	- ' '														<1
MW-22 (MID) 04/1912 CH2M Hill < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < <p> < < <p> < < <p> < < <p> < < <p> < < <p> < < < <</p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p>	- \ /														<1
MW-20 (MID) 0017/12			-												<1
MW-22 (MID)	- ' '		-												<1
MW-20 (MID)	- ' '														<1
MW-20 (MID)	- \ /														<1
MW-22 (MID) 10/30/14 BT for CH2MHIII <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	- \ /														<1
MW-22 (MID) 04/22/15 BT for CHZMHIII 550 550 505 50.50															<1
MW-20 (MID)															<1.0
MW-20 (MID)															<1.0
MW-27 (MID) 10105/16 BT for CH2MHIII <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	- \ /												-		<1.0
WW-21 (MID) 0.507/99 Alton Geoscience <500 590 <1 <1 <1 <1 <1 <1 <1 <															<1.0
MW-21 (MID) 11/29/00 Secor <300 3.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50			_												<1.0
MW-21 (MID) 0509001 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\ /														
MW-21 (MID)															
MW-21 (MID) 04/10/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\ /														
MW-21 (MID)															
MW-21 (MID) 1007/03 Secor 87 0.50															
MW-21 (MID) 05/08/05 Secor 62 <0.50 <0.50 <0.50 <0.50 <0.50 <2.8 25 < < < <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <2.8 25 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	\ /														
MW-21 (MID)															
MW-21 (MID)	\ /														
MW-21 (MID) 04/17/08 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
MW-21 (MID) 04/20/09 Blaine Tech for AMEC <100															
MW-21 (MID) 05/26/10 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\ /														<1
MW-21 (MID)															<1
MW-21 (MID) 04/18/12 CH2M Hill <100 140 <0.50 <0.50 <0.50 <0.50 <0.50 2.2 <0.50 17 <1 <1 <1 MW-21 (MID) 04/10/13 CHHL <200 61 <1 <1 <1 <1 <1 <1 <1															<1
MW-21 (MID)															<1
MW-21 (MID)	\ /														<2
MW-21 (MID)	\ /	- 11 1 - 11													<1
MW-21 (MID) 10/30/14 BT for CH2MHiII <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															<1
MW-21 (MID) 04/22/15 BT for CH2MHiII <50 56 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 3.4 0.68 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															<1.0
MW-21 (MID) 10/23/15 BT for CH2MHiII 120 HD 57 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 3.4 1.1 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.															<1.0
MW-21 (MID) 04/13/16 BT for CH2MHill <50 87 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td>\ /</td> <td></td> <td>_</td> <td></td> <td><1.0</td>	\ /		_												<1.0
MW-21 (MID) 10/05/16 BT for CH2MHill 57 82 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td>\ /</td> <td></td> <td></td> <td>-</td> <td></td> <td><1.0</td>	\ /			-											<1.0
MW-22 (MID) 11/21/96 GSI 46 <500 <0.50 <0.50 <0.50 <1.5 4.7 <5															<1.0
MW-22 (MID) 07/10/97 GTI <50 650 <5 <5 <5 <5 <5															~1.0
MW-22 (MID) 01/06/98 GTI 400 <5 <5 <5 <1 <5 <5	\ /														
MW-22 (MID) 05/21/98 BBC <300 <0.50 <0.50 <0.50 <1 0.90 <0.50															
MW-22 (MID) 08/26/98 Geomatrix <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\ /						_	-							
MW-22 (MID) 11/04/98 GTI <300 <0.50 <0.50 <0.50 <0.50 <0.50	\ /														
MW-22 (MID) 02/02/99 Alton Geoscience <500 <500 1.1 2.1 0.56 2.1 3.2 0.69	\ /		-												
MW-22 (MID) 05/07/99 Alton Geoscience <500 8.0 3.4 1.7 7.5 <1 6.9 MW-22 (MID) 05/26/99 GTI <300 <0.50 <0.50 <0.50 <0.50 3.7 4.7 MW-22 (MID) 08/10/99 Alton Geoscience <500 <1,000 3.1 6.2 <1 4.9 8.9 <1 MW-22 (MID) 11/18/99 IT Corporation <300															
MW-22 (MID) 05/26/99 GTI <300 <0.50 <0.50 <0.50 <0.50 3.7 4.7 MW-22 (MID) 08/10/99 Alton Geoscience <500															
MW-22 (MID) 08/10/99 Alton Geoscience <500 <1,000 3.1 6.2 <1 4.9 8.9 <1 MW-22 (MID) 11/18/99 IT Corporation <300	\ /		_												
MW-22 (MID) 11/18/99 IT Corporation <300 <0.50 <1 <0.50 <0.50 19 0.80															
					,										
MW-22 (MID) 02/29/00 Secor <300 <0.50 <0.50 <0.50 <0.50 29 3.3	\ /	02/29/00		<300		<0.50	<0.50	<0.50	<0.50	29	3.3				
MW-22 (MID) 05/16/00 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 16 2.4															
MW-22 (MID) 08/29/00 Secor <300 <0.50 <0.50 <0.50 <0.50 45 14															

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-22 (MID)	11/28/00	Secor	<300		< 0.50	<0.50	<0.50	<0.50	88	13				
MW-22 (MID)	11/29/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	88	13				
MW-22 (MID)	02/06/01	Secor	<300		<1	<1	<1	<1	120	14				
MW-22 (MID)	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	110	12				
MW-22 (MID)	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	83	11				
MW-22 (MID)	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	30	4.5				
MW-22 (MID)	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	36	6.5				
MW-22 (MID)	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	30	19				
MW-22 (MID)	04/12/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	22	11				
MW-22 (MID)	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	24	8.7				
MW-22 (MID)	10/24/02	GTI	<300		<0.50	<1	<1	<1	18	5.4				
MW-22 (MID)	01/28/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	18	4.8				
MW-22 (MID)	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	9.1	2.4				
MW-22 (MID)	10/11/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	12	2.8				
MW-22 (MID)	04/22/04	BT for Parsons	400		<0.50	<0.50	<0.50	<0.50	19	4.8	21	3.2	<2	<2
MW-22 (MID)	07/21/04	BT for Parsons	180		<0.50	< 0.50	<0.50	<0.50		11				
MW-22 (MID)	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	31	11	17	2.8	<2	<2
MW-22 (MID)	03/02/05	BT for Parsons			<0.50	<1	<1	<1		15				
MW-22 (MID)	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	1.8	30	<10	<2	<2	<2
MW-22 (MID)	11/08/05 05/05/06	BT for Parsons			<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	2.1 6.1	30 14	13 <10	<2 <2	<2	<2 <2
MW-22 (MID)		BT for Parsons					<0.50			16		1	<2	
MW-22 (MID) MW-22 (MID)	12/05/06 05/02/07	BT for Parsons BT for Parsons			<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	5.3 4.4	14	13 17	<2 <2	<2 <2	<2 <2
MW-22 (MID)	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	10	15	17	2.1	<2	<2
MW-22 (MID)	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	8.3	11	18	2.1	<2	<2
MW-22 (MID)	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	9.7	16	16	2.1	<2	<2
MW-22 (MID)	02/12/09	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	15	18	22	3.1	<2	<2
MW-22 (MID)	04/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	11	23	22	3.1 <2	<2	<2
MW-22 (MID)	07/20/09	Blaine Tech for AMEC			<0.50	<0.50	<0.50	<0.50	11	19	34	2.9	<2	<2
MW-22 (MID)	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	13	16	27	<2	<2	<2
MW-22 (MID)	01/13/10	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	9.7	13	24	2.1	<2	<2
MW-22 (MID)	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	11	8.7	23	1.8 J	<2	<2
MW-22 (MID)	10/04/10	BT for Parsons			<0.50				10	13	<10			
MW-22 (MID)	01/10/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	4.8	6.2	10	0.82 J	<2	<2
MW-22 (MID)	04/14/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	6.5	10	<10	0.76 J	<2	<2
MW-22 (MID)	07/11/11	Parsons			<0.50	<0.50	<0.50	<0.50	5.5	7.8	13	0.48 J	<2	<2
MW-22 (MID)	10/13/11	Parsons			0.39 J	0.38 J	<0.50	<0.50	4.6	6.3	7.2 J	0.37 J	<2	<2
MW-22 (MID)	01/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	4.4	6.6	12	0.45 J	<2	<2
MW-22 (MID)	04/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	7.1	10	21	0.69 J	<2	<2
MW-22 (MID)	07/09/12	Parsons			<0.50	<0.50	<0.50	<0.50	4.4	5.8	<10	0.43 J	<2	<2
MW-22 (MID)	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	6.4	12	<10	0.85 J	<2	<2
MW-22 (MID)	01/14/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	4.4	5.3	<10	0.42 J	<2	<2
MW-22 (MID)	04/10/13	Parsons		250 b	<0.50	<0.50	<0.50	<0.50	7.0	11	14	1.1 J	<2	<2
MW-22 (MID)	10/07/13	Parsons	<100	240 HD	<0.50	<0.50	<0.50	<0.50	3.7	4.6	<10	<2	<2	<2
MW-22 (MID)	04/16/14	Parsons	<100	100 HD	<0.50	<0.50	<0.50	<0.50	5.0	6.8	<10	0.64 J	<2	<2
MW-22 (MID)	10/28/14	SGI	<100	210	<0.50	<0.50	<0.50	<1.5	8.8	9.1	<10	<2.0	<2.0	<2.0
MW-22 (MID)	04/24/15	SGI	<100	240	<0.50	<0.50	<0.50	<1.5	10	8.9	19	2.6	<2.0	<2.0
MW-22 (MID)	10/23/15	SGI	<100	160	<0.50	<0.50	<0.50	<1.5	8.7	6.5	18	2.7	<2.0	<2.0
MW-22 (MID)	10/23/15	SGI	<100	140	<0.50	<0.50	<0.50	<1.5	6.4	5.2	12	2.4	<2.0	<2.0
MW-22 (MID)	04/13/16	SGI	<100	170	<0.50	<0.50	0.87	2.7	6.8	5.0	<10	<2.0	<2.0	<2.0
MW-22 (MID)	10/05/16	SGI	<100	170	1.5	<0.50	<0.50	<1.5	7.1	4.4	<10	<2.0	<2.0	<2.0
MW-23 (MID)	11/21/96	GSI	1,400	<500	62	<0.50	18	3.5	0.60					

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(ua/L)	(ua/L)	(ua/L)	(µa/L)	(ua/L)	(µg/L)	(µg/L)	(ug/L)	(ua/L)	(µa/L)
MW-23 (MID)	07/09/97	GTI		(MG/L)	160	<u>(μα/ε/</u>	21	26	(<u>µq/L</u>)	(MG/L)	(μς/Ε/		(µq/L)	(µg/L)
MW-23 (MID)	07/09/97	GTI	140	970										
MW-23 (MID)	01/06/98	GTI		<100	< 0.30		<0.30							
MW-23 (MID)	05/20/98	BBC	<300											
MW-23 (MID)	11/04/98	GTI	<300		< 0.30	< 0.30	<0.30	<0.60						
MW-23 (MID)	05/27/99	GTI	<300		< 0.30	< 0.30	< 0.30	< 0.60						
MW-23 (MID)	11/18/99	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-23 (MID)	05/16/00	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-23 (MID)	11/29/00	IT Corporation	<300		< 0.30	< 0.30	<0.30	<0.60		<5				
MW-23 (MID)	05/10/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-23 (MID)	11/07/01	IT Corporation	<300		< 0.30	< 0.30	< 0.30	<0.60		<5				
MW-23 (MID)	04/10/02	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-23 (MID)	10/23/02	GTI	<300		<0.30	<0.30	<0.30	<0.30		<5				
MW-23 (MID)	04/10/03	GTI			<1	<1	<1	<2	<3	<3				
MW-23 (MID)	10/08/03	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
MW-23 (MID)	04/22/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
MW-23 (MID)	11/04/04	BT for Parsons			<0.30	<0.30	<0.30	<0.30		<5				
MW-23 (MID)	05/10/05	BT for Parsons			0.40	0.79	0.41 <0.30	<0.30		<5 <5				
MW-23 (MID) MW-23 (MID)	05/03/06 12/06/06	BT for Parsons			<0.30 <0.50	<0.30 <0.50	<0.30	0.32 <1		<5 <5				
MW-23 (MID)	05/02/07	BT for Parsons BT for Parsons			<0.50	<0.50	<0.50	<1		<5 <5				
MW-23 (MID)	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<1		<5 <5				
MW-23 (MID)	04/16/08	BT for Parsons			<0.50	<0.50	<0.50	<1		<5 <5				
MW-23 (MID)	10/15/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-23 (MID)	04/21/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50				
MW-23 (MID)	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-23 (MID)	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50		<0.50	4.8 J	<2	<2	<2
MW-23 (MID)	10/04/10	BT for Parsons			<0.50				<0.50	0.73	<10			
MW-23 (MID)	04/14/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.9	<10	<2	<2	<2
MW-23 (MID)	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	10	14	<2	<2	<2
MW-23 (MID)	04/19/12	Parsons			<0.50	<0.50	< 0.50	0.32 J	< 0.50	9.9	19	<2	<2	<2
MW-23 (MID)	10/19/12	Parsons			< 0.50	< 0.50	0.25 J	0.43	< 0.50	4.3	<10	<2	<2	<2
MW-23 (MID)	04/11/13	Parsons		4,800	< 0.50	<0.50	<0.50	0.85 J	<0.50	2.9	13	<2	<2	<2
MW-24	11/21/96	GSI	92	<500	<0.50	<0.50	<0.50	<1.5	<0.50					
MW-24	07/09/97	GTI	100	1,400	11	<5	<5	<5	<5	<5				
MW-24	01/06/98	GTI	700	<100	93	<0.50	4.0	<1	<0.50	<0.50				
MW-24	05/20/98	BBC	<300		<0.30	<0.50	<0.50	<1	<0.50	<0.50				
MW-24	11/04/98	GTI	<300		11	2.7	2.1	18	<0.50	<0.50				
MW-24	05/26/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-24	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
MW-24	05/16/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
MW-24	11/29/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-24	05/09/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-24	11/07/01	IT Corporation	<300 <300		<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50				
MW-24 MW-24	04/10/02 10/23/02	IT Corporation GTI	<300 <300		<0.50 <0.50	<0.50 <1	<0.50 <1	<0.50 <1	<0.50	<0.50 <1				
MW-24	04/11/03	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-24	10/08/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-24	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
10177 2-1	11/00/00	21 101 1 4100113	ı		-0.00	-0.00	-0.00	-0.00	-0.00	.0.00	-10			

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-24	05/03/06	BT for Parsons			< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	12/06/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	11/14/07	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	04/17/08	BT for Parsons			< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	10/16/08	BT for Parsons			< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	04/21/09	BT for Parsons			< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	10/23/09	BT for Parsons			< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	04/13/10	BT for Parsons			< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	10/04/10	BT for Parsons			< 0.50				< 0.50	0.51	<10			
MW-24	04/13/11	BT for Parsons			< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<10	<2	<2	<2
MW-24	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-24	04/18/12	Parsons			< 0.50	< 0.50	< 0.50	<0.50	< 0.50	2.6	6.3 J	<2	<2	<2
MW-24	10/16/12	Parsons			< 0.50	< 0.50	< 0.50	<0.50	< 0.50	1.7	<10	<2	<2	<2
MW-24	04/09/13	Parsons		150 b	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	0.87	<10	<2	<2	<2
MW-24	10/08/13	Parsons	<100	230 HD	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.0	<10	<2	<2	<2
MW-24	04/16/14	Parsons	<100	110 HD	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.87	<10	<2	<2	<2
MW-24	10/28/14	SGI	<100	240	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-24	10/28/14	SGI	<100	240	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-24	04/24/15	SGI	<100	200	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-24	10/22/15	SGI	<100	100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-24	10/22/15	SGI	<100	100	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-24	04/13/16	SGI	<100	<100	<0.50	<0.50	1.2	3.9	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-25	11/21/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	17	<5				
MW-25	07/09/97	GTI	<50	660	<5	<5	<5	<5	17	<5				
MW-25	01/06/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	15	<0.50				
MW-25	05/21/98	BBC	<300		< 0.30	<0.50	<0.50	<1	8.6	<0.50				
MW-25	11/04/98	GTI	<300		< 0.50	<0.50	<0.50	<0.50	11	<0.50				
MW-25	05/06/99	Alton Geoscience	<500	<500	1.9	1.2	0.68	3.3	14	1.3				
MW-25	05/26/99	GTI	<300		<0.50	<0.50	<0.50	<0.50	10	<0.50				
MW-25	11/18/99	IT Corporation	<300		< 0.50	<1	< 0.50	< 0.50	27	0.70				
MW-25	05/16/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	50	4.7				
MW-25	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	62	11				
MW-25	11/29/00	IT Corporation	<300		<0.50	0.60	<0.50	0.80	73	14				
MW-25	05/09/01	IT Corporation	<300		< 0.50	< 0.50	< 0.50	< 0.50	45	7.1				
MW-25	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	36	6.2				
MW-25	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	39	9.3				
MW-25	04/12/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	23	9.4				
MW-25	10/24/02	ĞTI	<300		<0.50	<1	<1	<1	15	5.1				
MW-25	04/11/03	GTI			<0.50	<0.50	<0.50	<0.50	30.6	8.61				
MW-25	10/11/03	BT for Parsons			<0.50	<0.50	<0.50	<0.50	13	3.4				
MW-25	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	13	3.5	<10	2.4	<2	<2
MW-25	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	17	3.4	<10	2.9	<2	<2
MW-25	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	2.8	5	<10	<2	<2	<2
MW-25	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	0.95	1.9	<10	<2	<2	<2
MW-25	05/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	4.3	10	<10	<2	<2	<2
MW-25	12/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	3	3.5	<10	<2	<2	<2
MW-25	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	2.8	2.3	<10	<2	<2	<2
MW-25	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	1.6	1.3	<10	<2	<2	<2
MW-25	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	4.5	4.3	<10	<2	<2	<2
MW-25	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	8.9	6.1	<10	2.3	<2	<2
MW-25	04/22/09	BT for Parsons			< 0.50	< 0.50	< 0.50	< 0.50	8.3	2.9	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-25	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	4.1	0.83	<10	<2	<2	<2
MW-25	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	10	2.7	<10	2.5	<2	<2
MW-25	10/04/10	BT for Parsons			<0.50				2	0.35 J	<10			
MW-25	04/12/11	BT for Parsons			<0.50	<0.50	<0.50	<0.50	7.1	1.4	<10	0.71 J	<2	<2
MW-25	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	1.4	0.31 J	<10	<2	<2	<2
MW-25	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	1.3	<0.50	<10	<2	<2	<2
MW-25	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	3.4	0.67	<10	<2	<2	<2
MW-25 MW-26	04/09/13	Parsons		<100	<0.50	<0.50	<0.50	<0.50	3.6	0.49 J	<10	<2	<2	<2
MW-26	11/21/96	GSI GTI	6,700 <50	<500 270	460 <5	400 <5	200 <5	340 <5	0.7 <5	340				
MW-26	07/10/97 01/06/98	GTI	<500 <500	<100	<2.5	<2.5	<2.5		<5 <2.5	340 407				
MW-26	05/21/98	BBC	<300	<100	<0.30	<0.50	<2.5 <0.50	<5 <1	<2.5 <0.50	<0.50				
MW-26	11/04/98	GTI	<300		<0.50	1.3	<0.50	1.1	<0.50	146				
MW-26	05/26/99	GTI	8.260		3,000	170	400	1.000	<0.50	380				
MW-26	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	3.4				
MW-26	05/16/00	IT Corporation	8,400		2,300	<5	410	1,480	<5	76				
MW-26	11/29/00	IT Corporation	1,800		440	15	69	240	<10	69				
MW-26	05/10/01	IT Corporation	<300		2.1	<0.50	<0.50	<0.50	<0.50	1.9				
MW-26	11/07/01	IT Corporation	1.700		370	79	37	171	<0.50	35				
MW-26	04/11/02	IT Corporation	4,000		1,200	<5	230	528	<5	65				
MW-26	10/24/02	GTI	2,100		970	<5	<5	262	<2.5	74				
MW-26	04/11/03	GTI			858	<0.50	243	78.6	<0.50	108				
MW-26	10/11/03	BT for Parsons			4.6	<0.50	5.7	0.54	<0.50	29				
MW-26	04/22/04	BT for Parsons			<0.50	<0.50	<0.50	< 0.50	<0.50	140	18	<2	<2	<2
MW-26	11/04/04	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	110	23	<2	<2	<2
MW-26	05/07/05	BT for Parsons			< 0.50	<0.50	3.1	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-26	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-26	05/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-26	12/06/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.9	<10	<2	<2	<2
MW-26	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2	<10	<2	<2	<2
MW-26	11/14/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	4.4	<10	<2	<2	<2
MW-26	04/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.99	<10	<2	<2	<2
MW-26	10/16/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	5	<10	<2	<2	<2
MW-26	04/22/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-26	10/23/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2	<10	<2	<2	<2
MW-26	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	0.66 0.68	<10 <10	<2	<2	<2
MW-26 MW-26	10/04/10	BT for Parsons			1.6 <0.50	<0.50	<0.50	<0.50	<0.50 <0.50	2.3	<10 <10	<2	<2	 <2
MW-26	04/13/11 10/13/11	BT for Parsons Parsons			<0.50 1.4	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-26	04/17/12	Parsons			1.4	<0.50	0.32 J	0.57 J	<0.50	3.7	9.7 J	<2	<2	<2
MW-26	10/16/12	Parsons			3.9	<0.50 0.5	2.2	0.69	<0.50	1.4	9.7 J 5.6 J	<2	<2	<2
MW-26	04/09/13	Parsons		990 b	2.0	0.36 J	1.5	0.89 0.36 J	<0.50	0.74	<10	<2	<2	<2
MW-26	10/08/13	Parsons	610	730 HD	9.9	0.33 J	0.95	0.74	<0.50	0.97	5.9 J	<2	<2	<2
MW-26	04/16/14	Parsons	1,200 HD	990 HD	1.7	0.33 J	1.1	0.84	<0.50	<0.50	14	<2	<2	<2
MW-26	10/30/14	SGI	1,400	670	<0.50	<0.50	0.54	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-26	04/29/15	SGI	430	500	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-26	10/23/15	SGI	280	230	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-26	04/13/16	SGI	200	200	0.80	<0.50	1.6	4.9	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-4 (MW-26)	04/13/16	SGI	240	190	0.71	<0.50	1.4	4.8	<0.50	1.2	<10	<2.0	<2.0	<2.0
MW-26	10/05/16	SGI	170	270	2.2	<0.50	<0.50	<1.5	<0.50	1.0	<10	<2.0	<2.0	<2.0
MW-27	11/22/96	GSI	<50	<500	180	12	25	50	<0.50					
MW-27	07/10/97	GTI	420	400	1,400	28	53	253	<5	79				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-q	TPH-d	Benzene	Toluene	Ethyl-	Xvlenes	1.2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
Wen	Date	Jampieu by	ŭ		Delizerie		benzene	Aylelles	,			DIFE		
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-27	01/06/98	GTI	1,500	<100	940	<5	70	20	20	90				
MW-27	05/21/98	BBC	<300		<0.30	<0.50	<0.50	<1	<0.50	<0.50				
MW-27	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-27	05/26/99	GTI	<300		<0.50	<0.50	0.71	1.3	<0.50	1.1				
MW-27	11/18/99	IT Corporation	7,200		1,700	8.6	100	1,110	<0.50	170				
MW-27	05/16/00	IT Corporation	<300		1.7	<0.50	<0.50	<0.50	<0.50	5.0				
MW-27	11/29/00	IT Corporation	<300		0.90	0.70	0.70	1.0	0.60	17				
MW-27	05/10/01	IT Corporation	<300		<0.50	<0.50	<0.50 <0.50	<0.50	< 0.50	<0.50				
MW-27	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50				
MW-27	04/11/02	IT Corporation	<300		<0.50	<0.50		<0.50		0.90				
MW-27 MW-27	10/24/02 04/11/03	GTI GTI	<300		<0.50 <0.50	<1 <0.50	<1 2.8	<1 <0.50	<0.50 <0.50	9.7 17				
MW-27	10/11/03	BT for Parsons			<0.50 6.2	<0.50	0.79	<0.50	<0.50	8.9				
MW-27	04/22/04	BT for Parsons			130	<0.50	16	<0.50	<0.50	65	20	 <2	 <2	 <2
MW-27	11/06/04	BT for Parsons			1.6	<0.50	17	<0.50	<0.50	65	21	<2	<2	<2
MW-27	05/07/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	11/08/05	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.59	<10	<2	<2	<2
MW-27	05/05/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.0	<10	<2	<2	<2
MW-27	12/06/06	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	2.3	<10	<2	<2	<2
MW-27	05/03/07	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<10	<2	<2	<2
MW-27	11/14/07	BT for Parsons			1.3	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	04/18/08	BT for Parsons			2.9	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	10/17/08	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	04/22/09	BT for Parsons			<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	10/26/09	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.54	<10	<2	<2	<2
MW-27	04/13/10	BT for Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	7.5 J	<2	<2	<2
MW-27	10/04/10	BT for Parsons			<0.50				<0.50	<0.50	<10			
MW-27	04/12/11	BT for Parsons			<0.50	<0.50	0.35 J	3.2	<0.50	<0.50	<10	<2	<2	<2
MW-27	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	04/17/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
MW-27	10/16/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	5.0	12	<2	<2	<2
MW-27	04/09/13	Parsons		310 b	<0.50	<0.50	<0.50	<0.50	<0.50	3.8	23	<2	<2	<2
MW-27	10/08/13	Parsons	<100	130 HD	<0.50	<0.50	<0.50	<0.50	<0.50	1.3	5.7 J	<2	<2	<2
MW-27	10/29/14	SGI	<100	140	< 0.50	< 0.50	< 0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-27	04/22/15	SGI	<100	160	< 0.50	<0.50	< 0.50	<1.5	<0.50	3.4	<10	<2.0	<2.0	<2.0
MW-27	10/23/15	SGI	<100	130	<0.50	<0.50	<0.50	<1.5	<0.50	3.7	<10	<2.0	<2.0	<2.0
MW-27	04/13/16	SGI	<100	160	1.2	<0.50	1.7	5.5	<0.50	3.3	<10	<2.0	<2.0	<2.0
MW-27	10/05/16	SGI	<100	220	<0.50	<0.50	<0.50	<1.5	<0.50	3.1	<10	<2.0	<2.0	<2.0
DUP-3 (MW-27)	10/05/16	SGI	<100	250	<0.50	<0.50	<0.50	<1.5	< 0.50	3.2	<10	<2.0	<2.0	<2.0
MW-28	11/27/96	GSI	1,500	<500	<2.5	<2.5	<2.5	<5	<2.5					
MW-28	07/10/97	GTI	220	2,200	<5	<5	<5	<5	<5	<5				
MW-28	01/07/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
MW-28	05/21/98	BBC	<300		<0.30	< 0.30	< 0.30	<0.60						
MW-28	11/05/98	GTI	<300		< 0.30	< 0.30	< 0.30	<0.60						
MW-28	05/26/99	GTI	<300		0.33	<0.30	< 0.30	0.70						
MW-28	11/18/99	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60						
MW-28	05/17/00	IT Corporation	<300		< 0.30	<0.30	<0.30	<0.60						
MW-28	12/01/00	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-28	05/10/01	IT Corporation	<300		< 0.30	<0.30	<0.30	<0.60		<5				
MW-28	11/08/01	IT Corporation	300		< 0.30	< 0.30	< 0.30	<0.60		<5				
MW-28	04/12/02	IT Corporation	<300		< 0.30	<0.30	<0.30	<0.60		<5				
MW-28	04/22/15	SGI	<100	420	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-29	05/21/98	BBC	84,700		313	46	314	366						
MW-29	11/05/98	GTI	28,600		87	<0.30	2.2	31						
MW-29	05/27/99	GTI	1,810		150	<0.60	160	23						
MW-29	11/18/99	IT Corporation	5,100		220	<0.30	190	21						
MW-29	05/17/00	IT Corporation	1,100		23	<0.30	35	7.6						
MW-29	11/30/00	IT Corporation	2,400		120	<0.30	160	4.4		<5				
MW-29	05/09/01	IT Corporation	<300		<0.30	<0.30	<0.30	<0.60		<5				
MW-29	11/07/01	IT Corporation	1,500		14	<0.30	3.7	2.1		8.3				
MW-29	02/01/02	Secor			100	7.3	160	990	<0.50	<0.50				
MW-29	04/11/02	IT Corporation	860		4.1	<0.30	4.3	12		<5				
MW-29	04/12/13	Parsons		2,200	<0.50	<0.50	0.64	1.19 J	<0.50	<0.50	<10	<2	<2	<2
MW-29	10/08/13	Parsons	570	2,900 HD	0.21 J	<0.50	0.75	1.4	<0.50	<0.50	8.7 J	<2	<2	<2
MW-29	04/17/14	Parsons	710 HD	3,300 HD	11	<0.50	0.75	1.5	<0.50	<0.50	9.4 J	<2	<2	<2
MW-29	10/31/14	SGI	700	3,200	6.4	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
MW-29	04/29/15	SGI	370	2,900	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	11	<2.0	<2.0	<2.0
MW-29	10/26/15	SGI	120	490	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10 <10	<2.0	<2.0 <2.0	<2.0
MW-29	04/14/16	SGI	<100	350	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0		<2.0		<2.0
DUP-6 (MW-29)	04/14/16	SGI	<100	360	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
MW-29	10/07/16	SGI	<100	250	<0.50	< 0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
DUP-6 (MW-29) MW-O-1	10/07/16 10/08/10	SGI Blaine Tech	<100 32.000	230	<0.50 3,700	<0.50 1.700	<0.50 1.100	<1.5 1.800	<0.50 <50	<1.0 60	<10 <500	<2.0 <50	<2.0 <50	<2.0 <50
MW-O-1	04/13/11	Blaine Tech	14,000		1,900	370	400	2,400	<20	13	<200	<20	<20	<20
MW-O-1	10/14/11	CH2M Hill	15,000		580	240	580	1.800	<20	<10	<200	<20	<20	26
MW-O-1	10/14/11	CHHL	4,500	8.800	570	160	94	540	<4	17	59	<4	<4	<4
MW-O-1	10/19/12	BT for CH2MHill	26.000	20.000	5.900	3.100	110	810	<100	280	<1.000	<100	<100	<100
MW-O-2	10/27/13	Blaine Tech	570	20,000	87	5.6	7.2	33	<100	81	33	3.3	<100	<1
MW-O-2	04/27/12	CH2M Hill	21.000	13.000	7.900	120	200	570	<100	160	<1.000	<100	<100	<100
MW-O-2	06/06/13	CHHL	10,000	7,000	5,400	<40	91	200	<80	190	<800	<80	<80	<80
MW-O-2	10/11/13	CHHL	43.000	4.800	17.000	710	530	1,500	<130	710	<1.300	<130	<130	<130
MW-O-2	04/17/14	CHHL	37.000	1,200	16.000	1,600	220	1,500	<100	900	2.100	<100	<100	<100
MW-SF-1	03/11/03	Geomatrix	1,700		1,400	16	76	54	<1	620				
MW-SF-1	08/01/03	Secor	13,000		4,200	240	420	1,020	<30	910				
MW-SF-1	10/07/03	Secor	15,000		4,800	170	390	1,060	<40	800				
MW-SF-1	04/22/04	Secor	27,000		11.000	510	480	970	<100	3.800				
MW-SF-1	11/03/04	Secor	34,000		13,000	400	690	1,170	<100	2,600				
MW-SF-1	05/06/05	Secor	12,000		3,900	220	240	340	<30	670				
MW-SF-1	11/02/05	Secor	15,000		5,600	340	330	1.050	<50	570				
MW-SF-1	05/09/06	Secor	20,000		8,200	730	570	1,050	<100	1,300				
MW-SF-1	12/08/06	Secor	19,000		7,000	640	590	960	<100	650				
MW-SF-1	03/13/07	Secor	10,000		3,400	320	390	790	<50	160				
MW-SF-1	05/04/07	Secor	11,000		3,400	110	430	229	<50	340				
MW-SF-1	08/30/07	Secor	16,000		6,000	210	550	290	<100	430				
MW-SF-1	11/14/07	Secor	16,000		6,100	180	540	213	<50	400				
MW-SF-1	02/21/08	Secor	23,000		11,000	280	530	500	<100	1,100				
MW-SF-1	04/16/08	Secor	21,000		11,000	350	440	550	<200	740				
MW-SF-1	08/14/08	Secor	18,000		8,200	240	390	253	<100	490				
MW-SF-1	10/16/08	Stantec	21,000		10,000	280	490	477	<100	770				
MW-SF-1	02/24/09	Blaine Tech	11,000		6,300	85	160	65	<50	420	<500			
MW-SF-1	04/20/09	Blaine Tech for AMEC	16,000		7,500	210	340	261	<100	340	<1,000	<100	<100	<100
MW-SF-1	07/22/09	Blaine Tech	12,000		6,300	110	180	89	<50	510	540	<50	<50	<50
MW-SF-1	10/23/09	Blaine Tech	21,000		11,000	110	350	63	<100	620	<1,000	<100	<100	<100
MW-SF-1	03/16/10	Blaine Tech	13,000		5,900	56	120	55	<50	650	<500	<50	<50	<50

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-SF-1	05/27/10	Blaine Tech	8,800		3,900	46	150	51	<40	140	<400	<40	<40	<40
MW-SF-1	07/13/10	Blaine Tech	8,600		4,000	41	64	<25	<50	350	<500	<50	<50	<50
MW-SF-1	10/07/10	Blaine Tech	10,000		5,200	58	67	<50	<100	440	<1,000	<100	<100	<100
MW-SF-1	01/12/11	Blaine Tech	15,000		8,500	<50	<50	<50	<100	650	<1,000	<100	<100	<100
MW-SF-1	04/13/11	Blaine Tech	16,000		7,800	62	97	93	<100	450	<1,000	<100	<100	<100
MW-SF-1	07/12/11	CH2M Hill	8,400		4,700	34	76	<38	<50	240	<500	<50	<50	<50
MW-SF-1	10/12/11	CH2M Hill	9,500		4,500	32	71	37	<50	180	<500	<50	<50	<50
MW-SF-1	01/10/12	CH2M Hill	15,000		7,300	94	140	140	<100	240	<1,000	<100	<100	<100
MW-SF-1	04/19/12	CH2M Hill	8,800	17,000	4,600	33	90	83	<50	110	<500	<50	<50	<50
MW-SF-1	10/18/12	CHHL	3,700	6,400	1,500	<10	15	<10	<20	45	<200	<20	<20	<20
MW-SF-1	01/15/13	CHHL	8,500	4,100	4,500	93	56	39	<50	110	<500	<50	<50	<50
MW-SF-1	10/07/16	BT for CH2MHill	55	1,200	<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<10	<1.0	<1.0	<1.0
MW-SF-2	10/05/10	Blaine Tech	110,000		21,000	18,000	1,200	7,100	<200	1,700	<2,000	<200	<200	<200
MW-SF-2	04/14/11	Blaine Tech	48,000		15,000	1,800	600	5,400	<200	930	<2,000	<200	<200	<200
MW-SF-2	10/13/11	CH2M Hill	72,000		18,000	9,600	660	5,100	<200	940	<2,000	<200	<200	<200
MW-SF-3	10/04/10	Blaine Tech	<500		32	10	<2.5	8.4	<5 -50	50	3,000	<5	<5	<5
MW-SF-3	04/29/11	Blaine Tech	15,000		5,200	590	140	520	<50	2,300	1,200	<50	<50	<50
MW-SF-3	10/14/11	CH2M Hill	9,500		4,300	<25	28	38	<50	98	<500	<50	<50	<50
MW-SF-3	11/03/15	BT for CH2MHill	280,000	240,000	11,000	18,000	1,200	28,000	<200	7,600	<2,000	<200	<200	<200
MW-SF-4 MW-SF-4	03/11/03 10/08/03	Geomatrix Secor	3,600 40.000		1,100	<13 1.900	180 990	120	<13 <40	750 530				
			-,		4,600	,		5,200						
MW-SF-4 MW-SF-4	02/21/08 04/16/08	Secor Secor	25,000 21.000		4,100 4.600	89 94	1,200 970	2,730 2.920	<40 <100	330 380				
MW-SF-4	08/14/08	Secor	20,000		4,800	43	1,100	770	<100 <50	260				
MW-SF-4	10/16/08	Stantec	17.000		3.700	43	1,100	1.196	<40	170				
MW-SF-4	02/23/09	Blaine Tech	20,000		6,400	92	1,100	1,196	<40 <50	950	<500			
MW-SF-4	05/28/10	Blaine Tech	17.000		7,200	39	370	250	<50 <50	440	<500 <500	120	<50	<50
MW-SF-4	07/14/10	Blaine Tech	13,000		4,400	37	450	360	<50 <50	320	<500 <500	64	<50 <50	<50 <50
MW-SF-4	10/07/10	Blaine Tech	30.000		8.900	<50	940	770	<100	620	<1.000	<100	<100	<100
MW-SF-4	01/12/11	Blaine Tech	20.000		8,500	<50	350	280	<100	350	<1,000	100	<100	<100
MW-SF-4	04/13/11	Blaine Tech	11.000		2,600	<15	320	297	<30	180	<300	<30	<30	<30
MW-SF-4	07/12/11	CH2M Hill	15,000		4,500	36	530	540	<50	220	<500	<50 <50	<50 <50	<50
MW-SF-4	01/10/12	CH2M Hill	22.000		4,900	<25	590	770	<50	160	<500 <500	<50 <50	<50	<50 <50
MW-SF-4	04/20/12	CH2M Hill	19,000	7.200	4,500	36	480	430	<50	460	<500 <500	<50 <50	<50 <50	<50 <50
MW-SF-4	10/19/12	CHHL	8.900	9,900	2,200	40	280	420	<20	160	410	<20	<20	<20
MW-SF-4	01/15/13	CHHL	13,000	3,700	5,000	46	660	300	<80	380	<800	<80	<80	<80
MW-SF-4	10/07/16	BT for CH2MHill	<500	4,700	<2.5	<2.5	<2.5	<2.5	<5.0	<2.5	<50	<5.0	<5.0	<5.0
MW-SF-5	10/07/16	Blaine Tech	540	4,700	110	1.1	<1	<1	<2	400	180	18	<2	<2
MW-SF-5	04/13/11	Blaine Tech	570		41	<2	<2	<2	<4	380	270	24	<4	<4
MW-SF-5	10/13/11	CH2M Hill	<500		6.9	<2.5	<2.5	<2.5	<5	240	100	11	<5	<5
MW-SF-5	10/31/14	BT for CH2MHill	<200	1,800	3.4	7.0	1.0	14	<2.0	17	70	<2.0	<2.0	<2.0
MW-SF-5	04/24/15	BT for CH2MHill	<500	1,200	190	<2.5	<2.5	<2.5	<5.0	16	<50	<5.0	<5.0	<5.0
MW-SF-5	10/27/15	BT for CH2MHill	270	370	13	0.52	<0.50	0.89	<0.50	10	35	2.0	<2.0	<2.0
MW-SF-6	10/08/10	Blaine Tech	59,000		15,000	7.200	940	4,300	<200	740	<2,000	<200	<200	<200
MW-SF-6	04/14/11	Blaine Tech	32,000		12,000	330	540	3,800	<100	810	<1,000	<100	<100	<100
MW-SF-6	10/13/11	CH2M Hill	40,000		14,000	420	780	3,600	<200	570	<2,000	<200	<200	<200
MW-SF-6	10/07/16	BT for CH2MHill	8,400	10,000	430	<5.0	35	640	<10	53	390	<10	<10	<10
MW-SF-9	03/11/03	Geomatrix	24,000		3,200	940	340	1,040	<25	1,600				
MW-SF-9	08/01/03	Secor	6,600		980	72	140	430	17	2,500				
MW-SF-9	10/07/03	Secor	5,800		340	8.8	82	92	<5	3,200				
MW-SF-9	05/04/05	Secor	5,700		730	73	130	190	<10	54				
MW-SF-9	11/03/05	Secor	<500		9.4	<2.5	<2.5	<2.5	<5	<2.5				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-SF-9	12/08/06	Secor	<500		35	<2.5	<2.5	3.6	<5	8.7				
MW-SF-9	11/14/07	Secor	110		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-SF-9	04/16/08	Secor	920		200	1.4	6.3	3.9	<1	16				
MW-SF-9	10/21/08	Stantec	350		10	<0.50	2.3	<0.50	<1	<0.50				
MW-SF-9	04/23/09	Blaine Tech for AMEC	430		44	<0.50	1.2	<0.50	<0.50	<0.50	<10	<1	<1	<1
MW-SF-9	10/22/09	Blaine Tech	2,400		1,300	<10	11	<10	<20	13	<200	<20	<20	<20
MW-SF-9	05/27/10	Blaine Tech	350		100	1.3	<1	<1	<2	<1	<20	<2	<2	<2
MW-SF-9	10/07/10	Blaine Tech	1,100		450	7.8	17	<2.5	<5	<2.5	<50	<5	<5	<5
MW-SF-9	04/13/11	Blaine Tech	310	2 200	36	<0.50	<0.50	1.2	<1	<0.50	<10	<1	<1	<1
MW-SF-9	04/19/12	CH2M Hill	480	3,300	160	<1	<1	<1 190	<2	<1 20	<20	2.2	<2	<2
MW-SF-9	06/06/13 10/11/13	CHHL CHHL	2,300 4.100	4,500 7.300	680 910	25 220	52 55	190 310	<10 <20	17	<100 <200	40 <20	<10 <20	<10 <20
MW-SF-9 MW-SF-9	04/14/16	BT for CH2MHill	2,300	5,100	910	1.8	64	170	<3	1.7	130	3.4	<3	<3
MW-SF-10	10/05/10	Blaine Tech	30.000	5,100	1,500	1,200	600	2,700	<30	31	<300	3.4 <30	<30	<30
MW-SF-10	04/14/11	Blaine Tech	31,000		520	68	410	6,500	<20	21	<200	<20	<20	<20
MW-SF-10	10/13/11	CH2M Hill	18.000		320	320	260	2,900	<20	<10	<200	<20	<20	<20
MW-SF-11	10/13/11	Blaine Tech	7,800		4,000	210	<15	110	<30	140	940	<30	<30	<30
MW-SF-11	04/29/11	Blaine Tech	16,000		10.000	60	95	140	<100	130	<1.000	<100	<100	<100
MW-SF-11	10/13/11	CH2M Hill	30,000		14,000	250	340	600	<200	<100	<2,000	<200	<200	<200
MW-SF-11	04/19/12	CH2M Hill	15,000	160	8,100	130	110	480	<100	100	<1,000	<100	<100	<100
MW-SF-11	10/18/12	CHHL	77,000	320	18,000	420	2,600	6,500	<200	<100	<2,000	<200	<200	<200
MW-SF-12	10/05/10	Blaine Tech	17,000		5.300	1.800	110	680	<50	2.200	880	<50	<50	<50
MW-SF-12	04/29/11	Blaine Tech	27,000		5,900	4,400	340	3,400	<50	2,200	<500	<50	<50	<50
MW-SF-12	10/13/11	CH2M Hill	110,000		24,000	18,000	1,000	6,400	<200	7,200	<2,000	<200	<200	<200
MW-SF-13	10/05/10	Blaine Tech	9,000		2,100	1,000	83	520	<20	680	280	61	<20	<20
MW-SF-13	04/29/11	Blaine Tech	3,400		1,000	64	20	189	<10	39	270	23	<10	<10
MW-SF-13	10/14/11	CH2M Hill	42,000		12,000	5,200	300	2,200	<200	580	<2,000	<200	<200	<200
MW-SF-13	10/07/16	BT for CH2MHill	5,300	4,400	<5.0	<5.0	200	340	<10	<5.0	<100	<10	<10	<10
MW-SF-14	10/08/10	Blaine Tech	30,000		10,000	300	900	1,400	<200	1,900	2,300	<200	<200	<200
MW-SF-14	04/29/11	Blaine Tech	18,000		12,000	84	130	150	<100	330	1,800	<100	<100	<100
MW-SF-14	10/13/11	CH2M Hill	<20,000		9,100	120	<100	660	<200	760	<2,000	<200	<200	<200
MW-SF-14	04/19/12	CH2M Hill	15,000	450	8,200	47	43	120	<50	220	630	<50	<50	<50
MW-SF-14	10/18/12	CHHL	9,800	200	5,100	24	<20	64	<40	58	<400	<40	<40	<40
MW-SF-14	04/24/15	BT for CH2MHill	510	3,300	100	13	<2.5	18	<5.0	21	<50	<5.0	<5.0	<5.0
MW-SF-14	10/27/15	BT for CH2MHill	270,000	440,000	8,700	18,000	2,800	19,000	<200	2,600	<2,000	<200	<200	<200
MW-SF-14	04/15/16	BT for CH2MHill	370	17,000	4.7	<0.50	<0.50	39	<0.50	63	500	<1	<1	<1
MW-SF-15	10/05/10	Blaine Tech	8,600		1,900	700	63	500	<20	1,000	9,200	37	<20	<20
MW-SF-15	04/29/11	Blaine Tech	10,000		5,500	230	100	361	<40	1,200	3,400	62	<40	<40
MW-SF-15	10/14/11	CH2M Hill	35,000		11,000	860	210	1,700	<200	780	2,300	<200	<200	<200
MW-SF-15	10/07/16	BT for CH2MHill	<500	16,000	7.1 1,600	<2.5 150	<2.5 39	<2.5 160	<5.0 <20	26 170	720 1,800	12 39	<5.0 <20	<5.0 <20
MW-SF-16 MW-SF-16	10/04/10 04/29/11	Blaine Tech Blaine Tech	4,100 5,900		2,400	150 210	39 150	160 563	<20 <20	210	1,800 370	39	<20 <20	<20 <20
MW-SF-16	10/14/11	CH2M Hill	7,900		2,400	130	140	380	<20 <50	200	<500	< 50	<20 <50	<20 <50
MW-SF-16	10/14/11	BT for CH2MHill	100.000	110.000	7.400	7.800	1,000	17.000	<200	350	<2,000	<200	<200	<200
MW-SF-16	04/24/15	BT for CH2MHill	30,000	250,000	1,400	2,300	570	4,100	<40	170	<400	<40	<40	<40
MW-SF-16	10/27/15	BT for CH2MHill	3,000	490	750	39	35	160	<20	41	<200	37	<20	<20
PO-7	11/08/05	BT for Parsons	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
PW-1	11/27/96	Terra Services			<1	2.2	<1	2.0	270	<10				
PW-1	07/15/97	Terra Services	190	<500	<0.50	<0.50	<0.50	<1	180	<5				
PW-1	01/05/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	68	<5				
PW-1	05/22/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	38	<0.50				
PW-1	11/13/98	Alton Geoscience	<300		<0.50	<0.50	<0.50	<0.50	73	8.1				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
PW-1	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	5.7	<0.50				
PW-1	11/17/99	Secor	<300		<0.50	<0.50	<0.50	<0.50	2.5	<0.50				
PW-1	05/17/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.5	<0.50				
PW-1	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.70	<0.50				
PW-1	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	<0.50				
PW-1	11/07/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	1.3	<0.50				
PW-1	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	10/23/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	10/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	11/04/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1 PW-1	05/05/05	Secor	<50 <50		<0.50	<0.50	<0.50	<0.50	2.1	<0.50				
PW-1	05/09/06	Secor			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
	12/07/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1 PW-1	05/05/07	Secor Secor	<50 <50		<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50				
PW-1	11/14/07 04/18/08	Secor	<50 <50		<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<0.50				
PW-1	11/21/08	Stantec	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-1	04/20/09	Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	 <1	 <1	<1
PW-1	10/21/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-1	05/26/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-1	10/06/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-1	04/12/11	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-1	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-2	11/25/96	Terra Services			<0.50	<0.50	<0.50	<1.5	76	3.3				
PW-2	07/14/97	Terra Services	140	<500	<0.50	<0.50	<0.50	<1	160	<5				
PW-2	01/06/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	82	<5				
PW-2	05/22/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	37	0.90				
PW-2	08/25/98	Geomatrix	<300		<0.50	<0.50	<0.50	<0.50	6.8	<0.50				
PW-2	11/16/98	Alton Geoscience	<300		16	18	2.0	11	35	58				
PW-2	02/03/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<1	79	2.4				
PW-2	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	3.4	<0.50				
PW-2	08/10/99	Alton Geoscience	<500	<1,000	< 0.50	<1	<1	<1	32	<1				
PW-2	11/19/99	Secor	<300		< 0.50	<0.50	<0.50	<0.50	45	0.70				
PW-2	02/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	58	<0.50				
PW-2	05/16/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	50	0.80				
PW-2	08/29/00	Secor	<300		< 0.50	< 0.50	< 0.50	< 0.50	56	0.60				
PW-2	11/29/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	35	0.60				
PW-2	02/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	28	0.80				
PW-2	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	14	<0.50				
PW-2	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	24	<0.50				
PW-2	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	23	<0.50				
PW-2	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	04/09/02	Secor	<300		<0.50	<0.50	<0.50	1.7	19	<0.50				
PW-2	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	01/16/03	Geomatrix	<300											
PW-2	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	07/07/03	Geomatrix			<0.50	<1	<1	<1	<0.50	<1				
PW-2	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	8.8	<0.50				
PW-2	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	18	0.56				
PW-2	07/08/04	Geomatrix	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
PW-2	11/03/04	Secor	83		<0.50	<0.50	<0.50	<0.50	52	1.5				
PW-2	05/06/05	Secor	110		<0.50	<0.50	<0.50	<0.50	70	6.2				
PW-2	11/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	05/04/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	6.8	<0.50				
PW-2	05/02/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	0.57	<0.50				
PW-2	11/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-2	04/17/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3 PW-3	11/25/96 07/14/97	Terra Services Terra Services	140	<500	<0.50 5.9	<0.50 2.4	<0.50 2.9	<1.5 8.4	110 67	<5 <5				
PW-3	01/08/98		<100	<500 <500	1.2		<0.50	8.4 <1.5	46	<5 <5				
PW-3	05/22/98	Terra Services Terra Services	<300	< 500	< 0.50	1.1 <0.50	<0.50	<1.5	46	1.6				
PW-3	08/25/98	Geomatrix	<300		<0.50	<0.50	<0.50	<0.50	35	<0.50				
PW-3	11/16/98	Alton Geoscience	<300		<0.50	4.5	0.60	3.6	21	<0.50				
PW-3	02/03/99	Alton Geoscience	<500	<500	<0.50	< 0.50	<0.50	<1	25	<0.50				
PW-3	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	21	<0.50				
PW-3	08/10/99	Alton Geoscience	<500	<1,000	<0.50	<1	<1	<1	13	<1				
PW-3	11/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	3.5	<0.50				
PW-3	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	4.4	<0.50				
PW-3	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	2.7	<0.50				
PW-3	11/06/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	4.8	<0.50				
PW-3	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	04/09/02	Secor	<300		<0.50	<0.50	< 0.50	< 0.50	3.0	<0.50				
PW-3	10/24/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	01/16/03	Geomatrix	<300											
PW-3	04/08/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	0.73	<0.50				
PW-3	07/07/03	Geomatrix			<0.50	<1	<1	<1	<0.50	<1				
PW-3	10/07/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	2.6	<0.50				
PW-3	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	07/13/04	Geomatrix	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	11/03/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	0.53	<0.50				
PW-3	11/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	05/03/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	1.1	<0.50				
PW-3 PW-3	05/02/07	Secor	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50				
PW-3 PW-3	11/15/07 04/17/08	Secor Secor	<50 <50		<0.50	<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50				
PW-3	10/17/08	Stantec	<50 <50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PW-3	04/20/09	Blaine Tech for AMEC	<50 <50		<0.50	<0.50	<0.50	<0.50	0.64	<0.50	<10	<1	<1	<1
PW-3	10/21/09	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	0.86	<0.50	<10	<1	<1	<1
PW-3	05/26/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	1.3	<0.50	<10	<1	<1	<1
PW-3	10/06/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
PW-3	04/12/11	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	1.4	<0.50	<10	1.0	<1	<1
PW-3	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
PW-3	10/29/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
PW-3	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
PW-3	10/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
PW-3	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
PW-3	10/05/16	BT for CH2MHill	<50	<50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
PZ-1	11/27/96	Terra Services			79	16	140	49	15	610				
PZ-1	07/16/97	Terra Services	220	<500	<0.50	<0.50	13	<1	3.0	480				
PZ-1	01/06/98	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1.5	1.3	17				
PZ-1	05/26/98	Terra Services	400		<5	<5	<5	<10	<5	370				
PZ-1	11/16/98	Alton Geoscience	516		110	67	8.0	38	7.2	320				
PZ-1	05/06/99	Alton Geoscience	2,000	<500	500	<2	13	120	<5	230				
PZ-1	11/17/99	Secor	<300		<2.5	<2.5	<2.5	<2.5	<2.5	210				
PZ-1	05/17/00	Secor	350		51	<2.5	2.7	<2.5	<2.5	250				
PZ-1	11/29/00	Secor	390		79	<2.5	<2.5	<2.5	<2.5	260				
PZ-1 PZ-1	05/08/01	Secor	<300 550		15	<0.50	<0.50	<0.50	<0.50	330 470				
	11/06/01	Secor			8.4	<0.50	<0.50	0.70	1.4					
PZ-1	04/09/02	Secor	<300		<2.5	<2.5	<2.5	<2.5	<2.5	270				
PZ-2 PZ-2	04/11/13	CHHL	210 400	940	9.9	<1	13	<1	<2 <1	<1 <0.50	<20	<2	<2 <1	<2
PZ-2 PZ-2	10/11/13 04/17/14	CHHL CHHL	330	580 280	9.0 2.0	<0.50 <0.50	1.3 <0.50	2.0 2.6	<1	0.60	23 25	<1 <1	<1	<1 <1
PZ-2 PZ-2	04/17/14	BT for CH2MHill	250	280 810	2.0 <1.0	<1.0	<0.50 2.5	13	<2.0	<1.0	29	<2.0	<2.0	<2.0
PZ-2 PZ-2	10/27/15	BT for CH2MHill	250	460	1.0 1.2	<0.50	1.2	3.8	<2.0 <0.50	0.56	42	<1.0	<2.0 <1.0	<2.0 <1.0
PZ-2 PZ-2	10/27/15	BT for CH2MHill	210	680	1.5	<0.50	1.2	3.6	<0.50	0.56	42	<1.0	<1.0	<1.0
PZ-2	04/13/16	BT for CH2MHill	2,300	1,300	110	20	120	390	<2	1.3	<20	<2.0	<2.0	<2.0
DUP-2 (PZ-2)	04/13/16	BT for CH2MHill	2,300	890	120	21	130	390	<2	1.3	<20	<2.0	<2.0	<2.0
PZ-2	10/06/16	BT for CH2MHill	410	550	3.5	0.84	8.2	22	<0.50	1.7	23	<1.0	<1.0	<1.0
DUP-6 (PZ-2)	10/06/16	BT for CH2MHill	370	700	3.1	0.80	7.0	20	<0.50	1.6	21	<1.0	<1.0	<1.0
PZ-3	04/22/04	BT for Parsons		700	6,300	<1500	4.100	24.000	~0.50 	<25000				~1.0
PZ-3	04/22/09	BT for Parsons			<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10
PZ-3	04/15/10	BT for Parsons			2.2	<0.50	<0.50	<0.50	<0.50	0.74	<10	<2	<2	<2
PZ-3	10/08/10	BT for Parsons			0.60				<0.50	0.69	<10			
PZ-3	04/14/11	BT for Parsons			1.3	<0.50	<0.50	<0.50	<0.50	0.71	<10	<2	<2	<2
PZ-3	10/14/11	Parsons			<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
PZ-3	04/19/12	Parsons			0.68	<0.50	<0.50	0.26 J	<0.50	0.52	6.6 J	<2	<2	<2
PZ-3	10/19/12	Parsons			280	<0.50	150	362	<0.50	<0.50	<10	<2	<2	<2
PZ-3	10/09/13	Parsons	2.100	10.000 HD	53	0.25 J	44	95	< 0.50	1.6	<10	<2	<2	<2
PZ-3	04/18/14	Parsons	5,300 HD	6,900 HD	420	<0.50	7.4	1.9	< 0.50	1.2	18	<2	<2	<2
PZ-3	11/03/14	SGI	1,300	2,700	52	< 0.50	1.4	<1.5	< 0.50	3.7	12	<2.0	<2.0	<2.0
PZ-3	04/22/15	SGI	3,000	3,600	59	<0.50	1.2	<1.0	<0.50	2.8	<10	<2.0	<2.0	<2.0
PZ-5	10/07/03	Secor	6,900		11	<10	<10	<10	<20	9,100				
PZ-5	05/05/05	Secor	<50		0.87	<0.50	<0.50	<0.50	<0.50	43				
PZ-5	11/02/05	Secor	1,200		<2.5	<2.5	<2.5	<2.5	<5	2,100				
PZ-5	02/28/06	Secor	160		<0.50	<0.50	<0.50	<0.50	<1	380				
PZ-5	05/04/06	Secor	1,200		<2	<2	<2	<2	<4	1,900				
PZ-5	09/19/06	Secor	480		<1	<1	<1	<1	<2	1,200				
PZ-5	12/07/06	Secor	480		<1.5	<1.5	<1.5	<1.5	<3	960				
PZ-5	03/13/07	Secor	320		<1	<1	<1	<1	<2	690				
PZ-5	05/04/07	Secor	400		<0.50	<0.50	<0.50	<0.50	<1	610				
PZ-5	08/29/07	Secor	380		<1	<1	<1	<1	<2	480				
PZ-5	11/15/07	Secor	370		<0.50	<0.50	<0.50	<0.50	<1	470				
PZ-5	02/20/08	Secor	940		<1	<1	<1	<1	<2	750				
PZ-5	04/15/08	Secor	750		<1	<1	<1	<1	<2	740				
PZ-5	08/12/08	Secor	1,500		<2	<2	<2	<2	<4	2,000				
PZ-5	10/16/08	Stantec	<3,000		22	<15	<15	<15	<30	1,900				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)
PZ-5	02/24/09	Blaine Tech	1,000		61	<1	<1	<1	<2	1,200	37,000			
PZ-5	02/24/09	Blaine Tech	1,200		250	<2	5.7	<2	<4	1,200	35,000	<4	<4	<4
PZ-5	04/23/09	Blaine Tech for AMEC	1,200		250	<2	5.7	<2	<4	1,200	35,000	<4	<4	<4
PZ-5	07/22/09	Blaine Tech	3,800		2,000	20	98	77	<5	800	54,000	<5	<5	<5
PZ-5 PZ-5	10/23/09	Blaine Tech	2,900		1,100	18	53 33	69 9.4	<10	500	50,000	<10	<10 <4	<10
PZ-5 PZ-5	03/16/10 04/16/10	Blaine Tech Blaine Tech	1,700 1,600		370 110	2.1 <2.5	9.7	4.6	<4 <5	350 340	58,000 91.000	<4 <5	<4 <5	<4 <5
PZ-5 PZ-5	04/16/10	Blaine Tech	3.200.000 J		1.100	<2.5 <25	66	4.6 <25	<50	340	69.000	<50	<50	<50
PZ-5 PZ-5	03/27/10	Blaine Tech	4,600		1,100	<10	180	<10	<20	530	82,000	<20	<20	<20
PZ-5	08/12/10	Blaine Tech	9.100		4,400	<5	340	42	<10	490	64.000	<10	<10	<10
PZ-5	09/20/10	Blaine Tech	8.500		4,200	2.8	110	12	<4	370	43.000	<4	<4	<4
PZ-5	10/07/10	Blaine Tech	6,300		3,100	<20	56	<20	<40	150	40,000	<40	<40	<40
PZ-5	11/16/10	Blaine Tech	3,400		1,600	<10	10	15	<20	130	20,000	<20	<20	<20
PZ-5	12/22/10	Blaine Tech	3,400		1,600	<10	<10	<10	<20	100	22,000	<20	<20	<20
PZ-5	01/12/11	Blaine Tech	<4,000		1,500	<5	<5	<5	<10	130	38,000	<10	<10	<10
PZ-5	02/24/11	Blaine Tech	1,400		390	<2	<2	3.8	<4	84	27,000	<4	<4	<4
PZ-5	03/23/11	Blaine Tech	1,100		210	<1	<1	2.4	<2	140	29,000	<2	<2	<2
PZ-5	04/13/11	Blaine Tech	830		59	<1	<1	<1	<2	120	28,000	<2	<2	<2
PZ-5	05/13/11	Blaine Tech	2,000		710	4.7	25	26	<5	140	34,000	<5	<5	<5
PZ-5	06/22/11	Blaine Tech	4,500		960	9.0	30	80	<10	100	33,000	<10	<10	<10
PZ-5	07/12/11	CH2M Hill	3,300		1,500	16	50	77	<20	110	34,000	<20	<20	<20
PZ-5	08/19/11	CH2M Hill	2,600		750	9.0	63	45	<10	150	47,000	<10	<10	<10
PZ-5	09/22/11	CH2M Hill	4,700		1,600	33	100	200	<20	200	64,000	<20	<20	<20
PZ-5	10/14/11	CH2M Hill	4,600		1,500	31	130	190	<10	170	58,000	<10	<10	<10
PZ-5	11/28/11	CH2M Hill	4,600		1,700	18	150	140	<20	220	61,000	<20	<20	<20
PZ-5	12/21/11	CH2M Hill	5,900		2,200	57	160	390	<20	190	61,000	<20	<20	<20
PZ-5	01/10/12	CH2M Hill	5,400		2,000	44	140	330	<20	200	38,000	<20	<20	<20
PZ-5	02/23/12	CH2M HILL	8,400		3,300	86	280	760	<40	370	29,000	<40	<40	<40
PZ-5	03/28/12	CH2M HILL	4,100	270	1,800	20	100	170	<20	150	29,000	<20	<20	<20
PZ-5	04/19/12	CH2M Hill	2,900	260	1,300	<10	97	20	<20	140	58,000	<20	<20	<20
PZ-5	05/25/12	CH2M HILL	7,500	340	3,700	42	210	250	<30	240	68,000	<30	<30	<30
PZ-5 PZ-5	06/15/12 07/10/12	CH2M HILL	8400 J	440 360	4,500	60 31	190 150	320 200	<100 <20	500 700	75,000 66.000	<100 <20	<100 <20	<100 <20
PZ-5 PZ-5	08/29/12	CHHL CHHL	7,600 4,500	900	3,400 2.300	17	110	66	<20	1.000	140.000	<20	<20 <20	<20 <20
PZ-5	09/26/12	CHHL	6,200	390	2,000	25	160	110	<20	1,500	67,000	<20	<20	<20
PZ-5	10/18/12	CHHL	9,900	520	3.300	55	200	180	<80	5.600	83.000	<80	<80	<80
PZ-5	11/29/12	CHHL	8,300	420	3,000	35	200	69	<40	3,200	97.000	<40	<40	<40
PZ-5	12/26/12	CHHL	5,200	480	2.600	18	160	55	<5	3,300	130.000	<5	<5	<5
PZ-5	01/15/13	CHHL	9.400	1,400	3,900	41	200	100	<50	4,800	100,000	<50	<50	<50
PZ-5	02/20/13	CHHL	12,000	1,400	5,400	67	310	310	<100	8,600	110,000	<100	<100	<100
PZ-5	04/11/13	CHHL	10,000	2,300	4,100	37	300	140	<40	4,800	83,000	<40	<40	<40
PZ-5	10/11/13	CHHL	49,000	6,200	11,000	<100	590	250	<200	32,000	210,000	<200	<200	<200
PZ-5	04/16/14	CHHL	250,000	3,700	70,000	<200	5,800	200	<400	150,000	2,800,000	<400	<400	<400
PZ-5	10/30/14	BT for CH2MHill	16,000	6,500	5,600	<50	410	<0.50	<100	440	110,000	<100	<100	<100
PZ-5	10/30/14	BT for CH2MHill	16,000	4,000	5,600	<50	420	<0.50	<100	440	110,000	<100	<100	<100
PZ-5	04/23/15	BT for CH2MHill	3,100	2,100	1,100	<5.0	120	18	<10	150	64,000	<10	<10	<10
PZ-5	04/23/15	BT for CH2MHill	2,700	2,100	940	<2.5	99	23	<5.0	140	63,000	<5.0	<5.0	<5.0
PZ-5	10/26/15	BT for CH2MHill	1,200	1,100	<1.0	<1.0	<1.0	<1.0	<2.0	29	46,000	<2.0	<2.0	<2.0
PZ-5	10/26/15	BT for CH2MHill	1,200	1,000	<1.0	<1.0	<1.0	<1.0	<2.0	31	39,000	<2.0	<2.0	<2.0
PZ-5	04/14/16	BT for CH2MHill	860	400	<0.50	<0.50	<0.50	<0.50	<0.50	7.6	72,000	<1.0	<1.0	<1.0
DUP-3 (PZ-5)	04/14/16	BT for CH2MHill	810	830	<0.50	<0.50	<0.50	<0.50	<0.50	7.6	66,000	<1.0	<1.0	<1.0
PZ-5	10/06/16	BT for CH2MHill	1,200	970	<1.0	<1.0	<1.0	1.4	<2.0	7.2	110,000	<2.0	2.7	<2.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	TBA	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DUP-5 (PZ-5)	10/06/16	BT for CH2MHill	950	1,100	<1.0	<1.0	<1.0	0.86	<2.0	6.5	130,000	<2.0	2.5	<2.0
PZ-6	11/30/00	Secor	<300		<0.50	0.50	<0.50	<0.50	<0.50	<0.50				
PZ-6	05/08/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-6	07/08/03	Geomatrix			<0.50	<1	<1	<1	<0.50	<1				
PZ-6	04/27/04	Geomatrix	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-6	07/08/04	Geomatrix	<50		<0.50	< 0.50	< 0.50	<0.50	0.50	<0.50				
PZ-7A	06/13/03	Secor	340		<0.50	<0.50	<0.50	<0.50	<1	660				
PZ-7A	09/24/03	Secor	160		<0.50	<0.50	<0.50	<0.50	<0.50	390				
PZ-7A	10/10/03	Geomatrix	240		<0.50	< 0.50	< 0.50	<0.50	<0.50	340				
PZ-7A	08/02/05	Secor			<0.50	< 0.50	< 0.50	<0.50	<0.50	4.8				
PZ-7B	06/13/03	Secor	98		<0.50	< 0.50	< 0.50	< 0.50	0.51	51				
PZ-7B	09/24/03	Secor	61		<0.50	<0.50	<0.50	<0.50	<0.50	67				
PZ-7B	10/10/03	Geomatrix	90		<0.50	< 0.50	< 0.50	<0.50	<0.50	2.3				
PZ-7B	08/02/05	Secor			<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50				
PZ-8A	06/13/03	Secor	<50		<0.50	< 0.50	< 0.50	< 0.50	<0.50	12				
PZ-8A	09/24/03	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	1.7				
PZ-8A	10/10/03	Geomatrix	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	2.8				
PZ-8A	08/02/05	Secor			<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
PZ-8A	12/06/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-8B	06/13/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	31				
PZ-8B	09/24/03	Secor	86		<0.50	<0.50	<0.50	<0.50	<0.50	180				
PZ-8B	10/10/03	Geomatrix	310		< 0.50	< 0.50	< 0.50	< 0.50	<1	440				
PZ-8B	08/02/05	Secor			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
PZ-8B	12/06/06	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
PZ-9A	06/13/03	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50				
PZ-9A	09/24/03	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
PZ-9A	10/10/03	Geomatrix	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
PZ-9A	08/02/05	Secor			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
PZ-9B	06/13/03	Secor	75		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	50				
PZ-9B	09/24/03	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	7.9				
PZ-9B	10/10/03	Geomatrix	<50		<0.50	<0.50	<0.50	<0.50	<0.50	3.9				
PZ-9B	08/02/05	Secor			<0.50	<0.50	<0.50	< 0.50	< 0.50	1.2				
PZ-10	08/01/03	Secor	6,300		710	130	150	890	<10	47				
PZ-10	10/07/03	Secor	6,200		1,000	21	230	600	<10	55				
PZ-10	01/27/04	Secor	3,100		560	5.4	63	201	<5	28				
PZ-10	04/22/04	Secor	11,000		2,100	29	470	1,490	<20	110				
PZ-10	07/19/04	Secor	4,800		890	<5	210	278	<10	45				
PZ-10	11/03/04	Secor	4,600		920	9.1	280	580	<10	50				
PZ-10	02/03/05	Secor	1,000		250	1.4	34	108	<2	42				
PZ-10	05/04/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-10	08/01/05	Secor	<50		0.71	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-10	11/02/05	Secor	<100		<0.50	<0.50	<0.50	<0.50	<1	<0.50				
PZ-10	02/27/06	Secor	<200		<1	<1	<1	<1	<2	6.1				
PZ-10	05/09/06	Secor	<1000		5.1	<5	<5	<5	<10	36				
PZ-10	09/20/06	Secor	<200		<1	<1	<1	<1	<2	3.6				
PZ-10	12/06/06	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	5.5				
PZ-10	03/13/07	Secor	<500		<2.5	<2.5	<2.5	<2.5	<5	<2.5				
PZ-10	05/03/07	Secor	<1000		6.1	<5	<5	<5	<10	<5				
PZ-10	08/30/07	Secor	<200		<1	<1	<1	<1	<2	<1				
PZ-10	11/14/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
PZ-10	02/21/08	Secor	<200		65	<1	3.1	9.4	<2	<1				
PZ-10	04/16/08	Secor	950		360	5.0	20	85	<5	11				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
PZ-10	10/16/08	Stantec	<200		18	<1	<1	<1	<2	1.7				
PZ-10	04/20/09	Blaine Tech for AMEC	560		26	<1	3.2	<1	<2	12	38	5.2	<2	<2
PZ-10	07/21/09	Blaine Tech	<200		1.4	<1	<1	<1	<2	9.6	55	3.1	<2	<2
PZ-10	10/22/09	Blaine Tech	<200		<1	<1	<1	<1	<2	4.4	30	<2	<2	<2
PZ-10	05/27/10	Blaine Tech	<100		0.92	<0.50	<0.50	<0.50	<1	1.4	<10	<1	<1	<1
PZ-10	10/07/10	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<1	<0.50	<10	<1	<1	<1
PZ-10	04/13/11	Blaine Tech	<200		2.8	<1	<1	<1	<2	<1	<20	2.2	<2	<2
PZ-10	04/19/12	CH2M Hill	<200	570	4.9	<1	<1	<1	<2	<1	39	3.4	<2	<2
PZ-10	10/17/12	CHHL	<500	970	32	<2.5	<2.5	<2.5	<5	<2.5	<50	6.4	<5	<5
PZ-10	10/26/15	BT for CH2MHill	340	1,200 HD	<1.5	<1.5	<1.5	6.2	<3.0	<1.5	140	<3.0	<3.0	<3.0
PZ-10	04/14/16	BT for CH2MHill	<200	240	<1	<1	<1	<1	<2	<1	<20	<2.0	<2.0	<2.0
TF-8	09/18/03	BT for Parsons			1.2 3.2	<0.50	0.77 <0.50	2.7	<0.50	24 46				
TF-8	02/21/04 10/10/13	BT for Parsons	<100	 490 HD	<0.50	<0.50 <0.50	<0.50	1.4 <0.50	<0.50	0.53	 <10	<2	 <2	 <2
TF-8	04/18/14	Parsons	140 HD	490 HD 450 HD	<0.50	<0.50	<0.50	<0.50	<0.50	0.53	<10	<2	<2	<2 <2
TF-8		Parsons				<0.50	<0.50 <0.50		<0.50 <0.50		<10	<2.0	<2.0	<2.0
TF-8	10/29/14 04/29/15	SGI SGI	<100 <100	1,000 1,100	<0.50 <0.50	<0.50	<0.50	<1.5 <1.0	<0.50	<2.0 <2.0	<10	<2.0	<2.0	<2.0
TF-8	10/23/15	SGI	<100	830	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
TF-8	10/23/15	SGI	<100	930	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
TF-8	04/12/16	SGI	<100	1.000	0.52	<0.50	1.2	4.1	<0.50	1.7	<10	<2.0	<2.0	<2.0
DUP-3 (TF-8)	04/12/16	SGI	<100	640	< 0.50	<0.50	1.2	3.9	<0.50	1.7	<10	<2.0	<2.0	<2.0
TF-8	10/10/16	SGI	<100	770	<0.50	<0.50	<0.50	<1.5	<0.50	1.2	<10	<2.0	<2.0	<2.0
DUP-7 (TF-8)	10/10/16	SGI	<100	800	<0.50	<0.50	<0.50	<1.5	<0.50	1.3	<10	<2.0	<2.0	<2.0
TF-9	10/10/13	Parsons	960 HD	2.200 HD	2.1	0.27 J	0.80	0.30	<0.50	< 0.50	32	<2	<2.0	<2.0
TF-9	04/18/14	Parsons	3.400 HD	2,900 HD	3.6	0.27 J	3.1	8.1	<0.50	<0.50	25	<2	<2	<2
TF-9	10/31/14	SGI	1,100	1,300	6.0	<0.50	0.84	0.69	<0.50	<2.0	22	<2.0	<2.0	<2.0
TF-14	09/18/03	BT for Parsons			210	<2.5	62	89	<2.5	<2.5		-2.0		-2.0
TF-14	02/21/04	BT for Parsons			370	<1	130	126		1.2				
TF-16	04/14/03	GTI			24	5.0	15	17		9.5				
TF-16	09/18/03	BT for Parsons			280	8.3	24	211	<0.50	9.1				
TF-16	10/11/03	BT for Parsons			150	7.0	27	91		<25				
TF-16	02/21/04	BT for Parsons			120	2.4	23	89		5.6				
TF-16	04/21/04	BT for Parsons			200	30	40	320		4.6				
TF-16	11/04/04	BT for Parsons			180	4.0	20	320		<10				
TF-16	05/06/05	BT for Parsons			43	10	4.6	73		<25				
TF-16	11/08/05	BT for Parsons			25	0.86	3.4	20		8.5				
TF-16	05/04/06	BT for Parsons			52	0.89	10	49		<5				
TF-16	12/08/06	BT for Parsons			28	<0.50	1.5	3.0		<5				
TF-16	05/04/07	BT for Parsons			520	<2.5	5.4	10		<25				
TF-16	11/15/07	BT for Parsons			450	<0.50	<0.50	<1		9.3				
TF-16	04/17/08	BT for Parsons			570	1.3	3.2	4.1		<10				
TF-16	10/16/08	BT for Parsons			330	<2.5	<2.5	<2.5	<2.5	6.3	<50	<10	<10	<10
TF-16	04/24/09	BT for Parsons			24	<0.50	<0.50	<0.50	<0.50	4.1	11	<2	<2	<2
TF-16	10/26/09	BT for Parsons			7.6	<0.50	0.34 J	<0.50	<0.50	3.9	11	<2	<2	0.35 J
TF-16	04/15/10	BT for Parsons			10	<0.50	0.38 J	<0.50		3.5	8.2 J	<2	<2	0.42 J
TF-16	04/15/11	BT for Parsons												
TF-16	04/22/11	BT for Parsons			40	<0.50	1.1	0.80	<0.50	3.4	11	<2	<2	0.39 J
TF-16	04/19/12	Parsons	2,100		10	<0.50	0.83	0.67 J	<0.50	3.4	17	<2	<2	0.67 J
TF-16	04/11/13	Parsons	1,200 b	2,500 b	180	<0.50	1.5	1.08 J	<0.50	4.8	6 J	<2	<2	<2
TF-16	10/08/13	Parsons	860 HD	2,300 HD	170	<0.50	1.1	0.58	<0.50	4.2	8.5 J	<2	<2	0.64 J
TF-16	04/17/14	Parsons	6,000 HD	7,600 HD	740	3.0	31	110	<0.50	4.6	8.2 J	<2	<2	0.98 J
TF-17	10/09/13	Parsons	18,000 HD	32,000 HD	33	<2.5	<2.5	<2.5	<2.5	<2.5	<50	<10	<10	<10

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µq/L)	(µg/L)	(µg/L)	(µq/L)	(µq/L)	(µg/L)	(µg/L)	(µq/L)
TF-17	04/17/14	Parsons	8,900 HD	14,000 HD	13	<2.5	<2.5	<2.5	<2.5	2.7	<50	<10	<10	<10
TF-17	11/03/14	SGI	2,900	7,100	68	2.3	48	228	<0.50	2.8	<10	<2.0	<2.0	<2.0
TF-21	04/10/03	GTI			267	1.6	8.1	9.8		<3				
TF-21	09/18/03	BT for Parsons			560	<5	5.6	<5	<5	<5				
TF-21	10/08/03	BT for Parsons			390	<0.60	4.2	<0.60		<10				
TF-21	02/21/04	BT for Parsons			820	<2.5	<2.5	<2.5		3.6				
TF-21	04/21/04	BT for Parsons			550	<1	1.6	<1		2.7				
TF-21	11/04/04	BT for Parsons			10	<0.30	<0.30	1.2		<5				
TF-21 TF-21	05/05/05 11/05/05	BT for Parsons			190 140	13 0.61	45 3.7	310 39		<100 6.1				
TF-21	05/03/06	BT for Parsons			140	4.3	3.7	10						
TF-21	12/06/06	BT for Parsons BT for Parsons			44	4.3 <0.50	<0.50	5.0		5.1 <5				
TF-21	05/04/07	BT for Parsons			80	0.93	0.86	2.2		7.2				
TF-21	11/16/07	BT for Parsons			170	<0.50	<0.50	<1		<5				
TF-21	04/17/08	BT for Parsons			190	<0.50	4.4	2.4		<5				
TF-21	10/15/08	BT for Parsons			37	<0.50	<0.50	<0.50	<0.50	1.0	23	<2	<2	<2
TF-21	04/24/09	BT for Parsons			40	<0.50	<0.50	<0.50	<0.50	<0.50	18	<2	<2	<2
TF-21	10/26/09	BT for Parsons			50	<0.50	0.46 J	<0.50	<0.50	0.74	19	<2	<2	<2
TF-21	04/16/10	BT for Parsons			120	0.37 J	1.1	1.2		<0.50	15	<2	<2	<2
TF-21	04/15/11	BT for Parsons												
TF-21	04/22/11	BT for Parsons			160	<0.50	1.4	3.1	< 0.50	0.71	20	<2	<2	<2
TF-21	04/20/12	Parsons	1,600		280	0.27 J	1.7	0.88 J	<0.50	0.99	24	<2	<2	<2
TF-21	04/12/13	Parsons	590 b	2,700	130	<0.50	0.50	0.24 J	< 0.50	4.1	13	<2	<2	<2
TF-21	10/08/13	Parsons	810 HD	2,200 HD	320	<0.50	0.59	0.24	<0.50	7.2	17	<2	<2	<2
TF-21	04/17/14	Parsons	1,100 HD	2,000 HD	190	0.26 J	0.83	0.48	< 0.50	16	20	<2	<2	<2
TF-21	10/30/14	SGI	1,500	1,700	120	<0.50	1.2	0.54	<0.50	2.2	<10	<2.0	<2.0	<2.0
TF-21	04/29/15	SGI	570	1,700	16	<1.0	<1.0	<2.0	<1.0	<4.0	<20	<4.0	<4.0	<4.0
TF-21	10/11/16	SGI	1,300	7,800	8.5	< 0.50	< 0.50	<1.5	< 0.50	<1.0	<10	<2.0	<2.0	<2.0
TF-24	10/10/13	Parsons	<100	1,500 HD	<0.50	<0.50	<0.50	<0.50	<0.50	0.4 J	<10	<2	<2	<2
TF-24	04/18/14	Parsons	<100	730 HD	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
TF-24	10/29/14	SGI	<100	1,900	<0.50	<0.50	<0.50	<1.5	<0.50	<2.0	<10	<2.0	<2.0	<2.0
TF-24	04/29/15	SGI	<100	1,900	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<10	<2.0	<2.0	<2.0
TF-24	10/11/16	SGI	<100	1,100	<0.50	<0.50	<0.50	<1.5	<0.50	<1.0	<10	<2.0	<2.0	<2.0
WCW-1	11/25/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	0.60	<5				
WCW-1	07/15/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
WCW-1	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-1 WCW-1	05/23/98 08/25/98	Terra Services	<300 <300		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1 <0.50	<0.50 <0.50	<0.50 <0.50				
WCW-1	11/04/98	Geomatrix GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<0.50				
WCW-1	02/02/99	Alton Geoscience	<500 <500	<500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	05/06/99	Alton Geoscience	<500 <500	<500 <500	2.1	9.8	0.80	4.4	<1	<0.50				
WCW-1	08/10/99	Alton Geoscience	<500	<1.000	<0.50	9.6 <1	0.80 <1	4.4 <1	<0.50	<0.50				
WCW-1	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
WCW-1	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	05/19/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.50	<0.50				
WCW-1	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	02/05/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	09/18/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-1	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-1	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	1.5				
WCW-1	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	05/03/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-1	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-1	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-1	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-1	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-1	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	11/25/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<1.7	<5 				
WCW-2	07/08/97	Terra Services	<100	<500	<0.50	3.5	1.4	7.4	0.57	<5				
WCW-2	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	1.0	<0.50				
WCW-2	05/19/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-2	08/25/98	Geomatrix	<300 <300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	11/04/98	GTI			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2 WCW-2	02/02/99 05/06/99	Alton Geoscience Alton Geoscience	<500 <500	<500 <500	<0.50 <0.50	<0.50 0.80	<0.50 <0.50	<1 <0.50	<1 <1	<0.50 <0.50				
WCW-2	08/10/99	Alton Geoscience	<500 <500	<1.000	<0.50	0.80	<0.50 <1	<0.50	<0.50	<0.50				
WCW-2	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	02/28/00		<300		<0.50	<0.50	<0.50	<0.50	2.0	<0.50				
WCW-2	05/18/00	Secor Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	0.60	<0.50				
WCW-2	11/30/00	IT Corporation	<300		0.60	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	02/05/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	09/18/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-2	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	04/21/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	11/03/04	Blaine Tech	<100		<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
WCW-2	05/05/05	Secor	<50		< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50				
WCW-2	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<2	<2	<2
WCW-2	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	12/05/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-2	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-2	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-2	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-2	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-2	05/24/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/07/10	Blaine Tech	<100		<0.50				<0.50	<0.50	<10			
WCW-2	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-2	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-2	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/08/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-2	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-2	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-2	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-2	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-2	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-3	11/25/96	GSI	120	<500	<0.70	<0.50	<0.50	<1.5	190	<5 				
WCW-3	07/15/97	Terra Services	100	<500	<0.50	<0.50	<0.50	<1	190	<5				
WCW-3	01/05/98	GTI	<500	200	<0.50	<0.50	<0.50	<1	220	<0.50				
WCW-3	05/23/98	Terra Services	<300 <300		<0.50	<0.50 <2.5	<0.50	<1 <2.5	201 200	<0.50				
WCW-3 WCW-3	08/26/98 11/03/98	Geomatrix GTI	<300		<2.5 <0.50	<2.5 <0.50	<2.5 <0.50	<2.5 <0.50	190	<2.5 <0.50				
				<500	<0.50	<0.50 <1	<0.50		200					
WCW-3 WCW-3	02/03/99 05/06/99	Alton Geoscience	<1000 <500	<500 <500	<0.50	1.3	<0.50	<2 <0.50	200 <1	<1 1.1				
WCW-3	08/10/99	Alton Geoscience Alton Geoscience	<500	<1,000	<0.50	1.3 <1	<0.50	<1	130	1.8				
WCW-3	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	100	3.3				
WCW-3	02/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	100	< 0.50				
WCW-3	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	92	1.0				
WCW-3	08/28/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	90	0.70				
WCW-3	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	68	<0.50				
WCW-3	02/05/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	81	<0.50				
WCW-3	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	63	<0.50				
WCW-3	09/19/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	69	<0.50				
WCW-3	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	51	<0.50				
WCW-3	01/30/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	34	<0.50				
WCW-3	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	29	<0.50				
WCW-3	07/30/02	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	47	0.55				
WCW-3	10/24/02	GTI	<300		<0.50	<1	<1	<1	39	<1				
WCW-3	01/28/03	Secor	<300		< 0.50	<0.50	<0.50	<0.50	44	<0.50				
WCW-3	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	34	<0.50				
WCW-3	07/30/03	Secor	<50		< 0.50	<0.50	< 0.50	< 0.50	23	<0.50				
WCW-3	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	22	<0.50				
WCW-3	01/28/04	Secor	<50		< 0.50	< 0.50	< 0.50	< 0.50	43	< 0.50				
WCW-3	05/10/04	Secor	<50		< 0.50	<0.50	<0.50	< 0.50	33	<0.50				
WCW-3	07/20/04	Secor	<50		<0.50	<0.50	<0.50	< 0.50	46	< 0.50				
WCW-3	11/03/04	Blaine Tech	<100		< 0.50	<0.50	<0.50	<0.50	33	<0.50	<10	<2	<2	<2
WCW-3	02/03/05	Secor	<50		< 0.50	<0.50	<0.50	<0.50	39	<0.50				
WCW-3	05/05/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	31	<0.50				
WCW-3	08/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	26	<0.50				
WCW-3	11/05/05	Blaine Tech	<100		< 0.50	< 0.50	< 0.50	< 0.50	19	<0.50	<10	<2	<2	<2
WCW-3	02/28/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	8.8	<0.50				
WCW-3	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	10	<0.50				
WCW-3	09/20/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	16	<0.50				
WCW-3	12/05/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	6.6	<0.50	<10	<2	<2	<2
WCW-3	03/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-3	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-3	08/28/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-3	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-3	02/21/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-3	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-3	08/13/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	3.6	<0.50				
WCW-3	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	1.3	<0.50	<10	<2	<2	<2
WCW-3	02/23/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10			
WCW-3	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-3	07/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	1.7	< 0.50	<10	<1	<1	<1
WCW-3 WCW-3	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	4.0	<0.50	<10	0.44 J	<2	<2
WCW-3	03/15/10	Blaine Tech	<50 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	3.5	<0.50 <0.50	<10 <10	<1 <1	<1 <1	<1 <1
WCW-3	05/24/10 07/12/10	Blaine Tech Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50 <0.50	2.8 4.4	<0.50	<10	<1	<1	<1
WCW-3	10/08/10	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	2.8	<0.50	<10	<1	<1	<1
WCW-3	01/11/11	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	3.3	<0.50	<10	<1	<1	<1
WCW-3	04/11/11	Blaine Tech	<50 <50		<0.50	<0.50	<0.50	<0.50	4.1	<0.50	<10	<1	<1	<1
WCW-3	07/12/11	CH2M Hill	<50 <50		<0.50	<0.50	<0.50	<0.50	4.5	<0.50	<10	<1	<1	<1
WCW-3	10/11/11	CH2M Hill	<50 <50		<0.50	<0.50	<0.50	<0.50	3.4	<0.50	<10	<1	<1	<1
WCW-3	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	2.3	<0.50	<10	<1	<1	<1
WCW-3	04/17/12	CH2M Hill	<50 <50	<50	<0.50	<0.50	<0.50	<0.50	3.2	<0.50	<10	<1	<1	<1
WCW-3	07/09/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	2.2	<0.50	<10	<1	<1	<1
WCW-3	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.7	<0.50	<10	<1	<1	<1
WCW-3	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.2	<0.50	<10	<1	<1	<1
WCW-3	04/09/13	CHHL	<50	<50	<0.50	<0.50	< 0.50	<0.50	4.1	< 0.50	<10	<1	<1	<1
WCW-3	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<10	<1	<1	<u>-</u> <1
WCW-3	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	0.88	<0.50	<10	<1	<1	<1
WCW-3	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.84	<0.50	<10	<1.0	<1.0	<1.0
WCW-3	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-3	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-3	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1.0	<1.0	<1.0
WCW-3	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	0.74	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	11/22/96	GSI	<50	<500	< 0.50	< 0.50	< 0.50	<1.5	< 0.50	<5				
WCW-4	07/08/97	Terra Services	<100	<500	0.50	0.78	<0.50	<1	<0.50	<5				
WCW-4	01/05/98	GTI	<500	<100	< 0.50	<0.50	<0.50	<1	< 0.50	<0.50				
WCW-4	05/19/98	Terra Services	<300		< 0.50	<0.50	<0.50	<1	< 0.50	<0.50				
WCW-4	11/03/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	05/06/99	Alton Geoscience	<500	<500	2.1	7.7	0.62	3.4	<1	<0.50				
WCW-4	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
WCW-4	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
WCW-4	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50				
WCW-4	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-4	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	05/10/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	11/03/04	Blaine Tech	<100		<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<2	<2	<2
WCW-4	05/05/05	Secor	<50		<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50				
WCW-4	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-4	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	12/05/06	Blaine Tech	<100		<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-4	05/01/07	Secor	<50 <100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-4	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	0.72	<10	<2	<2	<2
WCW-4 WCW-4	04/18/08 10/17/08	Secor Blaine Tech	<50 <100		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	0.61 0.65	 <10	 <2	 <2	 <2
VVCVV-4	10/17/00	Diame Tecil	<u> 100</u>		\0.50	\U.5U	\0.50	\0.00	\U.3U	0.00	<u> </u>	~∠	~∠	~∠

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-4	04/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.51	<10	<1	<1	<1
WCW-4	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	0.64	<10	<2	<2	<2
WCW-4	05/27/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-4	10/07/10	Blaine Tech	<100		< 0.50				<0.50	0.89	<10			
WCW-4	04/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	0.7	<10	<1	<1	<1
WCW-4	10/14/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.62	<10	<2	<2	<2
WCW-4	04/18/12	CH2M Hill	<50	<50	< 0.50	< 0.50	<0.50	<0.50	<0.50	0.59	<10	<1	<1	<1
WCW-4	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	0.53	<10	<2	<2	<2
WCW-4	04/10/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-4	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-4	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-4	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	04/14/16	BT for CH2MHill	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-4	10/04/16	BT for CH2MHill	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	<1.0	<1.0	<1.0
WCW-5	11/22/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
WCW-5	07/08/97	Terra Services	<100	<500	<0.50	7.7	<0.50	1.4	<0.50	<5				
WCW-5	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	0.7	<0.50				
WCW-5	05/19/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-5	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	05/05/99	Alton Geoscience	<500	<500	10	43	3.8	21	<1	<0.50				
WCW-5	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-5	04/10/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	05/10/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	11/03/04	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	05/06/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	12/05/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-5	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	10/07/10	Blaine Tech	<100		<0.50				<0.50	<0.50	<10			
WCW-5	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	10/14/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-5	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	10/08/13	CHHL	<50	130	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-5	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-5	10/28/14	BT for CH2MHill	<50	<50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-5	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-5	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-5	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-5	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	11/22/96	GSI	230	<500	<0.50	<0.50	<0.50	<1.5	220	24				
WCW-6	07/15/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	65	10				
WCW-6	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	159	3.0				
WCW-6	05/26/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	83	2.0				
WCW-6	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	46	1.8				
WCW-6	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	53	0.68				
WCW-6	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	11	<0.50				
WCW-6	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	16	0.70				
WCW-6	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	2.7	<0.50				
WCW-6	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	5.7	<0.50				
WCW-6	11/08/01	IT Corporation	<300		<0.50	< 0.50	<0.50	<0.50	2.7	<0.50				
WCW-6	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	1.7	<0.50				
WCW-6	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-6	04/10/03	Secor Blains Took	<50 =100		<0.50	<0.50	<0.50	<0.50	1.4	<0.50				
WCW-6 WCW-6	10/11/03	Blaine Tech Secor	<100 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	0.93 0.64	<0.50 <0.50				
	05/10/04						0.00							
WCW-6 WCW-6	11/03/04 05/05/05	Blaine Tech Secor	<100 <50		<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10	<2	<2	<2
WCW-6	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50 1.1	<0.50	 <10	 <2	 <2	<2
WCW-6	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	~10			
WCW-6	12/05/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-6	05/02/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	~10			
WCW-6	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-6	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-6	10/17/08	Blaine Tech for	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-6	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-6	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-6	05/24/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-6	10/07/10	Blaine Tech for	<100		<0.50				<0.50	<0.50	<10			
WCW-6	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	0.69	<0.50	<10	<1	<1	<1
WCW-6	10/13/11	Parsons			<0.50	<0.50	<0.50	<0.50	0.28 J	<0.50	<10	<2	<2	<2
WCW-6	04/18/12	CH2M Hill	<50	<50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
WCW-6	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-6	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-6	10/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-6	04/15/14	CHHL	<50	<50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<10	<1	<1	<1
WCW-6	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	04/13/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-6	10/05/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-7	11/22/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	31	<5				
WCW-7	07/15/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
WCW-7	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	30	<0.50				
WCW-7	05/23/98	Terra Services	<300		<0.50	<0.50	<0.50	<1	30	<0.50				
WCW-7	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	35	<0.50				
WCW-7	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	45	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-7	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	0.60	62	1.3				
WCW-7	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	120	6.4				
WCW-7	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	83	6.0				
WCW-7	02/05/01	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	95	6.1				
WCW-7	05/10/01	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	91	9.3				
WCW-7	09/18/01	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	140	12				
WCW-7	11/08/01	IT Corporation	<300		<0.50	<0.50	< 0.50	< 0.50	91	11				
WCW-7	01/30/02	Secor	<300		< 0.50	<0.50	< 0.50	< 0.50	84	8.8				
WCW-7	04/11/02	Secor	<300		<0.50	< 0.50	< 0.50	<0.50	66	8.4				
WCW-7	07/30/02	IT Corporation	<300		<0.50	< 0.50	< 0.50	<0.50	74	8.6				
WCW-7	10/24/02	GTI	<300		< 0.50	<1	<1	<1	78	9.3				
WCW-7	01/28/03	Secor	<300		<0.50	<0.50	<0.50	<0.50	80	7.3				
WCW-7	04/10/03	Secor	<100		<0.50	< 0.50	<0.50	<0.50	69	6.8				
WCW-7	07/30/03	Secor	<100		<0.50	< 0.50	<0.50	<0.50	69	7.6				
WCW-7	10/11/03	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	84	9.4				
WCW-7	01/28/04	Secor	<100		<0.50	<0.50	<0.50	<0.50	100	10				
WCW-7	05/10/04	Secor	<100		<0.50	<0.50	<0.50	<0.50	73	6.7				
WCW-7	07/20/04	Secor	140		<0.50	<0.50	<0.50	<0.50	110	9.0				
WCW-7	11/03/04	Blaine Tech	<100		< 0.50	<0.50	< 0.50	< 0.50	84	11	51	29	<2	<2
WCW-7	02/03/05	Secor	72		< 0.50	<0.50	< 0.50	< 0.50	91	8.8				
WCW-7	05/05/05	Secor	<100		< 0.50	<0.50	< 0.50	< 0.50	83	6.9				
WCW-7	08/03/05	Secor	53		<0.50	<0.50	<0.50	< 0.50	49	14				
WCW-7	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	14	6.7	<10	2.2	<2	<2
WCW-7	02/28/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	2.5	0.84				
WCW-7	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	6.0	2.5				
WCW-7	09/20/06	Secor	<100		<0.50	<0.50	<0.50	<0.50	33	7.2				
WCW-7	12/05/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	36	8.0	<10	4.8	<2	<2
WCW-7	03/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	32	5.4				
WCW-7	05/02/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	49	6.4				
WCW-7	08/28/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	56	7.1				
WCW-7	11/14/07	Blaine Tech	<100		< 0.50	< 0.50	< 0.50	< 0.50	50	6.5	<10	9.2	<2	<2
WCW-7	02/21/08	Secor	<50		<0.50	<0.50	<0.50	< 0.50	43	5.9				
WCW-7	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	54	5.9				
WCW-7	08/13/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	55	5.3				
WCW-7	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	45	5.4	<10	12	<2	<2
WCW-7	02/24/09	Blaine Tech	<50		<0.50	<0.50	<0.50	< 0.50	40	2.4	<10			
WCW-7	04/22/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	40	2.8	<10	6.6	<1	<1
WCW-7	07/21/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	31	1.9	<10	5.6	<1	<1
WCW-7	10/26/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	40	1.8	<10	3.7	<2	<2
WCW-7	03/15/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	30	1.8	<10	4.0	<1	<1
WCW-7	05/27/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	23	1.2	<10	3.3	<1	<1
WCW-7	07/13/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	20	1.6	<10	3.4	<1	<1
WCW-7	10/07/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	26	1.7	<10	3.9	<1	<1
WCW-7	01/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	25	1.4	<10	3.3	<1	<1
WCW-7	04/13/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	23	1.4	<10	3.9	<1	<1
WCW-7	07/12/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	21	1.2	<10	2.6	<1	<1
WCW-7	10/12/11	CH2M Hill	<500		<0.50	<0.50	<0.50	<0.50	21	1.0	<10	2.2	<1	<1
WCW-7	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	16	1.1	<10	2.1	<1	<1
WCW-7	04/18/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	18	0.98	<10	2.2	<1	<1
WCW-7	07/10/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	16	0.84	<10	2.1	<1	<1
WCW-7	10/17/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	9.2	0.56	<10	1.5	<1	<1
WCW-7	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	18	1.2	<10	1.8	<1	<1

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

WCW-7 04/10/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50	(µa/L) (µa/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
WCW-7 10/09/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <11 <0.60 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <1.4 <10 <1.4 <10 <1.4 <10 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4	<pre><1 <1 <1 <1 <1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>
WCW-7	<1 <1 <1 <1 <1 <1 <1.0 <1.0 <1.0 <1.0 <1
WCW-7	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
WCW-7 04/23/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
WCW-7	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
WCW-7 04/14/16 BT for CH2MHill <100 <50 <0.50 <0.50 <0.50 <0.50 7.7 0.82 <10 2.2 WCW-7 10/05/16 BT for CH2MHill <50	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
WCW-7 10/05/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.
WGW-8	
WCW-8	
WCW-8 01/05/98 GTI <500 <100 <0.50 <0.50 <0.50 <1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	
WCW-8 05/26/98 Terra Services <300	
WCW-8 11/03/98 GTI <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	
WCW-8 05/06/99 Alton Geoscience <500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td></td>	
WCW-8 11/18/99 IT Corporation <300 <0.50 <1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 05/16/00 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 08/28/00 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 11/30/00 IT Corporation <300 0.90 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 02/05/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 05/09/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 09/18/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 11/08/01 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 < <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 01/30/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td></t<>	
WCW-8 04/11/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 < WCW-8 10/24/02 GTI <300 <0.50 <1 <1 <1 <0.50 <1 WCW-8 04/10/03 Secor 61 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td></td>	
WCW-8 10/24/02 GTI <300 <0.50 <1 <1 <0.50 <1 WCW-8 04/10/03 Secor 61 <0.50	
WCW-8 04/10/03 Secor 61 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 < WCW-8 10/11/03 Blaine Tech <100	
WCW-8 10/11/03 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 05/10/04 Secon 55 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 11/03/04 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2	<2 <2
WCW-8 05/05/05 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0	
WCW-8 11/05/05 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2	<2 <2
WCW-8 05/05/06 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	
WCW-8 12/05/06 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2	<2 <2
WCW-8 05/02/07 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
WCW-8 11/14/07 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2	<2 <2
WCW-8 04/18/08 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 0.60	
WCW-8 10/17/08 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 <1.1 <10 <2	<2 <2
WCW-8 04/21/09 Blaine Tech for AMEC <50 <0.50 <0.50 <0.50 <0.50 <0.50 0.59 <10 <1	<1 <1
WCW-8 10/26/09 Blaine Tech <100 <0.50 <0.50 <0.50 <0.50 <0.50 1.1 <10 <2	<2 <2
WCW-8 05/27/10 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1	<1 <1
WCW-8 10/07/10 Blaine Tech <100 <0.50 <0.50 <0.50 0.90 3.7 J	
WCW-8 04/13/11 Blaine Tech <50 <0.50 <0.50 <0.50 <0.50 <0.50 0.96 <10 <1	<1 <1
WCW-8 10/14/11 Parsons <0.50 <0.50 <0.50 <0.50 <0.50 0.92 <10 <2	<2 <2
WCW-8 04/19/12 CH2M Hill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.89 <10 <1	<1 <1
WCW-8 10/18/12 Parsons <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <2	<2 <2
WCW-8 04/11/13 CHHL <100 <50 <0.50 <0.50 <0.50 <0.50 <1 <0.50 <1 <1 <1	<1 <1
WCW-8 10/09/13 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1	<1 <1
WCW-8 04/15/14 CHHL <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1	<1 <1
WCW-8 10/28/14 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0	<1.0 <1.0
WCW-8 04/22/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0	
WCW-8 10/21/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0	<1.0 <1.0
WCW-8 04/13/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl-	Xvlenes	1.2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
		Jan.,					benzene		,					
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)
WCW-8	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-9	11/22/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
WCW-9	07/08/97	Terra Services	<100	<500	<0.50	1.1	<0.50	1.1	<0.50	<5				
WCW-9	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-9	05/19/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-9	11/03/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-9	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
WCW-9	11/18/99	IT Corporation	<300		<0.50	<1	<0.50	<0.50	<0.50	<0.50				
WCW-9	05/16/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-9	11/30/00	IT Corporation	<300		0.60	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-9	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-9	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-9	04/11/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-10	11/25/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
WCW-10	07/08/97	Terra Services	<100	<500	<0.50	2.2	<0.50	<1	<0.50	<5				
WCW-10	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-10	05/19/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-10	11/04/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-10	05/05/99	Alton Geoscience	<500	<500	<0.50	0.80	<0.50	<0.50	<1	<0.50				
WCW-10	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	0.80	<0.50	<0.50				
WCW-10	05/19/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-10	11/30/00	IT Corporation	<300		1.0	<0.50	<0.50	0.70	<0.50	<0.50				
WCW-10	05/10/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-10	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-10	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	11/25/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
WCW-11	07/08/97	Terra Services	<100	<500	<0.50	2.5	<0.50	<1	<0.50	<5				
WCW-11	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-11	05/18/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-11	11/03/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	05/06/99	Alton Geoscience	<500	<500	<0.50	<0.50	<0.50	<0.50	<1	<0.50				
WCW-11	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	11/30/00	IT Corporation	<300		0.8	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-11	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	11/25/96	GSI	<50	<500	<0.50	<0.50	<0.50	<1.5	<0.50	<5				
WCW-12	07/09/97	Terra Services	<100	<500	<0.50	2.5	<0.50	<1	<0.50	<5				
WCW-12	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-12	05/18/98	Terra Services			<0.50	<0.50	<0.50	<1	<0.50	<0.50				
WCW-12	11/03/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	05/06/99	Alton Geoscience	<500	<500	1.4	5.3	<0.50	2.3	<1	<0.50				
WCW-12	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				
WCW-12	04/09/03	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-12	05/10/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

WCW12	Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
WCW12				(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW12										<0.50		<10	<2	<2	<2
WCW-12															
WCW12 0565066 Sister C50 C55 C5															
WCW-12 1268666 Blaine Tech 100 45.50 40.50															<2
WCW-12															
WCW-12															<2
WCW-12															
WCW-12															<2
WCW-12 042709 Blaine Tech <50															 <2
WCW-12															<1
WCW-12															<2
WCW-12 1007/10 Blaine Tech < < <															<1
WCW-12													_		
WCW-12															<1
WCW-12															<2
WCW-12															<1
WCW-12															<2
WCW-12				<50	<50										<1
WCW-12 10/28/14 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0					<50		< 0.50	< 0.50		< 0.50		<10	<1	<1	<1
WCW-12 04/22/15 BT for CH2MHIII <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	WCW-12	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<10	<1	<1	<1
WCW-12 10/21/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	WCW-12	10/28/14	BT for CH2MHill	<50	<50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-12 10/21/15 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	WCW-12	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-12 10/04/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-12 10/04/16 BT for CH2MHill <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	WCW-12	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	WCW-12	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<10			<1.0
WCW-13			GSI				<0.50								
WCW-13 05/18/98 Terra Services	WCW-13	07/09/97	Terra Services	<100	<500	<0.50	<0.50	<0.50	<1	<0.50	<5				
WCW-13 05/18/98 Terra Services	WCW-13	01/05/98	GTI	<500	<100	<0.50	<0.50	<0.50	<1	< 0.50	<0.50				
WCW-13							<0.50	<0.50	<1						
WCW-13 05/06/99 Alton Geoscience <500 <500 0.88 3.1 <0.50 0.87 <1 <0.50				<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13 11/17/99 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50		05/06/99	Alton Geoscience		<500	0.88	3.1			<1					
WCW-13 05/18/00 Secor <300															
WCW-13 08/28/00 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 11/30/00 IT Corporation <300 0.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 02/05/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
WCW-13 05/09/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 < WCW-13 09/18/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 09/18/01 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 11/08/01 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 01/30/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
WCW-13 04/09/02 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
WCW-13 07/30/02 IT Corporation <300 <0.50 <0.50 <0.50 <0.50 <0.50 < WCW-13 10/24/02 GTI <300 <0.50 <1 <1 <1 <0.50 <1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 10/24/02 GTI <300 <0.50 <1 <1 <0.50 <1 WCW-13 01/28/03 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
WCW-13 01/28/03 Secor <300 <0.50 <0.50 <0.50 <0.50 <0.50 < WCW-13 04/09/03 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
WCW-13 04/09/03 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <t< td=""><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			T												
WCW-13 07/30/03 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <															
WCW-13 01/28/04 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
VVI.VV-13 U5/10/04 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	WCW-13	05/10/04	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13 07/20/04 Secor <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50															
WCW-13 07/20/04 Secon															<2

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	MTBE	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-13	02/03/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	05/05/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	08/02/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-13	02/28/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	09/20/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	12/08/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-13	03/13/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	08/28/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-13	02/21/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	08/13/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-13	02/23/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-13	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	07/20/09	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/27/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-13	03/15/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	05/24/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	07/12/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/08/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	01/10/11	Blaine Tech	<50		< 0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<10	<1	<1	<1
WCW-13	04/11/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	07/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/11/11	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	01/09/12	CH2M Hill	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	07/09/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/16/12	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	01/14/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/09/13	CHHL	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-13	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	04/22/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-13	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	11/03/98	GTI	<300		<0.50	<0.50	<0.50	<0.50	1.5	<0.50				
WCW-14	05/06/99	Alton Geoscience	<500	<500	1.8	6.6	0.55	3	<1	<0.50				
WCW-14	11/17/99	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	05/18/00	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	11/30/00	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	05/09/01	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	11/08/01	IT Corporation	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	04/09/02	Secor	<300		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	10/24/02	GTI	<300		<0.50	<1	<1	<1	<0.50	<1				

HISTORICAL ANALYTICAL RESULTS FOR TPH, BTEX COMPOUNDS, 1,2-DCA, AND FUEL OXYGENATES IN GROUNDWATER, NOVEMBER 1996 THROUGH OCTOBER 2016

Defense Fuel Support Point Norwalk

15306 Norwalk Boulevard, Norwalk, California 90650

Well	Date	Sampled By	TPH-g	TPH-d	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	МТВЕ	ТВА	DIPE	ETBE	TAME
			(µg/L)	(µg/L)	(µg/L)	(µq/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WCW-14	04/09/03	Secor	<50		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
WCW-14	05/10/04	Secor	<50		<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50				
WCW-14	11/03/04	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	05/05/05	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	11/05/05	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	05/05/06	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	12/08/06	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	05/01/07	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	11/13/07	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	04/18/08	Secor	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				
WCW-14	10/17/08	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	04/21/09	Blaine Tech for AMEC	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/27/09	Blaine Tech	<100		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	05/25/10	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/07/10	Blaine Tech	<100		<0.50				<0.50	<0.50	<10			
WCW-14	04/12/11	Blaine Tech	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/14/11	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	04/17/12	CH2M Hill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/18/12	Parsons			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<2	<2	<2
WCW-14	04/09/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/08/13	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	04/15/14	CHHL	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1	<1	<1
WCW-14	10/28/14	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	04/23/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	10/21/15	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	04/12/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
WCW-14	10/04/16	BT for CH2MHill	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

Detected concentrations are shown in **bold**. Notes:

TPH = total petroleum hydrocarbons

BTEX Compounds = benzene, toluene, ethylbenzene, and total xylenes

1,2-DCA = 1,2-dichloroethane

TPH-g = total petroleum hydrocarbons as gasoline

TPH-fp = total petroleum hydrocarbons quantified using a site fuel product standard <100 = not detected at or above the indicated laboratory reporting limit

TPH-d = total petroleum hydrocarbons as diesel

TPH-JP-4 = total petroleum hydrocarbons as Jet Propellant No.4 TPH-JP-5 = total petroleum hydrocarbons as Jet Propellant No.5 ETBE = ethyl tertiary-butyl ether TAME = tertiary-amyl methyl ether

MTBE = methyl tertiary-butyl ether

TBA = tertiary-butyl alcohol

DIPE = diisopropyl ether

---- = not analyzed

HD = Chromatographic pattern was inconsistent with the profile of the reference fuel standard.

J = estimated concentration below the laboratory reporting limit

APPENDIX E TIME-SERIES CHARTS

FORMER TANK FARM AREA

GMW-6, GMW-15, GMW-32, GMW-45, GMW-47, MW-23(MID), AND MW-26

The Source Group, Inc.

WESTERN AREA GMW-8, GW-2, GW-6, GW-13, MW-6, MW-7, MW-22(MID), MW-26, WCW-3, AND WCW-7

The Source Group, Inc.

RTHEAST ON-SITE/HOLIFIELD PARK AREAS
GMW-60, GMW-61, GMW-62, GMW-67, GMW-68, AND GMW-69

The Source Group, Inc.

RMER TRUCK-FUELING AREA
GMW-1, GMW-4, GMW-10, AND MW-15

The Source Group, Inc.

The Source Group, Inc.

The Source Group, Inc.

The Source Group, Inc.

SOUTH-CENTRAL AREA

GMW-27, GMW-O-3, GMW-O-5, GMW-O-9, GMW-O-10, GMW-O-14, GWR-1, HL-2, MW-7, MW-20(MID), MW-SF-1, AND MW-SF-9

The Source Group, Inc.

UTHEASTERN 24-INCH BLOCK VALVE AREA GMW-39, GMW-O-18, MW-8, AND PZ-5

The Source Group, Inc.

GMW-0-18

The Source Group, Inc.

The Source Group, Inc.

The Source Group, Inc.